
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

KNOWLEDGE-BASED MODELING OF
DISCRETE-EVENT SIMULATION SYSTEMS

Henk de Swaan Arons

Erasmus University Rotterdam
Faculty of Economics, Department of Computer Science

P.O. Box 1738, H9-28
3000 DR Rotterdam, THE NETHERLANDS

b
s
T
i

ls
s

d

d
 b
th

h
e

g
h
h
n

t
s

 o
id
tl
v
r
o
ti

lse
s
ld
 to
 to
er
ow
nt

 it
 to

is
is

ed

s

on
 a
e.

try
lar
 to
 to
 be

e
ed
em
to
s

h.
ns
s

e
s
at
e

ABSTRACT

Modeling a simulation system requires a great deal
customization. At first sight no system seems to resem
exactly another system and every time a new model ha
be designed the modeler has to start from scratch.
present simulation languages provide the modeler w
powerful tools that greatly facilitate building mode
(modules for arrivals or servers, etc.). Yet, also with the
tools the modeler constantly has the feeling that he
reinventing the wheel again and again. Maybe the mo
he is about to design already exists (maybe the modeler
designed it himself some time ago) or maybe a mo
already exists that sufficiently resembles the model to
designed. In this article an approach is discussed
deploys knowledge-based systems to help selecting
model from a database of existing models. Also, if t
model is not present in the database, would it be possibl
select a model that in some sense is close to the model
the modeler had in mind?

1 INTRODUCTION

Modeling is one of the most difficult and time-consumin
parts of the simulation process. The design of t
conceptual model is fundamental for the quality of t
simulation results and requires a lot of knowledge a
experience. The next step, designing and developing
implementation model based on the conceptual model a
requires a lot of experience. Naturally, to a large extent,
implementation model heavily depends on the ba
concepts of the conceptual model.

In order to reduce the amount of work in this stage
the simulation process, simulation languages prov
increasingly powerful tools (e.g., modules for frequen
occurring parts of a model, such as arrival processes, ser
conveyors, transporters, etc.) that facilitate the modele
modeling simulation systems. Despite these advanced t
the modeler constantly has the feeling that he is reinven
59
of
le
 to
he
th

e
is
el

has
el
e
at

 a
e
 to
that

e
e
d
an
lso
he
ic

f
e

y
ers,
in
ols
ng

the wheel again and again. Did he himself or someone e
not build a similar model or sub-model in the past? Wa
such a model not built somewhere else. And if so, how cou
he retrieve this model in a systematical manner? In order
make all this possible, previously developed models have
be stored in a database of simulation models for lat
retrieval. Furthermore, once such a database exists, h
does one retrieve the right model according to the prese
data? And if the right model is not in the database, would
be possible to select a model that in some sense is close
the model that the modeler had in mind? This article
concerned with these questions. A possible answer
expected to be found in the support of knowledge-bas
systems, in particular expert systems.

In brief, the approach discussed in this article is a
follows. In the course of time many implementation
models have been developed using some simulati
language. These models could have been stored in
database with the intention to reuse them in a later stag
When a new model has to be designed a modeler could
to retrieve an already existing model in the database simi
to the one that has to be developed. In order to be able
make this choice the models stored in the database need
be parameterized so that a query on this database could
formulated and hopefully will result in a non-empty
dynaset. Since the modeler in principle has no knowledg
or does not want to have knowledge of the parameters us
to describe the models in the database an expert syst
could be used to transform the design specifications in
the right query, taking all kinds of design consideration
into account.

Globally there were three reasons to start this researc
The first reason has been an article (De Swaan Aro
1983) that investigated the way in which expert system
could support simulation in general and modeling in
particular. This article concerned how to determine th
mathematical model of an oscillator. A starting-point ha
been that modeling requires much experience and th
expert systems claim to do a good job in this field. Now th
1

de Swaan Arons

r
p

o
f

e
n
 i
g
re

nd
s
ll-
 in
s
e
g

a
f
p
to
)
e

ge
m
t,

a
d
r

e

n
n

ea
ng
c
o

 t
n

4

e
 A
e

n
e

e

rt
s

ed
nt
a
e
 to

ns
h

on

n
s
n
t
is

f
n

n
is
ut
m
d

se

,

tools for building expert systems have become much mo
advanced, robust and easier to use (see for exam
AionDS (Platinum Technology 1996) that is briefly
described in section 3.2.1) there is enough reason to lo
again at the applicability of expert systems in the field o
simulation, in particular in modeling.

