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ABSTRACT How-t0? analysis starts with a goal and determines one (or
several) decision(s) which allows one to reach this goal.
This paper addresses the problem of goal-driven How-tg? analysis is very important in today's management
simulation. Goal-driven simulation is a task frequently practice because many decisions are made in such a goal-
performed by users of simulation systems. It consists in driven way. In the context of simulatiohpw-td? analysis
determining, when possible, an assignment of one or can be performed bgoal-driven simulationGoal-driven
several decision variable(s) in order to obtain a particular simulation consists in using a simulation model for finding,
value for a specific goal variable. This task is poorly when possible, the value of a specific decision variable in
supported in simulation systems because of lack of order to reach a specific value for a particular output (or
appropriate algorithms. Some systems assist goal-drivengoal) variable. Goal-driven simulation is very important for
simulation with a functionality calledtarget value users of simulation tools because it is complementary with
computation This functionality allows users to set a value traditional data-driven simulation. Goal-driven simulation
for a goal variable and to get the value of a decision is used in many fields like financial and marketing
variable by running a simulation "backwards" from this planning, economic forecasting and engineering design.
goal. However, target value computation is insufficient in However, in many simulation tools, this task is
current simulation systems: it does not deal with models cumbersome: the user must adjust the value of the decision
involving conditional expressions in equations — a common variable by trial and error until she gets a value of the goal
case in practice — nor with under and over-constrained variable which satisfies her. Goal-driven simulation can be
problems, which frequently occur during goal-driven assisted by a functionality calléarget value computation
simulation. We present an algorithm which overcomes Target-value computation automates the determination of a
these difficulties. We propose to combine graph theoretic value for a decision variable by running the simulation
methods for monitoring the numerical solving process of model "backwards" from the expected goal. However,
the model and interval constraint reasoning for dealing because of lack of appropriate algorithms, target value
with under-constrained and over-constrained problems. computation is seldom available in current simulation
This algorithm, implemented in a simulation environment systems. When it is available, it is only with limited
calledamiA, has been successfully applied to several large possibilities. In HEQS (Derman and Sheppard 1985) and

models containing thousands of equations. some commercial spreadsheet packages for instance, target
value computation is possible, but limited to hierarchical
1 INTRODUCTION systems of equations (i.e. without simultaneous equations)

and fails to solve seemingly simple problems involving
Simulation is the most widely used decision support conditions such as: given the equatidr= if Y = 1 then 2
technique in Economics and Management. One of the mainelse 0, how to séfin order to geX =2 ?
reasons for the popularity of simulation systems comes Target value computation is, in general, a difficult
from the assistance they give to decision makers for problem. Two difficulties must be overcome. First, as
performing what-if? analysis, i.e., for determining the shown in the above example, target value computation
possible outcomes of decision hypotheses. It is now widely should deal with conditions in equations (today, most
accepted that supporting decision more efficiently requires modeling languages allow the definition of equations
to assisthow-t@? analysis as well awhat-if? analysis. involving such conditions). Second, the problem can be
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under-constrained (this would be the case for the problem: known; E is a set of PWDEs. In each PWDE, the left-hand
how to setY in order to gefX = 0 ?). The set of solutions  side is an unknown and the right-hand side is an expression
must be in this case characterized and given to the user in avhich may contain conditions. These PWDEs have the
meaningful form. following syntax:

Two approaches can be considered for tackling target
value computation problems. The first one, initially piece-wise-defined-equatiors var = expr
proposed by Serrano and Gossard (Serrano and Gossaréxpr::= if cond-expthenexprelseexpr | arithm-expr
1987) for solving systems of constraints in engineering
design, extended in (Porté et al. 1988) and (Ait-Aoudia, wherevar is an unknown variable, arithmetic expressions
Jegou and Michelucci 1993), exploits results of graph (arithm-exp) are formed using numbers, variables, usual
theory concerningmatchings It helps in characterizing  arithmetic operators and functions (+x;/, log, ...), while
constrained systems, i.e., systems of equations which canconditional expressionscgnd-expf are made up of
be numerically solved. However it does not take conditions re|ational and logical operators (=, >, ..., and, or, ...)
into account. The second approach is based on intervalcombining arithmetic expressions. In the remainder of the
reasoning. It stems from the observation that target value paper, we will use the terequationto refer to a PWDE
computation problems form a subset of interval constraint which does not contain any condition.
satisfaction problems. Interval constraint reasoning (Older A target value computation probleassociated with a
and Vellino 1993), a set of powerful techniques for solving model <X,K,E> consists in:
constraint satisfaction problems is hence a good candidate  assigning a value to a particular unknown variable G
for solving target value computation problems. These calledgoal variable

