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ABSTRACT Goldsman 1995, or Goldsman and Nelson 1998). Multiple
comparison procedures, specifically multiple comparisons
We present a two-stage experiment design for use in simu- with the best (MCB), can satisfy goal 2 (Hsu 1996). How-
lation experiments that compare systems in terms of their ever, the bounds provided by standard MCB procedures
expected (long-run average) performance. This procedure are difficult to interpret because they arenstrainedcon-
simultaneously achieves the following with a prespecified fidence intervals: each interval either contather has0O
probability of being correct: (a) find the best system or as one end point. A endpoint means that a system can
a near best system; (b) identify a subset of systems that be declared either “no better than the best” or “no different
are more than a practically insignificant difference from from the best,” depending on which end point it is. This
the best; and (c) provide a lower bound on the probability subtly is confusing to many analysts. We solve the problem
that the best or near best system has actually been selectedby providing fixed-width, unconstrained MCB intervals, a
The procedure assume normally distributed data, but allows small extension to existing theory. An important use of

unequal variances. such intervals is to eliminate from further consideration all
systems that are clearly inferior to the best system.

1 INTRODUCTION A more fundamental contribution is made by addressing
goal 3. We do this by providing lower confidence bound on

In this paper we address problems that arise irrdperting the achieved probability of a good selection (P@&¢r all of

and interpretation of simulation experiments performed to the simulation data have been realized. Since the procedure
identify the best systemwhere best means maximum or guarantees a PGS of at least a prespecified hominal level,
minimum expected (long-run average) performance. The our lower confidence bound will revise this value upward if
procedure we derive allows the simulation analyst to achieve the data so indicate. We can also provide a lower confidence
the following goals, all with prespecified probability of being  bound on the probability that thenique best system has

correct: been selected, which we refer to as the probability of a
correct selection (PCS).

1. Design their experiment so as to find the best The concept of a revised probability of a good selection
system, or one within a practically insignificant is similar in spirit to Hsu's (1984)s-value, which is the
difference from the best system (we refer to smallest confidence level at which the sample best system
this as a “good selection”). would be declared to be the true best system. In our

2. Bound the difference between each system case we design the experiment to achieve a given, nominal
and the best system, and thereby eliminate probability of a good selection that we hope to revise upward
all systems that are more than the practically if the simulation results are favorable.
insignificant difference from the best. The paper is organized as follows: We first describe

3. Revise the prespecified probability of a good how lower confidence bounds on PCS and PGS can be
selection upward, based on the results of the obtained in general. These lower confidence bounds on
experiment, and also give a lower bound on PCS and PGS depend on a lower confidence bound on the
the probability that the unique best system has difference between the best system and each inferior system:;
been selected. we obtain those bounds in Section 3. Section 4 introduces

a specific procedure for reevaluating PCS and PGS after

Many ranking and selection procedures exist that gampling. An illustrative example is provided in Section 5.

achieve goal 1 (see, for instance, Bechhofer, Santner and
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2 ASSESSING PGS Nelson and Banerjee (1999) show that for the procedure
we derive

Throughout this paper we assume that larger expected perfor-

mance implies a better system. Let, uo, ..., ux denote PGS

the unknown means of thie systems to be compared, and —
let zz; denote our point estimator @f;. In this section we
assume only that the distribution @f — i, — (i — we)
does not depend on1, u2, ..., tUk.

Denote the ordered means I < upy < -+ <

Mie-1] < fp, and for the moment suppose that our goal o matter what the configuration of the true means. Our
is to find the unique best systefk]; later we address the approach will be to substitute LCBs fatx; — w1 in (2)

problem of finding either systelfit] or a systenfi] whose and evaluate this probability numerically.
true mean is close enough fqy).