A second reason has been the impressive developm
of simulation languages in the last decade. Simulatio
languages have been on the market for a long time, but
the past they rarely supported graphical model buildin
(for example, GPSS, SIMAN, etc.). Now most systems a
graphical: Arena (the graphical successor of SIMAN
(Pegden, Shannon, and Sadowski 1995)), Taylor II a
recently Taylor ED (1998), ProModel (and its variou
versions such as ServiceModel and MedModel) are we
known examples. All of these simulation languages have
common that they offer a set of implementation module
for often occurring sub-models. However, even with thes
more advanced building blocks a great deal of the desi
work has still to be done by hand.

The last reason has been a feasibility study that w
initiated in 1997. It concerned a so-called toolkit o
existing simulation models in combination with a sho
window in which these models would be made available
be used for new to be developed models (Toolkit 1997
Initially, a bottom-up approach was chosen in which th
toolkit is filled with models developed in pilot studies. The
final aim of the project has been to make the knowled
gathered in pilot studies and other projects in Rotterda
Harbor accessible in relation to logistic problems. In fac
the toolkit may be seen as a database of models.

Before we briefly discuss the various sections
remark has to be made about the use of the words mo
and sub-model. For the sake of brevity in the following fo
both concepts the word model will be used, unless there is
a good reason to deviate from this rule. It must b
emphasized however, that the following will mainly
concern sub-models.

In Section 2 models in general and implementatio
models in particular are discussed. Also the notio
database of models is introduced and how they can be d
with. The various aspects of knowledge-based modeli
are discussed in Section 3 among which the approa
chosen in this article, and how expert systems can supp
this. To make the use of expert systems understandable
this section also some introductory remarks are made
some aspects of expert systems in general and to o
knowledge-based tool in particular. Finally, in section
some conclusions are drawn.

2 DATABASE OF MODELS

In the following it is useful to emphasize the differenc
between a conceptual and an implementation model.
conceptual model is seen as a model that is formulat
592
e
le

k

nt

n

n

s

.

el

lt

h
rt
in
o
e

d

completely independent of any programming or
simulation language. An implementation model is
associated to some specific programming or simulatio
language, although it is still a model on paper. A databas
could contain both types of models. An example is th
mathematical model of the oscillator discussed
previously. The conceptual model of this oscillator
consists of a set of differential equations and an expe
system was utilized to select the correct set of equation
from a number of possible sets (a kind of database) bas
on the observed characteristics of the system independe
of any implementation language. It is also possible that
database contains implementation models written in som
simulation language and such a database is supposed
be used in combination with that simulation language. In
this article we assume that the database only contai
implementation models that are used in combination wit
the simulation language Arena. In most simulation
languages modules are provided that can be used
various levels of aggregation.

An implementation model in Arena can be fully
represented by a number of parameters. Such a
implementation model consists of a number of module
each of which can be further specified. For example, a
Arena model could contain 2 Arrive, 2 Server, 2 Inspec
and 3 Depart modules, see Figure 1. This simple model
taken from the book Simulation with Arena (Kelton,
Sadowski, and Sadowski 1999). Two different types o
entities enter the system and each of these has its ow
Arrive module: Part A Arrive and Part B Arrive. After
arrival they proceed to their own workstation for
preparation: Part A Prep and Part B Prep. After preparatio
both parts proceed to the same workstation Sealer. On th
workstation the parts are not only processed (sealed) b
also tested. If they pass this test they exit the syste
through Shipping, otherwise they proceed to a secon
workstation for further rework and testing. If they pass this
test they exit the system through Salvaged Parts, otherwi
through Scrap.

Part A Arrive
Arrive

Part B Arrive
Arrive

Part A Prep

Server

Part B Prep

Server

Sealer

Inspect

Rework

Inspect

Shipping

Depart

Salvaged Parts

Depart

Scrap

Depart

2000
Electronic Assembly and Test

Simulate

?