techniques cope with under-constrained problems. removing the value of a particular known variable
However, up until now, they lack efficiency for tackling calledinstrument variable
large models. determiningonevalue ofl as well as an assignment of

In this paper, we propose to solve target value the variables iX-{G} such that all the PWDEs d are
computation problems by taking advantage of the two gatisfied.
above approaches. First, we extend the graph-theoretic A target value computation problem can be seen as a
method proposed by Serrano and Gossard in order to deahumerical constraint satisfaction problem (CSP) in which
with co_ndltlons. Second, we combine it W|th_ interval  the set of variables i {G}) O {1}, the domain of these
constraint reasoning only when necessary, i.e., when,,.-niesis] and the set of constraintsis
dealing with under-constrained problems. An algorithm Target value computation raises the problem of
based on these ideas has been implementeriin (Page solving sets of nonlinear equations. Because interactivity is

1996), a discrete-time simulation workbench. This ggan 3 primary concern in simulation, the approach we

algorithm has successfully been applied to some large haye chosen to trade completeness for efficiency. It relies
models. One of them, described in (Camos, Dumort and o ¢jassical numerical algorithms using floating-point

Valette 1986), contains several thousands of equations. arithmetic which may not converge, but which are more

The paper is organized as follows. The target valué gfficient than the complete methods developed with
computation problem is precisely stated in section 2. OUr jhtarval arithmetic (see section 5).

algorithm for target value computing is presented in

section 3. Section 4 presents two examples illustrating our 3 SOLVING TARGET VALUE
algorithm. Section 5 discusses related work. Section 6 COMPUTATION PROBLEMS
summarizes the contribution of this paper and indicates its

applications. This section presents our algorithm for target value

computation. The reader is invited to consult the example
in section 4 to find illustrations of the concepts and
h properties introduced in this section.

2 PROBLEM STATEMENT

From a general standpoint, this work is concerned wit
discrete-time simulation models (Cellier 1991). Models of

this kind are generally represented by difference equations
and, in many simulation systems, the equations are piece-
wise defined. In this paper, we consider a more simple

class of models: sets of algebraic piece-wise defined algorithms as a black box callejuation solverwhich,

equations (PWDE); the generalization to difference when given a set of equations, terminates but may not

equations is discussed in section 6. These models form a . . i _
) : successfully find an instantiation of the unknown variables
triple <X,K,E> whereX is a set of unknown real-valued

variablesK is a set of real-valued variables whose value is that satisfies the set of equations.

3.1 Definitions and Properties

As stated above, our work is based on numerical
algorithms. To be as generic as possible, we consider these
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Using an equation solver as a black box implies to A more efficient approach consists in trying to
make assumptions about the properties of the sets ofdiscover inconsistencies as soon as they appear in the
equations it is able to solve. In this paper, we make two system of PWDEs. Following this idea, one can notice
important assumptions. First, a PWDE should not be sentthat before any hypothesis is made, sqrag of a model
to the equation solver as long as its condition contains a may satisfy the two assumptions stated above, even if the
variable whose value is unknown. This assumption is made model as a whole does not. Before explaining how to
because continuity is required by almost all numerical determine the constrained subsets of equations contained
algorithms that solve sets of equations whereas conditionsin a model, we need to introduce some concepts and
usually break the continuity of the function in which they properties.
appear. The consequence of this first assumption is that Definition 3 (active PWDE) A PWDE e is saidactive
conditional expressions must be handled outside the if every variable appearing in its condition (if any) is
numerical machinery. The second assumption we make isknown; otherwise, it is saidactive

also required by most numerical equation solving It should be noticed that the state (active or inactive)

algorithms: the set of equations shouldcbastrained of a PWDE is not defined once for all: during the solving
Definition 1 (constrained set of equations) et E be process, an inactive PWDE may later become active

a set ofn equationsE is aconstrained set of equatiorifs because the unknowns it contains in its condition have

and only if : been computed. When a PWDE is active, the arithmetic
it contains as many equations as unknowns; expression in its right-hand side is determined. This is
in every subset ok equations (G k < n), at leastk embodied in the following definition.

