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ABSTRACT What, however, does ‘validation’ mean? A whole book
could be written on the philosophical and practical issues
This paper shows which statistical techniques can be used tanvolved in validation (see, for example, the monograph by
validate simulation models, depending on which real-life data Knepell, and Arangno 1993)! For this survey, however, |
are available. Concerning this availability, three situations are define validation as determining whether the simulation
distinguished (i) no data, (ii) only output data, and (iii) both model is an acceptable representation of the real system -
input and output data. In case (i) - no real data - the analystsgiven the purpose of the simulation model (again see Law
can still experiment with the simulation model to obtain and Kelton 1991).
simulated data; such an experiment should be guided by the  The literature on validation is abundant: see the web
statistical theory on the design of experiments. In case (ii) - (http://manta.cs.vt.edu/biblio/), and the detailed surveys in
only output data - real and simulated output data can beBeck et al. (1997), Kleijnen (1995b), and Sargent (1996). In
compared through the well-known two-sample Student t that literature, however, the focus in not on the role of data
statistic or certain other statistics. In case (iii) - input and availability in the choice of statistical tests! This contribution
output data - trace-driven simulation becomes possible, but has such a focus; it is a revision of Kleijnen (1999).
validation should not proceed in the popular way (make a So | concentrate on validation that usesthematical
scatter plot with real and simulated outputs, fit a line, and test statistics After all, simulation means experimentation (albeit
whether that line has unit slope and passes through thewith a model instead of the real system), and any
origin); alternative regression and bootstrap procedures areexperimentation calls for statistical analysis, preceded by
presented. Several case studies are summarized, to illustratstatistical design. Obviously, such a statistical analysis is

the three types of situations. only part of the whole validation process (other parts are
graphical summaries, animation for ‘face validity’, etc.; many
1 INTRODUCTION types of validation are used and proposed in practice and

theory; see the references at the end of this contribution).
This paper gives a survey on how to validate simulation However, if mathematical statistics is used, then the correct
models through the applicationsihtisticaltechniques, such  statistics should be used!
that the type of technique actually applied depends on the Which type of statistical procedure is correct obviously
availability of data on the real systemegarding this data  depends on the kind of data that are available for analysis.

availability, | distinguish three situations: Briefly, my main conclusionsvill turn out to be as follows.
Case (i): Even if real data are missing, there is still
(i) no real-life data are available, expert knowledg€For example, we all are experts in waiting
(i) there is only data on the real output (not the at supermarkets, so we know that if more customers arrive
corresponding input or scenario), per hour, then waiting times increase - unless more cashiers
(i) besides the output data, the corresponding become active.) However, this knowledgegimlitative to
input or trace is also known, which is used to obtain quantitative knowledge, a simulation model is
perform so-called trace driven or correlated developed (i.e., the sign or direction of the effect is known,
inspection simulation (see Law and Kelton not its magnitude). If the simulation model’'s input/output
1991, p. 316). (I/0) behavior violates this qualitative knowledge, the model

should be seriously questioned: are there programming and
conceptual errors? In 82 | shall present a systematic method
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for selecting conditions or scenarios as input for the Sensitivity analysis further shows which factors are
simulation model, namely, design of experiments or DOE. In important. If possible, information on these factors should be
practice; simulation errors have indeed been detected in thiscollected, for validation purposes (availability of such data
way. enables trace-driven simulation; see 84). If the significant
Case (ii): If data on the real output are available, then we factors are controllable by the users, then sensitivity analysis
can apply the classical two-sample Student t statistic - shows how to change these factors to optimize the real
provided the data are approximately normally distributed. In system (see Kleijnen and Pala 1999 for an application).
case of non-normality we can use distribution-free tests or The importance of sensitivity analysis in validation is
bootstrapping. See §3. also emphasized by Fossett et al. (1991), who present three
Case (iii): In trace-driven simulation we can apply a military case studies, and Nayani and Mollaghasemi (1998),
particular kind of regression analysis (compute the who present a semiconductor case study.
differences and sums of real and simulated outputs; regress  Sensitivity analysis of a simulation model requires a set
these differences on the sums, and test for zero intercept anadf simulation runs. By definition, during a simulation run, all
zero slope). In case of non-normality, however, bootstrapping factors remain constant; simulated time increases, and in a
of the difference between the average simulated and realstochastic simulation model a stream of pseudorandom
outputs gives best results (prespecified type | error numbersis generated. Factors do change from run to run; that

probability & and high power). See 8§4. is, each factor has at least two levels or ‘'values' in the
experiment as a whole. The factor maybalitative as the
2 NO REAL DATA AVAILABLE: DOE priority rules exemplified. A detailed discussion of quali-