?

 0

 0

 0

Figure 1: An Implementation Model in Arena

All modules can be further specified. For example
Part A Arrive specifies a batch size of 1, the distribution

Knowledge-Based Modeling of Discrete-Event Simulation Systems

,
e
n

m
r
e
e
(

r
u

le

e
i

e

e
b
b

h

e
n

t

e
 of
.2
l
ry
is

e
ert

e

o
e

y
he
rt
s
 a
f

t
rt.
ill

in
to

at
r
he
rs,
ed

re
s

e
be
function for the interarrival times is exponential: EXPO(5)
Arrival Time is defined as the mark time attribute, th
attribute Sealer Time defines the distribution functio
(TRIA(1,3,4)) of the Part A processing times at the Seale
the route to the Server Part A Prep is specified and the ti
that this will take (2 time units). Some of these data a
presented in Figure 2, but the actual number of paramet
is much larger. The implementation model could b
described by the complete set of these parameters
course also those of other modules) and the question is
this model can be retrieved when a more or less identic
model has to be designed.

An obvious approach is to formulate and run a que
in which all necessary parameters have the desired val
and subsequently to find out if the database indeed conta
the corresponding implementation model. Such a
approach requires sufficient knowledge of all possib
options that the Arena modules offer and it is just this kin
of knowledge that can be stored in an expert system.

At this point it is useful to make a remark about th
notion interpolation and extrapolation of models. Even
the database will contain a very large number of models
will occur frequently that the desired model will not be
present in the database. Usually there will be differenc
that make the query generate an empty dynaset. Mu
more often the database will contain models that are mo
or less similar to the one that the modeler is after. Wh
this is the case the desired model could possibly
positioned in between of these models and it could
considered as an interpolation of these models. It is up
the expert's judgement if this is possible and this part of t
job is a task that seems very well suited to be carried out
an expert system.

Arrive 1
(Part A
Arrive)

Server 1
(Part A Prep)

Batch size 1 Resource Part A
Prep_R

Time between EXPO(30) Capacity type Capacity
Attribute:
Sealer Time

TRIA(1,3,4) Capacity 1

Route / Station
Name

Part A Prep Process Time TRIA(1,4,8)

Route Time 2 Route / Station
Name

Sealer

… … Route Time 2
… … … …

Figure 2: Parameters Specified for an Arrive Module and
Server Module

It must be noted that even simple models are described
a large number of parameters, which will not b
enumerated here. We restrict ourselves by only mentioni
that some important parameters are the number of Arriv
Server, Inspect and Depart modules. Furthermore, also
route that the various entities have to follow is essential.
593
r,
e

e
rs

of
 if
al

y
es

ins
n

d

f
it

s
ch
re
n
e
e
to
e

by

a

by

g
e,
he

3 KNOWLEDGE-BASED MODELING

In this section we will describe how expert systems can b
deployed to support the modeling process. On the basis
a few examples in 3.1 the approach is demonstrated. In 3
a brief introduction is given to the knowledge system too
AionDS, in 3.3 some remarks are made about the que
and in 3.4 the notion inter- and extrapolation of models
looked at in some more detail.

3.1 A Global Approach

The approach globally exists of the following steps and th
whole process is assumed to be controlled by the exp
system:

1. The modeler is asked - directed by the expert
system - to provide the characteristics of the
model that has to be developed. It is certainly
no questionnaire, only those questions are
asked that are relevant to the expert system's
aims.

2. The expert system 'converts' these
characteristics into parameter values.

3. Based on these parameter values a query will
be formulated and executed on the database.

The result will be a dynaset containing zero or mor
implementation models.

The expert system will control the process. In order t
be able to do so it will complete an agenda containing th
following actions. First it will determine which types of
modules the model will have to contain and how man
instances of each module. In the example of Figure 1 t
model has to contain Arrive, Server, Inspect and Depa
modules; Arrive, Server and Inspect with two instance
each, and Depart with three instances. Furthermore,
Simulate model will contain details about the number o
replications, etc. For the time being we will restric
ourselves to the modules Arrive, Server, Inspect en Depa
After this stage has been completed, the expert system w
proceed by trying to determine the routes of the entities
the system. For the design of the model it is important
know if the various entities will follow different routes. If
so, a Sequences module will have to be added th
accurately stores route information. Finally, the othe
parameters will have to be defined as well, such as t
batch size, the resources, the capacity of the Serve
whether or not schedules and failures have to be defin
and if so, how they look like.