different unknowns appear; Definition 4 (active part of an active PWDE)The
The second condition of this definition stems from active partof an active PWDE is defined by the result of

Simon's concept afelf-contained structuréSimon 1953). the recursive functioactivebelow, applied oe:

It ensures that no part of the model is over-constrained.

This condition is not easy to handle, from a computational activgivar = arithm-expn = arithm-expr

point of view. For this reason, several researchers have  activevar = if cond-expithenexpr, elseexprp) =

proposed a more tractable formulation based on a ctive( var = expp) if cond-exmvaluates to true

representation of the set of equations in the form of a @ctive( var = exp) otherwise

bipartite graph (Serrano and Gossard 1987).

Definition 2 (bipartite graph associated with a set Theorem 1 provides an interesting characterization of
of equations) The bipartite graph associated with a set of constrained sets of equations. In order to adapt it to the
equationsE in the seX of unknowns is the bipartite graph  context of PWDESs, we introduce the following definition.
G(E,X) such tha{eJE, vOX) is an edge irG if and only if Definition 5 (bipartite graph associated with a set
variablev appears in equatian of PWDESs) The bipartite graph associated with a set of

Constrained sets of equations can be characterized byPWDESsP in the sefX of unknowns is the bipartite graph
bipartite graphs using the following theorem (Porté et al. G(E,X)such thatE is the subset of PWDEs i which

1988): are active;(elJE, vIX) is an edge inG if and only if
Theorem 1 (characterization of constrained sets of  variablev appears in the left-hand side or in the active

equations) Let E be a set of equations in the sétof part ofe.

unknownsE is a constrained set of equations if and only if In order to characterize the maximum subset of

its associated bipartite grapB(E,X) admits a perfect  equations in a set of PWDEs that can be sent to the

matching. equation solver, we have stated and demonstrated the

~Under the assumption that the equation solver can dealfollowing theorem (the demonstration is presented in
with systems of PWDEs which are constrained and whose (Boudis 1997)) using alternating patti®. paths whose
conditions contain no variable whose value is unknown, a successive edges are alternatively inside and outside a
naive approach for solving a target value computation matching.
problem would be to consider each condition in a system Theorem 2 (characterization of the maximum
of PWDEs as an hypothesis which can be either true or constrained subset of equations in a set of PWDEk}t
false. Thus, a system of PWDEs containmgsonditions P be a set of PWDEs containing a set of unknown
results in 2 different systems of equations. One can then variablesX, G(E,X) be the bipartite graph associatedPto
attempt to sequentially solve these systems (some of whichand W a maximum matching ofs. The set of equations
may be non-constrained) until a solution consistent with jn E matched byW which cannot be reached by an
the hypotheses is discovered. However, this solution is alternating pathw.r.t. Wfrom a variable inX not matched

grossly inefficient because inconsistencies are discoveredpy W is a maximum constrained subset of equations
only when the whole system of equations has been built up. (MCSE).

580



Page, Gensel, and Boudis

MCSEs computations start are restored with their previous
value (line 33) and the target value function returns a
The algorithm for target value computation is based on value indicating its failure (RESULT = false), so that
theorem 2 and on an interval constraint solver to deal with backtracking can take place. If the iteration terminates with
non-constrained systems. Its principle can be stated asan empty MCSE, two possibilities must be considered. The
follows. A basic step iteratively scans the set of PWDEs first one is that every inactive PWDE has been processed.
which are not yet solved in order to determine an MCSE In this case, either the instrument variable has been
and then to solve it using the equation solver. Each time andetermined, the problem is then solved, or the instrument
MCSE is successfully solved, the unknowns it contains variable is still unknown and the interval constraint solver
become known. Some previously inactive PWDEs may is invoked to determine it (line 26). The second possibility
thus become activé.e. become new candidates to be is that some inactive PWDEs have not been processed. In
included in an MCSE at the next iterations. When no more this case, the first inactive PWDE is selected (line 24) and
active PWDE can be solved while some inactive PWDEs a choice point is established from its condition (lines 27-
are still to be considered, the conditions of these inactive 31).