tative factors and various measurement scales is given in

How realistic is it to assume that there is no data on the realKleijnen (1987, pp. 138-142).
system being simulated? Indeed, in some applications, such  There are several techniques for sensitivity analysis,
data are either completely missing or scarce. Examples areMost practitioners changme factor at a timeand think that
data on nuclear war (fortunately, no data, except for outdatedthis isthescientific way to perform what-if analysis. Actually
figures on Hiroshima and Nagasaki), nuclear accidents it is easy to prove mathematically that - compared with
(limited data: Chernobyl, Three Miles Island), global DOE's resolution-3 designs - this method gives less accurate
warming or greenhouse effect (few data; see Kleijnen, Van estimates of a factor’s first-order effect (called ‘main effect’
Ham, and Rotmans 1992, and Jansen and De Vries 1998). in ANOVA, Analysis Of Variance). Moreover, changing one

If no data on the real system are available, then strong factor at a time does not enable estimation of ‘interactions’
validation claims are impossible. Yet the analysts should at among factors: what happens if two or more factors change
least perform sensitivity analysis (or what-if analysis). | simultaneously? DOE'’s resolution-4 and resolution-5 designs
definesensitivity analysias the systematic investigation of enable the estimation of two-factor interactions, as we shall
the reaction of the simulation responsesxtemevalues of see next (the remainder of this section is based on Kleijnen
the model's input or talrastic changes in the model's  1998).
structure. For example, what happens to the customers'mean  DOE’s central problem is how to select a limited set of
waiting time when their arrival rate doubles; what happens if combinations of factor levels to be observed, from the large
the priority rule is changed by introducing ‘fast lanes’? (The number of conceivable combinations. An example is the
literature does not provide a standard definition of sensitivity ecological simulation case-study with 281 parameters in
analysis; some authors consider only marginal changes ofBettonvil and Kleijnen (1997); obviously the number of
continuous inputs.) combinations is at least?®® (which is a huge number,

| use the DOE ternfactor to denote a parameter, an exceeding 1%). An example with fewer factors (less than,
input variable, or a module of a simulation model. In the say, fifteen) may be a supermarket simulation. In a simulation
supermarket example, a parameter is the arrival or servicecontext, | defindOEas selecting the combinations of factor
rate; an input variable is the number of cashiers; a module levels that will be actually simulated when experimenting
may be the submodel for the priority rules (First-In-First-Out with the simulation model. A popular type of design is the
or FIFO, priority for customers with less than - say - ten so-called 2 - ? design: k factors are changed in the
items). experiment; each factor has two levels; only a fraction

Sensitivity analysis can support validation: such an (namely 2° with p = 0, 1, ...) of the '2combinations is
analysis shows whether factors have effects that agree withactually simulated. Depending on the size of that fraction, the
experts' prior qualitative knowledge (for example, faster resolution of the designis 3, 4,5, ... : unbiased estimators of
service gives lower mean waiting time). Admittedly, in main effects only, sums of two-factor interactions, individual
practice not all simulation models have effects with known two-factor interactions, ...
signs; yet, many models do have factors with known signs (as After selecting the combinations of factor levels, the
the case studies below will demonstrate). simulation program is executed or 'run'. Next the resulting
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I/O data of the simulation experiment are analyzed, applying (submodels). There are no data for the modules ‘inside’ the
ANOVAor regression analysisThis analysis estimates the model (these modules are not at the input or output boundary
importance of the individual factors (sensitivity analysis); of the model). For each such module, a second-order
that is, statistically significant factors may be considered to polynomial is specified as metamodel. To estimate a second-
be important (the usual caveat about type | and type Il errors order polynomial, Kleijnen (1995a) usesemtral composite
applies; also see the next section, §3). In the simulation field design as analysts often do. This design combine$ & 2
such a regression model is callethaetamodelsince it is a design with a one-factor-at-a-time design, plus one ‘central’
model of the I/0O behavior of the underlying simulation combination, which is at the center of the experimental area.
model; see Friedman (1996), Kleijnen (1987). (Some call the For two modules the following results are found.

metamodel a response surface, a repromodel, or a compact For one module, the naval experts suggest that its two

model.) factors have specific signs (namg@ly> 0,8; < 0,8, ;< 0).
Typically, this metamodel uses one of the following Indeed do the corresponding estimates turn out to have these
three polynomial approximations. signs. So this module has the correct I/O transformation, and
its validity does not seem questionable. Of course, it cannot
(i) A first-order polynomial, which consists of an be claimed that its validity has been proven statistically!
overall or grand meafi, andk main effects The other module has six factors, and the central
(say)B withj=1, ... k composite design has as many as 77 factor combinations. It
(i) A first-order polynomial augmented with turns out that one of these six factors has no significant
interactions between pairs of factors (two- effects at all: no main effect, no interactions with the other
factor interactions.. ., with ! Fr1, ..k five factors, no quadratic effect. These results agree with the
(iii) A second-order polynomial, which adds purely experts' qualitative knowledge. So the validity of this module
quadratic effectsﬁj; j to (ii). is not questioned either.