As an example, let us again consider Figure 1. The
are two types of entities: Part A en Part B. Both entitie
have different distribution functions for the interarrival
times and therefore two different instances of the Arriv
module have to be specified. Since both entities have to

de Swaa

m
ill
n
e

ie
t

ls
fe
s

ha
d
s

ce
th
th
i
b
e

e
he
se

f
n

t
d

th
e
ly
r
a
 o
a
ls

l
f
,
o

al

in
n
is
r
,
en
.

nces
ed

in
em
of
ot

n
 of

so
ces

me
processed by the same Sealer and their processing ti
are different, the distribution functions of Sealer Time w
have to be specified separately for both entities; in Are
this needs to be done in the Arrive modules. In this mod
there are two workstations that process incoming entit
and transfer them to only one other module. This rou
information can be dealt with by a Server. There are a
workstations that - after processing - dynamically trans
the entities to one or two possible modules. In this ca
Inspect modules are used. From the figure it is clear t
three Depart modules are needed. The reasoning behin
this can be formulated in terms of a number of busine
rules.

Once the type of modules and the number of instan
of each type have been specified also the routes of
entities between the modules can be specified. Since
route can be specified per module a simple questionna
can be used to determine what routes are followed
which entities. For example, for entities of Part A th
following route will apply:

Part A Arrive ÆPart A Prep ÆSealer ÆRework or Shipping
If Rework ÆScrap or Salvaged Parts

Part B will follow the route:

Part B Arrive ÆPart B Prep ÆSealer ÆRework or Shipping
If Rework ÆScrap or Salvaged Parts

In Figure 3 another, equally simple implementation mod
is outlined in which the route of entities depends on t
type of entity (this example is taken from Arena cour
material (Course Arena 1997)). Entities enter the system
Arrive module Part Arrivals. There are two types o
entities (Typical and Special with the same distributio
function for the interarrival times) that will follow different
routes.

For Typical:

Part Arrivals Æ Prep Æ Paint Æ Dry Æ Warehouse Typical

For Special:

Part Arrivals Æ Paint Æ Paint Æ Dry Æ Warehouse Special

At arrival, in the Arrive module it is specified wha
percentage of the incoming entities will be Typical an
what percentage will be Special.

Although the two types of entities (Typical and
Special) follow different routes through the system, bo
types have the same distribution function for th
interarrival times and therefore it is sufficient to have on
one Arrive module. Since three types of processing a
specified also three workstations are necessary: Prep, P
and Dry, be it that not all of them are used by both types
entities. The routes depend of the type of entity, which c
be read from Figure 3. From the modules Part Arriva
594
n Arons

es

a
l
s
e
o
r
e
t
all
s

s
e
e

re
y

l

at

e
int
f
n
,

Paint and Dry two different routes emerge. After arriva
entities of type Typical will proceed to Prep and entities o
type Special will proceed directly to Paint. Furthermore
some entities leaving the module Paint will go back t
Paint (Special) and those of type Typical will immediately
proceed to Dry. Finally, entities of type Typical will leave
the system through Depart module Warehouse Typic
while those of type Special will exit through Depart
module Warehouse Special. To make all of this possible,
the module Part Arrivals we have to discriminate betwee
entities of types Typical and Special (how many percent
of one type and how much of the other). Furthermore, fo
both types different routes have to be specified. Arrive
Server and Inspect modules cannot discriminate betwe
the two types with respect to the route they have to follow
Therefore, a separate module has to be used: the Seque
module. In the figure we also see that a Transporter is us
but we leave this aspect out of consideration now.

Again, also these descriptions can be formulated
terms of business rules, based on which the expert syst
can decide which modules (and how many instances
each module) the model has to contain and whether or n
a Sequences module needs to be added.