Our rule will be to select the system with the largest 3 T\WO-SIDED MCB
performance estimatéy;. Therefore, the probability of a

Pri{tu — ) — (wiiy — mix)
<maxs, up —pil i =12, k=1 (2)

PF{D,' <maxs, wik —ppl, i =12,k — 1}

(unique) correct selection is The following lemma will be useful for deriving two-sided,
fixed-width MCB confidence intervals:
PCS Lemma 1 (Hsu, 1996, Section 4.2.1) If

= Pr{ﬁ[i] <ﬁ[k],i = 1,2,...,k—1}
. . Priie; — e — (i —pe) <8,Vi# L} >=1—a (3)
= Pri{7iu — ) — (i) — i)
<pp—puni=12...k—1} then with probability greater than or equal tb— «
= PI’{Dl‘ < Uk —/J,U],i = l,2,...,k—1} (l)
o Wi — MaXpg € I:ﬁi — maxii ia}
whereD;,i = 1,2,...,k — 1 has the same joint distribu- L LFi
tion asiiy) — iy — (ki — i), i = 1,2, k=1 If

the values of the differencesyy — (i were known, as ~ 0ri =12.....k.

well as the joint distribution oDy, D, ..., Dy_1, then (1) ~ Remark: Notice that (3) will hold when we can form
might be evaluated exactly. Since this is impossible in simultaneous two-sided confidence intervals for all-pairwise
practice, Kim (1986) suggested replacing; — up in (1) differencesu; — ., that take the formu; — i, 4. For

with (1—a)100%lower confidence bounds on these differ- instance, in the usual one-way analysis of variance model

ences, thereby providing @ — «)100% lower confidence with n?rmally distributed data1 and equal variances, setting
bound (LCB) on the achieved probability of correct selec- & = q,ﬁ,,j(i‘ll)Sp/ﬁ—whereq,i,,;,‘fll) is thel—a quantile

tion when (1) is evaluated (see also Anderson, Bishop and Of the studentized range distributizo_n of dimensiorand
Dudewicz 1977). Kim (1986) was only able to provide lower degrees of freedom(n — 1), and S} is the usual pooled

confidence bounds on the single differencg; — wi—_1j, variance estimator—achieves (3). This is the procedure
whereas we will provide bounds on al— 1 differences given by Hsu (1996, pp. 103-104). Below we propose a
leading to a much tighter LCB on PCS. two-stage procedure that allows unequal variances across

One shortcoming of our proposal is that the LCB on Systems, and also allows the valuedofo be specified in
PCS can be small when there are one or more systemsadvance.
whose performance is very close to the best, making a Let 71, T2, ..., Tx be independent random variables,
unique correct selection unlikely. Thus, it makes sense to €ach withv degrees of freedom, and define the random
provide a lower confidence bound on choosing the best variable R = max T; — min; 7;. Let r{" * be thel — «
system or a system whose mean is within a practically quantile ofR. The quantity- will be the critical constant in
insignificant differences of the best. That is, we want to  ourtwo-stage procedure. See Tables 1, 2 and 3 for numerical
select a systemsuch thatu —u; < 8. We call this event  values; these values were obtained via simulation and almost
a “good” selection, and let PGS denote the probability of all are accurate to the second decimal place.
a good selection.

612



Evaluating the Probability of a Good Selection

Table 1: Critical Values-°

[We] 3 4 5 6 7 8 9 10 11 12 13 14 1%
1198 271 345 411 485 559 625 688 758 815 90.8 968 10B.70
21623 754 860 950 1040 1121 11.84 1251 1329 1377 1448 1503 1559
3|465 535 592 648 693 730 773 803 836 864 891 9.8 D.45
41401 461 510 547 578 607 635 660 679 698 721 737 V.53
5373 427 466 499 525 549 573 592 610 626 640 654 6.67
6 | 355 405 442 469 49 517 535 551 565 581 593 6.06 5.19
71345 391 423 452 474 494 511 528 540 553 565 575 5.86
8337 383 413 438 461 480 496 510 522 534 545 556 5.65
9332 374 407 429 450 469 482 49 509 521 531 540 5.48
10 | 326 368 399 421 442 460 473 486 499 509 519 528 5.36
11 | 323 364 394 416 436 454 465 479 490 501 510 519 5.28
12| 319 359 389 412 430 448 460 472 484 493 502 511 5.19
13 | 316 357 384 4.09 426 441 456 468 479 487 498 506 5.14
14 | 316 355 3.83 404 422 438 451 462 474 484 492 499 5.08
15 | 313 352 379 4.02 420 436 448 459 471 479 488  4.96 5.04
16 | 311 351 377 400 417 433 446 456 467 476 483 493 1.98
17 | 312 347 375 397 415 429 442 454 463 473 481 4.89 #.96
18 | 3.09 347 374 396 412 427 439 451 461 471 477 485 1.93
19 | 308 344 372 393 410 427 438 450 457 468 474 482 #.91
20 | 3.08 345 371 391 409 424 436 447 456 466 474 481 1.87
30 | 301 336 363 382 399 412 427 434 444 453 460 4.66 4.72
40 | 298 335 359 377 394 408 419 429 438 446 453 460 1.66
50 | 297 332 357 376 391 406 417 426 434 442 450 456 1.62
60 | 296 330 356 375 390 4.02 414 423 432 442 448 454 1.60
70| 295 330 355 373 389 402 412 423 430 438 445 451 1.57
80 | 295 330 353 373 388 400 410 421 430 437 444 451 #.56
90 | 294 328 353 371 388 399 410 420 429 436 444 450 1.55