3.2 Algorithm for Target Value Computation

PWDEs are treated as choice points. A backtracking

The auxiliary functions and procedures used by the

structure is established. For each inactive PWDE, two target value function are described below:

branches corresponding respectively to the assumptions
that the condition is either true or false, are set. Both
branches are explored in a depth-first search manner. When
every inactive PWDE has been considered and the value of
the instrument variable is still unknown, it means that the
system is under-constrained. In this case, the interval
constraint solver is invoked to find a value for the
instrument value which is consistent with both the other
values found so far and the set of equations. The algorithm
which performs these operations is embodied in the
target_value function described in the APPENDIX.

The target_value function takes three parameters; the
first one, 1, is the instrument variable. A variable is treated
as a record with a field value containing its value (or ?
when the value is unknown). The second parameter,
PWDEs, is a set of PWDEs which have not already been
solved. Each PWDE is treated as a record with four fields:
var is the variable in the left-hand side, if is the expression
in condition; then is the expression corresponding to the
right-hand side of the PWDE when its condition is true;
else is the expression when the condition is false. The third
parameter, CONSTRAINTS, is the set of current
constraints. This set is initially empty and is augmented
each time an hypothesis is made about the condition of a
PWDE.

The target value function is roughly divided in two
parts. The first one spans from line 9 to line 20. It is
basically an iteration which determines a new MCSE, then
solves it. Each time an MCSE is solved, the consistency of
the solution is checked against CONSTRAINTS. This
iteration stops either when an inconsistency is encountered
(CONSISTENCY = false), or when an MCSE cannot be
solved (SOLVED = false), or when no new MCSE can be
found (MCSE ).

The second part of the target value function which
spans from line 21 to the end deals with the termination of
the above iteration. If an inconsistency occurs or if an
MCSE cannot be solved, the value and the domain of
variables which have been backed up (line 10) before
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function mcse(PWDEs: set of pwde) set of
pwde returns an MCSE in PWDEs. It
incrementally maintains the bipartite graph
associated with the set of unsolved active
PWDEs. A maximum matching is computed
using the algorithm described in (Hopcroft
and Craft 1973). The equations which are
reached by an alternating path w.r.t. to this
matching from a non-matched variable are
removed to obtain the MCSE, according to
theorem 2.

function equation_solver(PWDEs: set of
pwde) - boolean invokes the equation solver
on the constrained set of active PWDEs; it
returns true if PWDEs can be solved, false
otherwise. As a side effect, if PWDEs can be
solved, the unknowns it contains are
instanciated. The equation solver implements
a set of classical numerical methods. An
appropriate method is chosen according to the
set of equations. For a set of linear equations,
Gaussian elimination is used. For a set of
nonlinear equations, Levenberg-Marquardt
algorithm is used. Like any algorithm for
solving sets of nonlinear equations using
floating-point arithmetic, this algorithm is not
guaranteed to converge towards a solution.
Function check_consistency(CONSTRAINTS:
set of constraint)» boolean invokes the
interval constraint solver described in section
3.3. It returns true if CONSTRAINTS is
consistent and false otherwise.

function inactive_pwde(PWDEs: set of pwde)
- pwde returns an inactive PWDE in
PWDEs or nil if there is no such PWDE.
function solve_constraints(CONSTRAINTS:
set of constraint)» boolean returns true if a
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value of the instrument variable satisfying made of n active equations in n+1 unknowns plus a set of
CONSTRAINTS has been found, false hypotheses. These data are transformed in an interval CSP.
otherwise. This function is detailed in section Domain splitting is performed on the domain of the
3.3. instrument variable. At each splitting step, new bounds are
— procedure backup_variables and procedure propagated in the interval CSP. If one of the two split sub-
restore_variables respectively backs up and domains is inconsistent, it is left aside, otherwise the
restores the values and the domains of the instrument variable is instantiated to the mid-value of this
unknown variables which have been reduced sub-domain and the equation solver is called. When the
by constraint propagation. equation solver fails, dynamic splitting is further applied
until either a solution is found in the reduced domains or
3.3 The Interval Constraint Solver no further splitting is possible.

