
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

DATABASE ORIENTED MODELING WITH SIMULATION MICROFUNCTIONS

Thomas Wiedemann

Technical University of Berlin
FR 5-5 Franklinstr. 28/29

10587 Berlin, GERMANY

ing
with
finin

ystem
ilar to
 ord
se.

bee
sman
ber
wing

y
e
o
n
g

f
.

e
,
e

e
n
t
a
s

r of
nd
of

n
he
ted

new
ce

ge
b-
ion
 we
 a
ABSTRACT

This paper presents an approach towards build
flexible modeling and simulation environment
database technologies. The main problem of de
complex systems by component based simulation s
is solved by a set of predefined micro-functions, sim
modern micro-processor architectures. The execution
and additional parameters are also stored in a databa

1 INTRODUCTION

In the last ten years a lot of simulators have
implemented and introduced (Wiedewitsch and Heu
1995, Roberts and Dessouky 1998). The large num
different simulation systems is caused by the follo
problems:

• The modeling of real processes is a ver
complex task and depends from a big rang
of details. Frequently the abstract model is s
specific, that standard simulation tools ca
not be applied. In other cases the resultin
simulation model would be to slow or to
tricky. Thus often a new simulation system is
created quite often.

• The inner structure and kernel functions o
traditional simulation systems are hidden
Therefore it is almost impossible to integrate
simulation systems into other, large
information systems (PPS, Work flow
systems, etc.). Although the model could b
realized, due to the missing kernel interface
the system can not be controlled from outsid
and a new system is implemented.

• Almost all modern business systems ar
working on databases. Some simulatio
systems have good import and expor
interfaces, but it is not easy to implement
automatic reload of actual database entrie
during the simulation.
586
a

g
s

er

n
n
of

• Optimizations on simulation models require a
high performance and remote access to the
model parameters. A lot of simulation
systems allow a change of input or working
parameters during the simulation cycle.
Nevertheless there is no system, which allows
a change of the model structure and the
behavior of the model objects, which would
be very important for real optimizations in
conjunction with expert- and AI-Systems. In
regular, specialized systems are implemented
as prototypes and disappear after a short time.

As a result of the discussed problems, the large numbe
different simulation systems diffuse the knowledge a
power of the simulation community and produces a lot
additional work. The effect is well known - simulation i
general is a very good tool for decision making, but t
number of successful applications is not so big as expec
some years ago. In order to change this, we need a
approach to a very flexible, open and high-performan
simulation environment.

Additional requirements are a high level of re-usa
and different kinds of user interactions - e.g. for we
based, client-server-based or embedded simulat
systems. As a conclusion of the discussed problems,
have to solve the following major tasks, which lead to
really modern simulation environment:

• Unified methods and structures for the
storage of all model and simulation data,

• Flexible architectures for data-interchange
and bi-directional control with other, complex
information systems,

• Easy generation and flexible management of
the data, which define the behavior of the
model objects,

• Flexible and powerful interfaces to related
software packages concerning statistical
result analysis, presentation, optimization,
Data-mining and knowledge reasoning.

de

are
 the

aus
this
ine
 da

ts i
bas
ips
rn
sio
es
ron
ren
ou
jec

e

e

wo

s.
or.
and

e
ld-
d as
pth
y
vel

y
ata
 set
 or
ich
d
t

the
nal
or

 any

s
age
e

led
nn
in
to
is
ds

on

d
st
Wie

A concept for the solution of this tasks and a first softw
implementation, called SimCoDB, will be presented on
following pages of this paper.

2 MODEL DATA HANDLING AND STORAGE

The proprietary data structures of current simulators c
tremendous problems for all users. The solution for
problem should be the same as it has been for bus
systems years before - a database. So all simulation
will be stored in a database, which includes :

• model data with all parameters and
definitions of the model behavior,

• experiment parameters and optimization
methods,

• simulation results and statistical values.

The main problem of this simulation database consis
the high complexity of real processes. The data
structure has to allow a high flexibility of relationsh
between all objects of a simulation model. As it conce
other information systems, there is a serious discus
about the usage of relational or object-oriented databas

Regarding that relational databases have a st
performance and well defined interfaces, for the cur
implementation we use a relational database. This sh
not be considered as a general decision against ob
oriented databases.

The Entity-Relationship-Model (ERM) of th
simulation database is shown in Figure 1.

Figure 1 : The ERM-Model of the SimCoDB-Databas

Model contains Versioncontainscontains

 1

n1

n
Parameters

refers to Objects

has subpar.

refers to

n

1

contains

n

1

contains

n

1

Labels

n 1

Runs contains

Results

have
nt:

587
mann

e

ss
ta

n
e

s
n
.
g
t
ld
t-

The attributes of the database-tables are divided into t
groups:

• Attributes for administration and for building
the relationships between the different levels
of the model objects (objectid, parentobjectid,
datatype, subtype, unique database ID).