100 | 293 328 352 372 3.8 399 411 420 428 436 443 449 #.54
Table 2: Critical Values 2%

[vW [ 3 4 5 6 7 8 9 10 11 12 13 14 15
1]39.4 532 665 814 962 1107 122.0 1327 1490 1584 1762 189.2 201.40
2872 1037 11.84 1303 1417 1530 1630 17.00 1815 1866 1955 2036 P1.10
31591 671 742 805 856 9.03 951 984 1022 10.60 1091 11.06  11.58
41490 558 610 653 689 719 748 774 802 818 847 864 B.79
5|448 509 549 583 611 637 662 683 7.02 720 735 7.49 V.63
6423 475 513 542 569 589 610 626 640 657 670 6.84 5.98
7405 453 487 518 540 559 576 596 609 620 6.33 645 6.54
8395 443 472 499 521 541 557 569 586 597 607 6.19 6.27
9389 430 461 484 506 525 539 553 567 576 588 598 5.08
10 [ 3.79 421 452 475 496 512 529 543 551 563 574 582 5.91
11| 376 416 445 467 488 503 519 532 541 551 562 570 5.80
12 (370 410 440 463 479 497 510 522 533 544 553 561 5.69
13 | 367 407 433 459 476 490 505 515 527 536 546 553 5.62
14 | 367 405 431 452 471 487 499 510 520 532 538 547 5.55
15| 362 400 427 450 466 483 495 504 516 526 534 541 5.50
16 | 360 397 425 447 463 478 493 502 512 521 528 538 5.44
17 | 3.60 396 422 442 461 474 488 499 508 518 525 532 5.40
18 | 356 393 420 441 457 472 484 495 505 514 522 530 5.36
19 | 355 390 417 437 454 470 481 494 500 512 518 525 5.33
20 | 354 390 416 436 451 469 480 490 498 507 515 523 5.30
30| 345 380 404 426 440 453 466 473 483 493 499 505 5.11
40 | 343 377 401 417 434 447 458 466 477 483 490 498 5.03
50 | 340 374 397 417 430 444 455 464 472 479 487 493 1.99
60 | 338 372 397 414 429 441 450 460 470 478 485 4.90 1.94
70 | 337 371 395 412 428 440 448 460 467 474 481 487 #.92
80| 336 371 393 412 426 437 447 457 466 473 480 4.86 1.91
90 | 335 368 393 410 425 437 447 457 464 471 478 485 #.90

100 | 336 368 391 409 423 435 447 455 464 472 479 484 1.88
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Table 3: Critical Values2%°

[ v\k [ 3 4 5 6 7 8 9 10 11 12 13 14 l$
1| 2008 2713 330.1 3926 4787 536.2 5850 638.8 709.0 738.0 8588 9544 967.10
2| 18.89 2150 24.47 26.45 2942 33.07 3349 35.02 37.79 38.08 39.70 4223 43.82
3 9.84 10.88 12.00 13.01 1343 1427 1515 1561 16.06 16.75 17.27 17.54 18.19
4 7.22 8.14 8.88 9.49 9.98 10.22 1057 10.89 1140 11.47 1193 12.04 12.29
5 6.34 7.07 7.49 7.95 8.30 8.59 8.88 9.15 9.38 9.64 9.76 10.11 10.13
6 5.80 6.42 6.77 7.15 7.45 7.68 7.98 8.12 8.28 8.45 8.64 8.76 8.89
7 5.45 6.01 6.39 6.67 6.92 7.13 7.33 7.55 7.68 7.84 7.93 8.13 8.18
8 5.27 5.76 6.07 6.34 6.62 6.78 7.01 7.10 7.29 7.36 7.56 7.65 V.73
9 5.11 5.56 5.87 6.08 6.34 6.52 6.72 6.84 6.98 7.09 7.19 7.34 .38