The interval constraint solver we have chosen for the 4 EXAMPLES

algorithm ismMICRO (Gensel 1995). It handles linear and

nonlinear constraint systems of equations, inequalities andLet us illustrate the target value computation algorithm
disequalities, involving boolean and numerical variables using the model (M) below:

(integers and float numbers) whose domain is represented

by a union of intervals. A=BxE2 (1)

Operators involved in constraint expressions B=ifC>4thenA-lelseC+2 (2)
correspond to those found in the syntax of PWDEs. (M) C=ifEl>1thenD-1else 0 3)
Complex constraints are built up from standard comparison D =iflog(E1)< 3then 2x C - 2 else 0 (4)
operators and arithmetic or boolean (for conditional Ele 1 E2. 2

expressions) operators. Each operator is represented by a
primitive constraint. Each primitive constraint is attached a The set of unknowns is X = {A,B,C,D}, the set of known

set of rules of _consistency which is fired When_ever a yariables is K = {E1,E2} and the set of PWDEs is E =
change occurs in the arguments of the constraint. The {(2),(2),(3),(4)}. Let us consider for the first example the
range Of constraint arguments Is computed using mf[erval following target value computation problem: how to set the
arithmetic rules given in (Moore 1966). These principles value of E2 in order to get A = 10 2 The set of unknowns

are common to most existing interval constraint solvers, )

. X ; becomes X = {B,C,D,E2}; the set of known variables
R ++

including CLP(BNR) (Older and Vellino 1993) and Inc | becomes K = {E1,A}. Figure 1 depicts the bipartite graph

(Hyvonen, De Pasquale and Lehtola 1993). Interva : . : .
computations are performed with outward ranging associated with the model (M) resulting from this problem.

(rounding the left endpoint down and the right endpoint up) The PWDE (2) is not in the graph because it is not active.
so that bounds are always correct. Whenever it is possible,
the evaluated range of a constraint expression is further
narrowed using both the centered and the mean value
forms (Alander 1985).

The constraint solver plays two roles in the algorithm.
First, the function check consistency invokes the
constraint solver with the conditions corresponding to the
hypotheses made so far and with the set of equations  Figure 1: The Bipartite Graph Associated with
associated with these conditions. The solver transforms the Model (M) Resulting from the Target Value
these data into an interval CSP. Then, a constraint Computation Problem "How to Set the Value of
propagation phage checks _th|s set of constraints against g5 in Order to Get A = 10 ?". Thick lines
consistency. If it is not consistent, there is no solution and
the solving process backtracks to the previous choice point.
Otherwise, the propagation ensures that if a solution exists,
it is present in the domains of the constrained variables.

D“F"‘g the propagation, the_ do_mains of the_ PWDEs searched for. Among the different maximum matchings
variables are reduced by eliminating values which cannot existing for this graph, let us suppose that W = {((1), B)
appear in a solution. These reductions are effective z?lll ((3), ), ((4), D)} is obtained (it can be shown that when
alorfwg adbranch of the search tree until backtrack is several different perfect matchings exist, they induce the
periormed. . . same MCSE). E2 is not matched by W and {(E2,(1)),
Second, when called, the solve_constraints function ((1),B)} is an alternating path staring at E2. Hence
attempts to find one solution for a system which is always equation (1) cannot be solved. No other equation is reached

correspond to the maximum matching W (see
below).