3.1.1 Determining the Modules

In this section a number of heuristics will be formulated i
an informal manner. These are used to specify the number
instance of Arrive, Server, Inspect and Depart modules. Al
some other parameters (such as whether or not a Sequen
module needs to be added to the model or whether so
attributes have to be defined) will be dealt with.

The following considerations help to determine the
number of Arrive, Server, Inspect and Depart modules.

1. If an entity type has a distribution function
for the interarrival times different from other
entity types then a separate Arrive module is
required;

2. The number of Arrive modules equals the
number of different distribution functions;

3. If a workstation has only one single
processing task then the workstation has to be
represented by a Server module;

4. If a workstation has both a processing and a
testing task then the workstation has to be
represented by an Inspect module;

5. The number of Server modules equals the
number of workstations that are represented
by a Server module;

6. The number of Inspect modules equals the
number of workstations that are represented
by an Inspect module;

7. If a Server / Inspect module has to process 2
or more entity types that have different

Knowledge-Based Modeling o

p

h

e

te

ay
re
ss
ilar

or
ort
,

ed

t
,
e

s
le
at
r

ted
t
n
is

ity
r
s.
t

ter

he

ly
e
d,
m

ge
nt
f
-

processing times on this Server / Inspect
module then define in the Arrival modules an
attribute that specifies the processing time on
this Server / Inspect module for the
corresponding entity type;

8. If a Server / Inspect module has to process 2
or more entity types and the route
information of how to proceed depends on
the entity type then a Sequences module
needs to be added to the model;

9. If an Arrive module generates two or more
entity types for which the route information
depends on the entity type then a Sequences
module needs to be added to the model;

10. The number of Depart modules equals the
number of entity types that leave the system
(note that on their way through the system
one single entity type can split up into two or
more entity types or also, different entity
types can be merged to a single one).

Part Arrivals

Arrive
Prep

Server

Paint

Server

Dry

Server

Warehouse Special

Depart

Warehouse Typica

Depart

Typical
Special

Sequences

4800

Simulate

Forklift

Transporter

D

D

Dry
Warehouse Special

Dry
Warehouse Typical

Figure 3: Different Entities Follow Different Routes

Naturally, this list is only a small part of all
considerations that could help to determine the number
the modules. For example, whether or not an entity ty
has to have an own distribution function could b
concluded from other considerations.

Some of the above items could easily be formulated
the business rule format as described in 3.2.2.

3.1.2 Determining the Routes

Once the number of Arrive etc. modules have bee
specified, it is possible to determine the routes that t
various entity types have to follow. Here a difference mu
be made between whether or not a Sequences module
to be used. In the previous section it was concluded that
some cases a Sequences module has to be used. How
not always all route information needs to be specified
the Sequences module. Route information can partly
59
f Discrete-Event Simulation Systems

of
e

e

in

n
e

st
has
 in
ver,

in
be

specified in the Sequences module and partly in the rou
section of the Server or Inspect modules.

3.1.3 Determining Remaining Parameters

The category of remaining parameters is diverse and m
be quite large. Examples of these type of parameter a
batch size, capacity type (schedule or capacity), proce
time, resource, etc. To determine these parameters a sim
kind of reasoning can be used.

In order to determine the process time of a Server
an Inspect module a number of business rules can supp
to find the appropriate distribution function. For example
the lognormal distribution function is frequently used to
represent processing times that have a distribution skew
to the right; the triangular distribution is commonly used in
situations in which the exact form of the distribution is no
known, but estimates (or guesses) for the minimum
maximum and the most likely values are available; and th
uniform distribution is used when all values over a finite
range are considered to be equally likely. It is sometime
used when no information other than the range is availab
(Kelton, Sadowski, and Sadowski 1999). So, in cases th
no distribution function is available beforehand, no
empirical data from which a distribution function can be
derived from, an appropriate choice can be made suppor
by some expert help from an expert system. If sufficien
data are available then the Arena tool Input Analyzer ca
be used (the expert system could offer help to carry out th
task automatically).

To determine whether a Server has either the Capac
Type capacity or schedule, it is important to know whethe
a Server is available continuously or at scheduled time
Also this can be determined by a number of relevan
business rules, again with the result that the parame
Capacity Type has either the value capacity or schedule.