10 4.99 5.41 571 5.93 6.15 6.32 6.51 6.64 6.76 6.81 6.98 7.04 r.13
11 4.91 5.27 5.58 5.78 6.00 6.15 6.35 6.46 6.58 6.61 6.77 6.84 6.99
12 4.80 5.19 5.49 5.71 5.87 6.04 6.22 6.31 6.42 6.53 6.61 6.73 6.80
13 4.76 5.12 5.38 5.66 5.81 5.93 6.11 6.20 6.34 6.41 6.50 6.61 6.67
14 4.69 5.06 5.34 5.55 571 5.93 5.97 6.10 6.22 6.35 6.41 6.48 6.57
15 4.65 5.01 5.28 5.50 5.65 5.83 5.96 6.04 6.14 6.23 6.31 6.41 6.48
16 4.63 4.94 5.25 5.42 5.59 5.78 5.901 5.98 6.09 6.17 6.21 6.33 6.38
17 4.61 4.94 5.17 5.39 5.57 5.68 5.82 5.92 6.02 6.12 6.16 6.28 6.31
18 4.56 4.91 5.17 5.37 5.51 5.65 5.76 5.91 5.97 6.04 6.15 6.21 6.31
19 4.53 4.88 5.12 5.32 5.48 5.63 5.73 5.85 5.94 6.03 6.06 6.14 6.23
20 4.51 4.85 5.04 5.28 5.45 5.58 5.70 5.79 5.88 5.97 6.00 6.11 6.19
30 4.37 4.67 4.91 5.09 5.22 5.40 5.47 5.55 5.64 5.74 5.82 5.87 5.90
40 4.32 4.59 4.84 4.98 5.15 5.27 5.38 5.46 5.53 5.61 5.66 5.74 .79
50 4.28 4.58 4.79 4.96 5.08 5.23 5.31 5.38 5.46 5.54 5.62 5.67 5.72
60 4.25 4.55 4.76 4.93 5.07 5.17 5.23 5.35 5.44 551 5.55 5.61 .67
70 4.24 4.51 4.75 4.92 5.04 5.16 5.23 5.33 5.40 5.45 5.57 5.57 5.62
80 4.19 4.53 4.70 4.88 5.02 511 5.24 5.29 5.39 5.45 551 5.57 5.62
90 4.20 4.50 4.70 4.85 5.01 5.13 5.21 5.30 5.37 5.42 5.48 5.57 5.60
100 | 4.20 4.50 4.70 4.86 4.97 5.09 5.20 5.25 5.36 5.42 5.49 5.54 5.59

3.1 Procedure 5. Compute the generalized sample mean

Consider the following algorithm for producing fixed-width N;
confidence intervals for all pairwise comparisons when the i = E :5. Y.

L ; i ij tij
data are normally distributed and independent: =1

3.1.1 Fixed-Width, All-Pairwise Comparisons where for each the B;; are chosen such thg;, =

N.
i2 =" = Bing, i1 Bij =1, and
1. Specify confidence level — «, halfwidth § > 0, and Piz Pinor 2-j21 i

initial sample sizeig > 2. N, 2
2. Sample i.i.d. observationg, Yo, ..., Yi,, from all Szzlﬂ? _ 8

systems =1, 2, ..., k, and compute the sample vari- ! I (1-)

ances j=1 no—1

1 6. Report the simultaneous confidence intervals

no
$?— Y, — 7))
; no_lj;( i — Yo

wi — e € [ — e £ 6]

fori=12,...,k.

3. Determine the total sample size needed by letting forall i # ¢.

(doa) o 2 A proof that the intervals in step 3.1.1 are indeed
o no—1 ®i simultaneous(1 — «)100% confidence intervals when the
Ni = maxqno+1, S ’ “) simulation output data are normally distributed can be found
in Hochberg and Tamhane (1987, pp. 200-201). In fact,
this procedure produces simultaneous confidence intervals

4. From systemi, for i = 1,2,...,k, take additional . . o
for all contrasts involvingu1, uo, ..., ux. Application of

Samples},},ﬂo#»ls Yi,n0+2’ ) Yi,Nl‘ .