Following the algorithm presented above, an MCSE is first
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by an alternating path starting at a variable not matched byis empty. The solving process thus goes out of the loop 14-
W. Therefore, according to theorem 2, {(3),(4)} is an 21. An inactive PWDE is searched for. Let us suppose that
MCSE. The solving process then enters the loop in lines PWDE (2) is first considered. Its condition, C > 4, is
13-20. {C =D -1, D =X C - 2} is sent to the equation  asserted to be true. It is thus added to the set of constraints
solver, yielding C = 3 and D = 4. The solving process goes as well as the equation 5 = 10 - 1, which corresponds to
on with the bipartite graph depicted on Figure 2. this condition. We are now in state 2 in figure 3. The set of
constraints {C > 4, 5 = 10 - 1} is sent to the interval
constraint solver which detects an inconsistency. Hence,
the algorithm backtracks to state 2' which corresponds to
the condition not(C > 4). The bipartite graph now contains
two vertices: the PWDE (2), which evaluates to {5 = C +

Figure 2: The Bipartite Matching Associated to 2}, and the variable C. The maximum matching is {((2),

the Model (M) at the Second Iteration. C)} and the MCSE is {(2)}. {5 = C + 2} is sent to the

equation solver, yielding C = 3. The set of constraints
PWDE (2) is now active, because C > 4 evaluates to false.{not(C > 4), 5 = C + 2} is consistent. The MCSE is now
Equations (3) and (4) which are solved have been removed.empty; a new hypothesis must be made. PWDE (3) is
The maximum matching is {((1), E2), ((2), B)}. Since chosen to become active, leading to state 3. D is found to
every variable is matched, {(1),(2)} is an MCSE. The be equal to 4, and the same reasoning leads to state 4. At
solving process enters for the second time the loop in linesthis point, the constraint 4 = 2 3 - 2 is consistent and
13-20; {10 = Bx E2, B = 3 + 2} is sent to the equation there is no more inactive PWDE to be processed. Hence,
solver, yielding B = 5 and E2 = 2. All the PWDEs have the function solve_constraints is called on the set of
been processed, so PWDEs is now empty, as well asconstraints {E1> 1, log(El) < 3}. It determines that
MCSE; then, the solving process goes out of loop 10-20. interval [1, 20.08...] is consistent for E1 and returns the
No more inactive PWDE remains to be processed, the mid-value in this interval. The algorithm then stops.
solving process is thus over with E2 = 2 as a solution.

The next example illustrates a case where constraint5 DISCUSSION
processing is necessary both to analyze the consistency of a
set of constraints and to solve it because the problem islIn this section, we compare our approach with other works.
under-constrained. The problem considered here is: how toThe algorithm for goal-driven simulation presented in
set E1 in order to get A = 10 ? The set of unknowns is thus section 3 is based on the characterization of the maximum
X ={B,C,D,E1} and K = {E2,A}. constrained subset of equations in a set of PWDEs. The

The solving process of the algorithm is presented in idea of representing a system of equations by a bipartite
figure 3. The bipartite graph is not depicted at each step, graph is due to Serrano and Gossard (Serrano and Gossard
because of space limitation. 1987). They have shown that a system of equations can be
decomposed in sub-systems by determining a matching in
the associated bipartite graph. These results have been
formalized and extended in (Porté et al. 1988) and (Ait-
Aoudia, Jegou and Michelucci 1993). However, these
works do not deal with conditional expressions in
equations (PWDESs), which are very frequent in simulation
systems. In presence of conditional expressions, it is
important to determine, not only if a system of equations
can be solved, but also whether it contains sub-systems
which can be solved. The resolution of these sub-systems
may render active other PWDEs and the resolution of the
5=C+2 whole system can thus proceed further on. For this reason,
theorem 2 of the paper is an important contribution.

Target value computation problems form a subset of
constraint satisfaction problems. Constraint satisfaction
techniques are hence candidates for solving them. For
instance, constraint logic programming languages like
CLP([) (Jaffar et al. 1992) implement constraint solvers
which can be applied to target value computation.
Furthermore, these techniques can also handle conditional
expressions in equations. However, these systems do not

o

o

not(C >4)

Figure 3: Solving Process for the Problem "How to Set E1
in Order to Get A=10 ?"