3.2 AionDS Support

In this section the AionDS knowledge tool will briefly be
discussed: its global working, the agenda mechanism, t
inference engine and the business rules.

3.2.1 Brief Introduction of AionDS

AionDS is a development environment for creating
knowledge-based applications - applications that app
complex business logic and data modeling to solv
problems. Using AionDS, one can develop object-oriente
knowledge-based applications quickly and easily (Platinu
Technology 1996). First of all, applications built with
AionDS have a knowledge base. This is a set of knowled
structures that represent application knowledge. Differe
knowledge structures are used for different kinds o
application knowledge. Furthermore, AionDS is object
5

de Swaan Arons

d

o
t
-

n
n

d
h

a

a
r

t
t

t

b
o

e

o

us
rd

sign
, a
le
 as
a

 as
e
ers
, i
 of
d.

ute
ce
ter
ce

es
of
en
of

e
eter
in
.

t is
In

t is
en

e
l
e
t
uld
he
ch
 is
he
ge
oriented (it has classes and instances which can be use
model modules and their instances as mentione
previously). A class defines two major parts: slots an
methods. The slots can be used to represent the parame
of a module. As any knowledge-based environmen
AionDS has an inference engine, a program that combin
and applies relevant data, facts, and business rules in
knowledge base to reach a goal or to draw a conclusi
based on relevant data. AionDS knows the notion sta
which contains two main types of information: the high
level instructions that direct the inference engine and th
business logic (the business rules) that examines a
makes decisions about data. Each state has an age
which defines its high-level (control) instructions. When a
application runs, the inference engine follows the agenda
see what should be carried out next.

Particularly the notions classes and instances, agen
business rules and inference engine are useful in t
context of this article.

3.2.2 Agenda, Inference Engine, Business Rules

An AionDS knowledge base generally consists of
number of states, each of which containing an agenda
actions to be carried out and - in most cases - a number
rules expressing the knowledge relevant to that state. Ap
from the 'root' state Main a knowledge base that suppo
modeling discrete-event simulation models in Arena ma
consist of a state Analysis that specifies the tasks listed
section 3.1 that have to be carried out. For this reason
state Analysis would contain 'calls' to the subsequent sta
DetermineModules, DetermineRoutes and
DetermineRemainingPararameters. The sta
DetermineModules would contain a number of busines
rules that determine the types of modules that will b
necessary for the model to be developed and how ma
instances of each type. This reasoning process will
started by some command given in the agenda
DetermineModules. The result will be the number o
instances of each type of module. The other two stat
determine the routes and the remaining parameters.

Business rules in AionDS are based on the instanc
and their slots defined in the OO domain description. F
example, the following business rules describe whic
distribution function has to be used for the processing tim
of a Server1 being an instance of the class Server:

If
Server1.DistributionFunction is unknown and
Server1.ProcessingData is not 'present'
Then
Server1.DistributionFunction is 'triangular'

If
Server1.DistributionFunction is unknown and
Server1.ProcessingData is 'present'
Then
Server1.DistributionFunction is Get(DistributionFunction, …)
596
 to
d
d
ters
t,
es
the
n

e,

e
nd
da,

to

a,
e

of
 of
rt
ts
y
in
he
es

e
s
e
ny
e
f

f
s

es
r

h
e

AionDS has an inference engine that supports vario
types of reasoning. It supports both backward and forwa
chaining and also a mixture of these.

3.3 The Query

Once the expert system has analyzed the modeler's de
considerations and transformed into a set of parameters
query can be formulated and executed. In its most simp
form the database exists of a table with the parameters
fields. One of those fields links the record to
corresponding implementation model.