614



Evaluating the Probability of a Good Selection

lemma 1 immediately yields the desired two-sided MCB
confidence intervals

i Ill;éai e € | Wi Il;élai He + ( )
fori = 1,2,...,]{.

3.2 Inference

substituting (1 — @)100% simultaneous lower confidence
bounds of the form

Ak — i > W — i — 8

foralli # Binto B, giving a(1—«)100%lower confidence
bound on PGS of

Pr{D; <max[8,ﬁ3—ﬁi—8],i=1,2,...,k—1}. (6)

Whatinference is possible at the end of the procedure defined These bounds are based on the fact that the two-sided MCB

above? The MCB intervals (5) imply that —maxe; pe <

i —max; it + 8. Therefore, if this upper bound is less

than0 we can infer that systeinis inferior to the best; if this

upper bound is less thansd, and we have chosehso that

differences greater thanare practically significant, then we

can eliminate all such systems from further consideration.
Let B = argmax;; that is, B is the index of the

system selected as best. Notice that we can also claim,

with probability > 1 — «, that

—maxXue > g — Maximy — 8 > —6.
UB na We = B e e >

Thus, with confidence level — ¢ we are assured that we

have made a good selection in that the mean of the selected

system is withins of the true best mean. Stated differently,
the event

A= (i — e — (i — pe) < 8,Vi # ¢}

implies a good selection will be made. In fact, even less is
required. Nelson and Goldsman (1998) show that

B = {fi — iy — (i — ) < 8,8 =1,2,..., k= 1)

is sufficient to guarantee a good selection. Cleatly B.
Now consider the event

B = i — fw — (g — k) < max(s, mx — wil,
i=1.2. .. . k—1).

Clearly B = B, soPr{B’} > Pr{B}. It is also the case the
B’ implies a good selection will be made:

o If upp < gy — 8, so that[i] is not a good
selection, therB’ implies thatzi;; < &y and
system[i] will not be selected.

o If upy > upy—4, sothafi] is agood selection,
thenB' implies thatfi() — g — (g —mix) <
§ for all such[i]. This is precisely the eveift
that guarantees a good selection will be made.

Thus, PGS > Pr{B’} and our goal becomes obtaining a
lower confidence bound oRr{’}. We achieve this by
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intervals (5) imply that

maxue —

; > maxuy — i — 8
ri Hi = ti e — i

fori =1,2,...,k with probability > 1 — a.
4 COMPUTING A LCB ON PGS

In this section we show to evaluate the right-hand side of (6)
for the two-stage procedure. To obtain a lower confidence
bound on PCS we simply replagaaxs, wup — uiijl by
Wikl — i) in the derivation.

Let& = a/r,(ll*?. Then

o—

PGS
> Pr{fm — i — (up) — pg) <
maxs, ) — winl i = 1,2,k — 1}

~

i) = i) _ Bk — Bk

= Pr < +
1" :
max3d, — Wy
Ao, ik ’”’”,i:l,z,...,k—l}
&
maxs, —
_ Pr{Tika+ X Mék] /L[,]]’
i=12.. . k-1
o k-1
= / HFnofl(f‘f‘ma){&H[kl_M[il]/é)
—0 =1
xd Fpy—1(1) (7)

whereTy, 1o, ..., Ty, are independent random variables,
each withng — 1 degrees of freedom, anl,,—1 is the cdf
of the ¢ distribution withng — 1 degrees of freedom. The
fact that (i) — upp/€,i = 1,2, ..., k are independent
random variables follows from Stein (1945).

To obtain a(1 — «)100% lower confidence bound on
PGS we substitutél — «)100% lower confidence bounds
on up — iy in (7) and evaluate the integral numerically.
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5 EXAMPLE

To illustrate the performance of the procedure, consider

Banerjee

extremely valuable since the LCB could account for both
the possible increase in confidence due to encountering a
favorable configuration of the means, and also the possible

5 independent systems represented by normal distributions degradation in confidence due to violation of the assumptions
with means and variances as shown in Table 4. Suppose of the procedure.

we takeng = 10 initial replications from each and apply
the procedure witlh — o = 0.9 ands = 0.5,1 or 2. The
last two columns of Table 4 shows the average of the lower
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