In the initial state 1 (this number corresponds to the
level of recursion in function target_value) in figure 3, the
bipartite graph contains only PWDE (1) and variable B.
The maximum matching is {((1),B)} and the MCSE is
{(D)}. {10 = B x 2} is sent to the equation solver, yielding
B = 5. No PWDE becomes active, so the resulting MCSE
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deal with nonlinear systems (or non-polynomial ones in APPENDIX
systems like RISC-CLP(Real) (Hong 1993)). Furthermore,
when facing to under-constrained problems, they provide a 1 function target_value(l: variable; PWDEset of pwde;

solution in the form of a symbolic expression, which is not CONSTRAINTS: set of constraint) -
very useful for the user in the context of goal-driven poolean
simulation. 2 variables

Interval constraint satisfaction techniques are also 3 SOLVED:boolean
relevant for solving target value computation problems. // indicates whether the equation solver succeeded or not
These techniques are based on branch and prune4 MCSE:set ofpwde
algorithms. For instance, Newton constraint programming // maximum constrained set of equations
language (Van Hentenryck, Michel and Benhamou 1998) 5 RESULT:boolean
uses interval Newton method, the equivalent for intervals  // result of the target_value function
of the well-known method for solving sets of nonlinear 6 CONSISTENCYboolean
equations. This interval method is very interesting in the 7 p: pwde
context of goal-driven simulation. First, its failure proves g begin
the absence of a solution. This is interesting in particular 9 if not check_consistency(CONSTRAINT8)en
for over-constrained problems. Second, it finds all the return (false);
solutions of a set of linear and/or nonlinear equations. 10 backup_variables;
Third, the solution of under-constrained problems is given 11 MCSE. mcse (PWDEs);
in the form of an interval solution reaching the goal, which 15 5oL VED. true: CONSISTENCY - true:
is very useful for the user. However, these methods also 13 \hile MCSE # 0O and SOLVED and
have an important drawback: they suffer from inefficiency ~onsISTENCYdO
when dealing with large problems. Benchmarks in (Chiu ; .
and Lee 1994) show that the interval Gauss-Seidel methodig1 ifsg)(ls\lf\E/gstﬁgrL]Jatlon_solver(MCSE),
is several orders of magnitude less efficient than its 16 CONSISTENCY-
floating-point equivalent. At a lesser degree, the same check_consistency(CONSTRAINTS);
problem arises with the interval Newton method whose 17 PWDEs._ PWDES_— MCSE- '
convergence is shown to be slow on large systems of '
equations. For this reason, we also use interval constraint18 M¢SE‘_ mcse(PWDES)
solving in our work, but only when necessary, i.e., for 19 endif

; : : 20 end while
dealing with under-constrained problems, but not for ) X
equation solving. 21 if not CONSISTENCYor not SOLVEDthen

22 RESULT- false

6 CONCLUSIONS 23 else // MCSE =01
24 P« inactive_pwde(PWDES);

In this paper, we have presented an algorithm for 25 if P =nil then

performing goal-driven simulation. This algorithm /I'no more inactive PWDE
monitors the numerical equation solving process using 26  if l.value# ?then RESULT - true
graph theoretic methods in order to determine when a set elsBRESULT
of piece-wise defined equations can be sent to the equation solve_constraints(PWDESCONSTRAINTS)
solver. It deals with non-constrained problems using an 27 else
interval constraint solver. 28 RESULT~
The algorithm has been extended to difference target_value(l, {P.var = P.then}
equations and integrated immIA (Page 1996), an (PWDEs - {P}), {P.if}
environment for discrete-time simulation based on an {P.var = P.the@} CONSTRAINTS)
algebraic modeling language. Using this system, the targetog or
value computation algorithm has been successfully applied 3q target_value(l, {P.var = P.elsE}
to several models. One of these models (caletheE (PWDEs - {P}),

(Camos, Dumort and Valette 1986)), developed for energy {not(P.if)} O {P.var = P.else]] CONSTRAINTS)
demand forecasting in European countries, involves severalg; ong if' ' '

thousands of equations. Despite the size of the model, mostg, onq if:

goal-driven simulations are performed in less than a minute 35 i not(RESULT)then restore_variables;
on a PC, providing energy policy-makers with a powerful 34 raturn (RESULT) -

decision support tool. 35 end;
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