Suppose a modeler has in mind to design a model
outlined in Figure 1. In interaction with the modeler th
expert system has specified that the model paramet
would be - among others -: a = 2 (Arrive), s = 2 (Server)
= 2 (Inspect) and d = 3 (Depart). Furthermore the routes
the entities (of only one entity type) have been determine
That is to say, in further specifying the Part A Arrive
module the parameters Route = yes, StNm = yes and Ro
Time = 2 are defined and the Station = Part A Prep. Sin
these are parameters of the Part A Arrive module the lat
parameters are actually defined as slots of the instan
Part_A_Arrive, thus: Part_A_Arrive.Route,
Part_A_Arrive.StNm and so on. Other parameter valu
are also determined, such as the distribution functions
the interarrival times and of the processing times, etc. Th
a query could be formulated on the database
implementation models:

a = 2 AND s = 2 AND i = 2 AND d =3 AND A1.Route = yes
AND A1.StNm = yes AND A1.Route_Time = 2 AND
A1.Station = S1 AND ……

If the desired model is in the database, i.e. if th
database contains a model with the same set of param
values, then the corresponding model will be included
the dynaset. If not, the dynaset will remain empty
Nevertheless, the database could contain a model tha
very much similar to the one that has to be designed.
that case the expert system could try to find a model tha
in a way close to the model that the modeler is after. Th
interpolation of models could be a way out.

3.4 Interpolation and Extrapolation of Models

Two models will rarely be the same. If we look at th
model outlined in Figure 1 many minor differences wil
make the model appear differently. For example, if th
various modules have different distribution functions, bu
the other parameters are the same, the two models wo
probably be seen as similar. On the other hand, if t
modeler is after a model such as in Figure 1, a model su
as in Figure 2 would not be seen as similar because it
obvious that these two models are different. It is up to t
expert system (and actually to the makers of the knowled

Knowledge-Based Modeling of Discrete-Event Simulation Systems

b

y

 to
be

are
 on
tes
ers
 the
not
n or
n.
an

 be
and

he

th

9.

95.

.

.
he
ty
el
he
pert
rch

e-
his
of
he

m
an
nce
ty
tion
ical
base) to decide which models in the database will
considered as close to the desired model. This part
knowledge-based has to be looked at much more closel
a later stage.

4 CONCLUSIONS

In this article an approach is discussed that is intended
make it possible that models that are once built could
retrieved afterwards. Essential is that existing models
stored in a database in a parameterized way. Based
input from the designer an expert system transla
information of the desired model into a set of paramet
that can be used to retrieve a corresponding model from
database. More often than not the desired model will
exactly be present in the database and then interpolatio
extrapolation of existing models could be an optio
Especially in this case an expert system could do
excellent job. For both tasks business rules have to
formulated according to the considerations discussed
experiments have to be carried out.

REFERENCES

De Swaan Arons, H. 1983. Expert systems in t
simulation domain. Transactions IMACS:
Mathematics and Computers in Simulation 25-1: 10 -
16.

Platinum Technology, 1996. Developing Applications wi
the Aion Development System. Student Guide, version
2.0 (course material related to AionDS version 7.0)

Kelton, W.D., R.P. Sadowski, and D.A. Sadowski. 199
Simulation with Arena. Boston: McGraw-Hill.

Pegden, C.D, R.E. Shannon, and R.P. Sadowski. 19
Introduction to Simulation Using SIMAN. New York:
McGraw-Hill Inc.

Toolkit 1997. Logistic problems and simulation models
TNO Inro, Internal report 97/NL/112, (in Dutch).

Taylor ED 1998. User manual. Utrecht: F&H Simulation
BV.

AUTHOR BIOGRAPHY

HENK DE SWAAN ARONS graduated in Applied
Mathematics at Delft University of Technology in 1972
From that time till 1982 he was appointed lecturer at t
Faculty of Mathematics and Informatics of this universi
with teaching and research in the field of parall
computation, modeling and simulation. Since 1982
concentrated on research and teaching in the field of ex
systems. He was the project leader of several resea
projects under which two Esprit projects on knowledg
based scheduling in manufacturing. In 1991 he got
Ph.D. degree in Computer Science at Delft University
Technology. The thesis was mainly concerned with t
597
e
of
 in

design, applicability and applications of expert syste
tools, in particular the Delfi3 system. Since 1992 he is
associate professor at the Department of Computer Scie
of the Faculty of Economics at Erasmus Universi
Rotterdam. At present, his research focuses on simula
and expert systems, with the emphasis on econom
applications.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