• A set of attributes for the storage of the object
data themselves. Currently we have 3 integer
fields (i,j,k), 3 double fields (d,e,f) and two
string attributes (s,c).

This data structure is currently used for all model entitie
A similar data record structure is used inside the simulat
There is a 1:1 relationship between the database rows
the memory data entities during run-time.

The most important relationship is created by th
objectid-parentid relation. Each object can have N chi
objects or parameters. Sets of parameters can be store
a list of sub-parameters. There is no restriction in the de
of the parameter hierarchy. We are limited only b
increasing access time, because each additional le
requires one more memory-access.

The internal data names like i,j,k are covered b
dynamic changing labels in the user interface. Each d
object has a application specific reference number for a
of variable names and meanings. A new type of object
parameter is supported by a new set of labels, wh
provides the user interface with a high flexibility an
allows an application specific user-interface withou
changing the simulation kernel.

3 MODEL MANIPULATION WITH SIMSQL

In result the database technology, all operations during
modeling process can be realized by the help of traditio
interfaces like SQL, ODBC or native database-drivers. F
the current system we use a MS-Access-Database, but
other relational database would be as good.

Since SQL is well known and well defined in all area
of business systems, the idea of using a SQL-like langu
for manipulating the model during design and run-tim
seemed to suggest itself. A related language, cal
SimSQL was introduced and presented in (Wiedema
1998) and on the web. By using SimSQL, which
general is very similar to SQL, a client system is able
ask for information by using SELECT-statements or
capable to make changes by applying UPDATE-comman
for all model and experiment parameters in the simulati
database.

SimSQL may be used also for a set-oriente
manipulation of parameters, which does not work in almo
all known simulators. So with one single Update stateme

UPDATE SET Capacity=8 WHERE ObjectID >11;

g

e

h
c

or
er
 b

s

a
u
 t
s

in
n

as
h
 t

ul
lie
ts

n
r

of

l

By

h
l
-

c
.

nt
ry
Database Oriented Modelin

the capacity of the Buffer in all objects, with a numb
larger than 11, can be changed.

3 MAIN SYSTEM ARCHITECTURE

The requirements for control over the model and t
simulation experiment are strongly different in dependen
of the whole application structure:

• traditional, stand-alone systems combine
user-interface- and run-time very closely,

• Client-server-oriented simulation systems,
e.g. Web-based systems, require a strong
separation of the user interface and the
simulation kernel.

In order to satisfy both requirements, the whole system
divided into a non-visual simulation kernel and a supp
module for modeling and debugging – the SimExplor
(see Figure 2 and Figure 3) A additional module can
used for building specific user interfaces. For running
simulation only the kernel is required.

Nowadays the development of applications on database
easier than on proprietary data file structures. In result
ready to use components, e.g. for visualization of datab
grids and hierarchical tree-views, the existing support mod
can be replaced or extended by user defined functions. In
current system all modules were first tested with MS Acce
forms and then they were realized with Delphi 4.0.

3.1 Batch-Mode and Server-Mode-Architecture

In this architecture only the simulation kernel is used
batch mode. Parameters for simulation, like duration a
types of system reports are stored in the datab
Afterwards the kernel is started. The kernel mirrors t
model from the database into the memory and executes
simulation. All simulation results are stored in a res
table of the database. Result analysis is done by the c
process, in most cases by standard database repor
graphical representations on the result table.

SimExplorer
for Debuging
and Model-
ing support

Application
specific

user front
end

Main Database

Simulation
kernel

Figure 2 : The System Architecture

External
systems

External
Analysis

tools
588
 with Simulation Microfunctions

r

e
e

is
t
.
e
a

 is
of
se
le
he
s-

d
e.

e
he
t
nt
 or

Figure 3 : The SimExplorer

3.2 Application Specific Simulation Frontends

This architecture, which uses all modules of Figure 2, ca
be used for simulation experiments with direct use
interaction and immediate result visualization during the
simulation. The application specific fronted is created by
standard components of the Delphi toolbox and a range
simulation specific components (see Figure 4). The
connection to the simulation kernel is made by a specia
component, called TSimTimer, which offers a set of
methods like “StartSimulation“ and “StopSimulation” in
order to control the simulation kernel (see Wiedemann
1997 for details). This methods are called by short program
statements, when the buttons on the form are pressed.
using interactive control elements like scrollbars, the
model parameters can be changed during simulation, whic
gives a very good impression about the dynamic mode
behavior. Results are displayed at run-time in simple text
boxes and in Delphi´s very powerful Chart-components.

All important simulation events of the simulation
kernel, like generation, entries and exits of new dynami
objects are linked with events of the front end components
If the user inserts own program statements in the eve
body, the behavior of the model can be changed in a ve
flexible way.

Figure 4 : A Demo User Interface

n

o

n

I

o

c

i

t

r

h

;
 a
w

l
-
e
.

e
ic
e
se
Wiede

4 MANAGEMENT OF SYSTEM BEHAVIOR

Defining the whole range of object functions, applicatio
specific strategies of product handling, exotic queuin
types and individual decision algorithms, is the mos
difficult task in the implementation of the new system.

