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ABSTRACT this approach while section 6 presents the results. Finally,
section 7 summarizes this work and provides concluding

We briefly describe genetic algorithms (GAs) and focus comments.

attention on initial population generation methods for two-

dimensional knapsack problems. Based on work 2 OVERVIEW OF GENETIC ALGORITHMS

describing the probability a random solution vector is .

feasible for 0-1 knapsack problems, we propose a simple The GA name “originates from the analogy between the

heuristic for randomly generating good initial populations Fepresentation of a complex structure by means of a vector

for genetic algorithm applications to two-dimensional of components, and the idea, familiar to biologists, of the

knapsack problems. We report on an experiment 9enetic structure of a.chrorr_\osome" (Reeves,. 1993). In

comparing a current population generation technique with biology, natural selection reinforces characteristics most

does a very good job of generating good initial Chromosomes of the stronger members, corresponding to

populations. the more desirable characteristics, pass to subsequent
generations through the reproduction process.
1 INTRODUCTION This paradigm fits optimization applications. Problem

solutions (phenotypes) are encoded (genotypes), usually in
Genetic algorithms are search procedures inspired bybinary format (genes). The set of solutions under
biology and the workings of natural selection. Conceived consideration form a population with each solution
by John Holland and his colleagues, GAs are now applied considered a chromosome. The fitness of each member is
in many diverse applications, for instance, mathematical generally the functional value of the phenotype, although
optimization, simulation parameterization, and real-time specific applications may modify the fithess function, for
control. The broad focus of this paper is GA applied to example, to penalize problem constraint violations
optimization problems, and in particular initial population (penalty-based  fitness  function) in  constrained
generation methods for a GA. Good initial populations optimization.
facilitate a GA’s convergence to good solutions while poor Fit chromosomes combine to produce chromosomes
initial populations can hinder GA convergence. We for subsequent populations. Member pairs of the
propose an approach for obtaining good populations in the population are selected for reproduction, usually based on
context of two-dimensional knapsack problems of the some function of their individual fitness value. Genes

following form: from each parent are combined according to some
predefined strategy to produce offspring (derivative
Maximize ZJ- C x chromosomes). T.he next gerlleration.is based. on selecting
parents and offspring for survival again according to some
St Ajx <h =12 1) predefined strategy. Non-selected chromosomes “die” and
X >0 0j are removed from consideration.

The fundamental concept in GA optimization
This paper is organized as follows. Section 2 provides applications is that better solutions share “good” gene
a brief overview of GAs and section 3 discusses initial combinations, or schema. Better schema produce fitter
population generation methods for a GA. Section 4 chromosomes in each generation and carry over during the
suggests a new, heuristic approach to generating initial GA reproduction process. Over many generations, these
populations based on knowledge of the optimization schema dominate and yield a population containing the
problem being solved. Section 5 describes how we study best, possibly even the optimal, solutions.
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There is no guarantee a GA will converge to an decision variables (X=1) as Pr(X=1). This approach is
optimal solution, although experience suggests that a motivated by Reilly (1998).
properly parameterized GA performs quite well.
Parameters involved in a GA generally include: population 4.1 Proportion Of Feasible Solutions
size, number of generations to simulate, mating selection For Knapsack Problems
method, diversification or mutation rate, and the
reproduction strategy. Our focus is on generating initial Reilly (1998) shows how to estimate the proportion of
populations. feasible solutions for the 0-1 knapsack problem and
The initial population for a GA is a set of solutions to considers two-dimensional knapsack problems when the
the optimization problem. Just as an initial starting point coefficients of the constraints are correlated. The key
dictates the quality of a gradient-based non-linear points of his effort are based on 0-1 knapsack problems
optimization algorithm, the initial population can affect (equation (1) with i=1).

GA solution convergence. Some characteristics of any Let

population are objective function value, feasibility of the b= tz a 0<t<l

solution, and level of infeasibility for any infeasible : P

solutions. Then

3 POPULATION GENERATION AND F=>ax -ty a
J J

REPAIR METHODS
is a random variable asymptotically normally distributed

There are a variety of approaches to generating initial with mean  y. =n(p-t)u, and  variance

populations. We consider a common approach and suggest _, _ 2 2 ,

a new approach o =n((p+tt(t-D)o, +u,/4), where p is
Pr(X=1) (normally Pr(X=1)=0.5 and is used by Reilly

3.1 Random Generation (1998)),t is the ratio used to establish the right-hand side
values of a sample problem (the constraint slackness

A common (often default) method of population generation measure), andix and o, are the mean and standard
is random generation' Each gene for a ChromosomedeV|at|On of the distribution defined for the constraint

assumes a value of 1 with probabiliyand a value of 0  coefficient vector, A. The probability of randomly

with probability 1-p. Quite commonly Pr(X=50.5. This generating a feasible solution is
approach is efficient and provides a population covering
the feasible region, but the entire initial population may be PrF<0)=®(-u; /o:),

infeasible. This means subsequent generations may remain

infeasible with feasible solutions evolving slowly. A \yhere @ is the cumulative distribution function for the
fitness function penalizing infeasibility is common. standard normal random variable (Reilly 1998).
However, random solutions can be far from feasible and Tables 1 and 2 provide the probability that a randomly
have large objective function values yielding poor generated problem is feasible for a range of slackness
performance for penalty-based fitness functions (Eravsar ratjos,t, and Pr(X=1) for two different distributions. (the
1999). distributions in our experiment). Three important points
are apparent. First,dictates the probability of a feasible
solution more than the constraint coefficient distribution.
Second, tighter constraints mean using a smaller Pr(X=1)
to ensure a reasonable feasibility probability. And finally,
feasible solutions are easy to generate with loose
constraints.

If A'~U(1,40) and A-U(1,15) for (1) then the

3.2 Generation Based on Problem Structure

We suggest using information about the problem structure
to arrive at better probability values for building initial
populations randomly. This approach, and its motivation
are discussed next.

4 A NEW HEURISTIC EOR RANDOM probabilities in Tables 1 and 2 bound above the proportion
POPULATION GENERATION of random solutions feasible with respect tmwth
constraints. However, correlation between these

We propose that initial populations for GA applications be constraints affects these probabilities, and in fact only
randomly generated with Pr(X=1) based on problem under perfect positive correlation are these bounds attained
knowledge. In particular, we suggest finding some feasible (the constraints are identical). Reilly (1998) shows that as
solution to the two-dimensional knapsack problem with a correlation decreases so does the probability a random
quick running heuristic and use the proportion of active Solution is feasible for the problem.
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Table 1: Probability of Feasible Random Solutions for 5 THE EXPERIMENT

A~U(1,40)

Slackness Ratio - t Discrete distributions were used to generate two-
Pr(x=1) 030 040 050 060 0.70 0.80 dimensional knapsack sample problems, specifically C ~
010  1.00 1.00 1.00 100 100 1.00 U(1,100), A ~ U(1,40), and A ~ U(1,15). Problem
8-;3 (1)'82 1-88 1-8g 1-88 1-88 1-88 correlation structure was controlled across the complete
0.25 084 100 100 100 100 100 range of feasible correlation structures (45 feasible
0.30 050 097 1.00 100 1.00 1.00 correlation structures). Additionally, four settings for the
0.35 018 0.83 1.00 100 100 1.00 right-hand side coefficients were considereg={Q.3,
040 004 050 097 100 100 1.00 0.7} and $={0.3, 0.7}. A total of 180 problems were
8:‘513 8:88 8:(1)2 8:23 (l):gg 1288 1:88 generated. Thi_s generatipn scheme was used in Hill
0.55 000 001 020 080 099 1.00 (1996) so optimal solutions were available for the
0.60 000 000 005 050 095 1.00 problems generated.
065 000 000 001 021 079 089 For each problem, 100 solutions were generated
8:;2 8:88 8:88 8:83 8:8? g:gg g:gg randomly and according to the proposed heuristic.
0.80 000 0.00 000 000 007 050 Random numbers were synchronized between the
0.85 000 0.00 000 000 001 023 approaches. Each solution was evaluated and a level of
090 ~ 000 000 0.00 000 000 008 infeasibility determined, if the solution was in fact

0.95 0.00 0.00 0.00 0.00 0.00 0.02

infeasible. Of interest is the frequency with which each
method vyields infeasible solutions, the overall quality of
the solution generated, and how close to feasibility were
infeasible solutions. The heuristic of Toyoda (1975) was

Slackness Ratio - t used to solve the problems to set Pr(X=1).
Pr(x=1) ~ 030 040 050 060 070 _ 0.80

0.10 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Probability of Feasible Random Solutions for
A~U(1,15)

0.15 100 100 1.00 1.00 1.00 1.00 6 RESULTS

0.20 098 1.00 1.00 100 100 1.00

g-gg g-gg (1)-39 1-88 i-gg }-88 1-88 The proposed heuristic approach faired extremely well and
035 018 083 100 100 100 100 represents a reasonable approach for GA populapon
0.40 004 050 097 1.00 1.00 1.00 generation. As Tables 1 and 2 suggest, the challenge is to
0.45 000 019 082 100 100 1.00 produce good populations for the more difficult, tightly
0.50 0.00 004 050 096 100 100 constrained problems. Table 3 summarizes how often each

0.55 000 001 019 080 0.99 1.00

060 000 000 005 050 095 100 approach, the random and our proposed heuristic, produced

0.65 000 000 001 021 079 099 feasible solutions.