In the past there was a strong, antagonistic oppositi
between flexibility, performance and user friendliness
Thus for example, high performance simulators o
universal programming languages were very hard to use
non-experts. Flexible systems with a high-level simulation
specific script language had often a low performance.
result of the analysis of modern simulators like Taylor o
Arena and some knowledge about current microprocess
architectures we favour the following solution: As the
micro-code-commands in modern processors do, whi
define assembler commands by a lot of different com
binations, we divide the necessary simulation functions
simulation-micro-functions.

Currently we define the micro-functions:

= Generate, EnterRequest, Enter
= Store, StoreWarehouse, Queue,
= Operation, OperationMulti,
= Sendto, SendtoMulti, Terminate
= AnimatePath, AnimateObject.

Especially the .Multi-micro-functions are defined for
complex algorithms using SimSQL-statements. The curre
simulation-micro-functions are implemented with Delphi's
Object Pascal. New micro-functions are defined by
inherited class-definition and new Object-Pascal-statemen

The behavior of each simulation object is defined by
combination of micro-functions. Some examples fo
defining complex simulation objects are the following
combinations of micro-functions:

Machine objects could be presented by :

♦ EnterRequest , Enter, Operate, Sendto.

Machine with 2 included buffers:

♦ EnterRequest , Enter, Queue, Operate,Queue,
Sendto

Queue (with infinite capacity):

♦ Enter, Queue, Sendto

Distributor:

♦ EnterRequest , Enter, StoreWarehouse,
Operate SendtoMulti

The names of the micro-functions and the names of t
complex objects are completely at the users disposal. Th
experienced users of GPSS or other traditional languag
589
mann

g
t

n
.

by
-
n
r
r-

h
-
n

nt

a
s.
a

e
us
es

could align the names to former names - like Enter/Leave
Queue/Depart or Advance/ Terminate. Perhaps, there is
chance to convert older GPSS programs to this ne
database oriented system.

The data structure of the micro-function is similar to al
other model objects. In the current system the micro
functions and prototype definition are managed by the sam
tree view (see Figure 5) , which is used for all model objects

Figure 5: The Treeview of the Prototype
Definitions with Microcode-Functions References

The sequences of micro-code-functions, which lead to th
behavior of the prototype objects and at least the bas
behavior of the model elements, are also stored in th
database. The order of execution is defined by the databa
sequence and not by the program code.

A typical sequence of micro-functions is shown in
Figure 6.

Figure 6: A Typical Micro-code Sequence

g

e
e
t

je
d
th
t
s

ve
le

ern
of

nt
nt-
he
 for

of

ons
f

sed

A
sed

al
e
n

Database Oriented Modelin

With the help of additional parameters of the mod
object different options of the micro-functions can b
selected. In general each micro-function attempts
execute all its own tasks and transfers the dynamic ob
to the following micro-function. If this does not succee
the object is blocked. The Sendto-function determines
following model objects and attempts to send the objec
one or more of this stations by using their EnterReque
and Enter-micro-functions.

In the current testing period of the system we ha
tried to define a set of micro-functions, which is applicab
for nearly all typical simulation tasks.

SUMMARY

This paper has offered an approach for building a mod
simulation environment. The most important features
the system are:

♦ all model and simulation data is handled with
databases,

♦ a SQL-like, set-oriented language for the
management of the model and simulation
experiments,

♦ the definition of the typical behavior of
discrete models with micro-functions, which
are realized with a universal programming
language.

Even the first prototype of the new simulation environme
allows very interesting applications in the area of clie
server-simulation and hyper-computing. Thus t
presented concept could be an interesting perspective
the future development of modeling and simulation.

REFERENCES

Roberts, C. and Dessouky, Y. C. 1998. An Overview
Object-Oriented Simulation, SIMULATION Vol. 70,
No. 6, 359-368

Wiedewitsch, J. and Heusmann J. 1995. Future Directi
of Modeling and Simulation in the Department o
Defense, Proceedings of the SCSC'95, Ottawa,
Ontario, Canada, July 34-26, 1995

Wiedemann, T. 1997. Perspectives of Component-ba
Modeling and Simulation, In Proceedings of the Wold
Congress on Systems Simulation (Singapore, Sep. 1-3
1997), WWW-copy also in [SimCo99]

Wiedemann, T. 1998. Sim-Mining and Simsql -
Database Oriented Approach For Component-Ba
and Distributed Simulation, Summer Simulation
Conference, Reno Nevada,

WWW-Link: http://www.aedv.cs.tu-berlin.de/simco/
590
 with Simulation Microfunctions

l

o
ct
,
e

to
t-

AUTHOR BIOGRAPHY

THOMAS WIEDEMANN is a Scientific Assistant in the
Department of Computer Science at the Technic
University of Berlin. His research interests includ
simulation methodology, tools and environments i
distributed simulation and manufacturing processes.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