070 000 000 000 005 050 0.94

0.75 0.00 000 000 001 022 078 Table 3: Percentage Feasible Solutions Produced by

080 000 000 000 000 006 050 Each A h

085 000 000 000 000 001 023 ach Approac

090 000 000 000 000 000 007 Approach

095 0.0 000 000 000 000 002 —
Slackness Random Heuristic

. . =t = 0, 0,

4.2 Using Problem Information To Infer L=£=03 (;)100/%’ %0'720//0
Reasonable Probability Values L#L L 70 70

t,=t,=0.7 100 % 41.5 %

Idealistically, one might pre-process a problem, determine

the slackness ratio values, determine the interconstraint The random approach, with P§(X 1) = 0.5, performs as
correlation, and compute a reasonable value for Pr(X=1). predicted by Tables 1 and 2. The heuristic uses a
This value provides an expected proportion of the decision dynamically set Pr(X= 1) improving over the random
variables to set to a value of 1. We suggest an easierapproach when constraints are tight although the approach
approach. Solve the problem with a greedy heuristic, use does yield more infeasible solutions when both constraints
the ratio of active (¥1) to total decision variables as are loose.

Pr(X=1), and then randomly generate the initial population. Table 3 results can be misleading since infeasible
Our conjecture is that this approach will yield a good solutions vary by degree of infeasibility. A GA employing
portion of feasible solutions, and moreover these solutions @ penalty-based fithess measure may handle near-feasible
should be “good” both in the sense of objective function

value and in terms of near-feasibility.
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solutions quite well. Table 4 summarizes the infeasibility Pr(X; = 1) value. This causes some of those problems to be

levels using the following function for each constraint: infeasible, but as demonstrated those solutions are still very
close to feasibility and yield very good objective function

B values.
f, :ma@ X;a; —t, Za,.j Eti zayj 0gi=12
T T T =| Table 6: Average Pr(= 1) Values by

Constraint Slackness Settings

Whenever t=0.3, random solutions are very infeasible. t, Values
Infeasible heuristic solutions are close to feasible. These t; Values 0.30 0.70
better heuristic solutions facilitate a penalty-based fitness 0.30 0.366 0.454
function. 0.70 0.442 0.693

Table 4: Average Infeasibility Ratiok, for Infeasible Reilly shows that interconstraint correlatigfA® A?),

Solutions effects solution feasibility probabilities. We examine the

Approach effect ofp(A* A% in Table 7.
Random Heuristic
Slackness aof f fy fa Table 7: Infeasibility Ratiosf, and Average Pr(X= 1)
tt==0.30 0.67 0.68 0.29 0.29 Values byp(A! A?) Setting
L2t 0.34 0.33 0.27 0.25

Targetp(A' A9 Values
-0.99 -0.49 0.0 0.49 0.99
f 0.16 0.17 0.22 0.27 0.30
f, 0.12 0.18 0.20 0.27 0.30

t,=,=0.70 0.00 0.00 0.06 0.07

Solution quality is also measured by objective function
value. Table 5 summarizes the average objective function

value by constraint slackness settings. Pr(x=1) 043 047 049 052 053

Table 5: Average Objective Function Values by Constraint

Slackness Settings As p(A' A% drops, problems get more difficult to

solve both in terms of proportion of feasibility (based on

l; Values Reilly (1998)) and in solution procedure performance (Hill,
t,Values _ Approach 0.30 0.70 1996). Asp(A* A% drops, the heuristic reduces Préx1)
Random 2507.40 2491.96 values and actually reduces infeasibility ratios. A
0.30 Heuristic 1837.40 2255.64 corresponding table for the random generation approach
Random 2557.11 2490.48 would show allf; values around 0.33 and Pp£4)=0.5
0.70 Heuristic 2270.49 3464.43 throughout the table.

Since most (if not all) randomly generated solutions 7 sSyUMMARY AND CONCLUSIONS

when either &+ = 0.3 or § = 0.3 are infeasible, the

corresponding objective function values are inflated (o0 GaAs are an increasingly popular heuristic method for
many X = 1). In some cases, these values are not muchgptimization applications and meta-heuristic applications.
larger than the heuristic solution values, whose solutions Reilly's (1998) discussion of how problem structure effects
are feasible or close to feasibility. When all constraints are go|ytion space density prompted the GA initial population
loose, the heuristic yields stronger solutions than the peyristic approach we propose. Compared to default
random approach (higher objective function values, very random generation methods, this heuristic performs
close to feasibility), despite the 100% feasibility of the gspecially well. The near-feasible solutions produced by

random approach. This is due to the setting of P+(X) the heuristic, especially under the tougher conditions of

values by the heuristic o tight constraints and decreased correlation between
Table 6 summarizes the heuristic’s BreX1) values  constraints, should be especially attractive to penalty-based

by constraint slackness settings. When any constraint isfitness function applications of GA.

tight, Pr(¥ = 1) is reduced. Reilly's (1998) formula A next logical step is to compare GA performance

predicts a higher probability of attaining a feasible solution sing the initial population produced by our heuristic
when Pr(X = 1) is reduced in this fashion. The proportion against other initial population methods. Our conjecture is
of feasible solutions attained agreed with this predictive hat this proposed heuristic will provide an initial

formula (correlation over 0.98 between achieved and nopylation of sufficient quality and diversity to produce

predicted proportion of feasible solutions). Notice when fayorable convergence to good solutions.

constraints are loose, the heuristic produces a very high
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