These case studies illustrate that DOE with its regression
Obviously, the first-degree polynomial in (i) misses analysis treats the simulation model ablack box the
interactions, and has constant marginal effects. Extending thesimulation model's 1/O is observed, and the factor effects in
second-order polynomial in (iii) to a third-order polynomial the metamodel are estimated. An advantage is that DOE can
would be more difficult to interpret; it would also need many be applied to all simulation models, either deterministic or
more simulation runs to estimate its many paramdlers . Sostochastic, discreteevent or continuous (a disadvantage is that
a second-order polynomial may be a good compromise, DOE cannot exploit the specific structure of a given
depending on the goal of the metamodel. Anyhow, an simulation model).
important practical question is: How should analysts select a DOE assumes that the area of experimentation is given.
particular degree for the polynomial approximation, and how A valid simulation model, however, requires that the inputs
should they validate the resulting metamodel? be restricted to a certain domain of factor combinations. This
To answer this question, some analysts use the well- domain corresponds with tlexperimental framén Zeigler
known multiple correlation coefficien®2. For example, (1976); also see Trybula (1994).
Kleijnen (1995a) fits second-order polynomials, which give Related to sensitivity analysis idgsk analysis or
multiple correlation coefficients that - for the four scenarios uncertainty analysisRisk analysis also runs a simulation
simulated - range between 0.96 and 0.98 (also see below). model for various combinations of factor levels. Risk
More refined selection procedures and tests use analysis is performed because the input parameter values of
sequential DOE combined with cross-validation and Rao’s F the simulation model are not accurately known; therefore risk
test; see Kleijnen and Sargent (1999) and Kleijnen, Cheng, analysis samples from a prespecified (joint) probability
and Feelders (1998). distribution for these parameters. This sampling uses the
A case study that does explicitly demonstrate the role of Monte Carlo technique (sometimes refined to Latin
DOE and regression analysis in validation, is the ecological hypercube sampling or LHS; see Helton et al. 1997). So
simulation in Bettonvil and Kleijnen (1997) and Kleijnen, typically, its number of combinations is much larger than in
Van Ham, and Rotmans (1992). The regression metamodelsensitivity analysis using DOE.
in the latter article helped to detect a serious error in the | think that the basic difference between sensitivity
simulation model: one of the original modules should be split analysis and risk analysis is that the latter tries to answer the
into two modules. Both publications further show that some question: what is the probability ofdégsaste? That disaster
factors are more important than the ecological experts may be a nuclear accident, an ecological collapse, a financial
originally expected; this 'surprise’ gives additional insight mis-investment, etc. These disasters angque events
into the simulation model. whereas the case studies above concern repetitive events
Another case study is the sonar simulation in Kleijnen (e.g., average customer waiting time, mine detection
(1995a). This simulation model consists of several modules probability). Consequently, validation in risk analysis is very
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difficult; see Jansen and De Vries (1998). A better term may output (say)y is the 90% quantile of the individual
becredibility; also see Fossett, Harrison, Weintrob, and Gass (autocorrelated) waiting timeg of the customers served per
(1991) and Hodges (1991). day in the simulated system. Suppose furthentllays are

| would further add that from a risk analysis viewpoint, observed in the real system, andlays are simulated. This
DOE selects extreme combinations of factor values that haveyields W.. . , waiting time of customeémon dayi withi = 1,

very low probability of realization. Risk analysis, however, ...,nin the real system. Analogously we hawe, With
samples from the whole domain of possible combinations, 1, ...,m. This givesx, the 90% quantile ofV.. ' ang the
according to the prespecified input distribution. 90% quantile ol;. . . Assume thateach real or simulated day

Risk analysts try to improve the underlying model's gives an indepeéndent and identically distributed (i.i.d.)
credibility by applying certairstatistical techniques. For observation (no seasonality; only busy Saturdays are
example, they apply regression analysis to detect which measured).

factors have significant effects; next - using their expert The ideal simulation model would have a statistical
knowledge - they try to explain why these factors are distribution function for its output (sayy that is identical
important. An example is the following case study. to the distribution for the real systeﬁk (also see Nayani

To obtain permission for nuclear waste disposal in the and Mollaghasemi 1998, and Rao, Owen, and Goldsman
waste-isolation pilot-plant (WIPP) near Carlsbad, New 1998) In practice, however, the manager is not interested in
Mexico (NM), a simulation model was developed at Sandia the whole distribution FX , but only in particular
National Laboratories (SNL) in Albuquerque (NM). The characteristics, the most popular being the mé&z(x) =
Environmental Protection Agency (EPA) will give i . For example, the 90% quantile varies from day to day,

permission to start using the WIPP, only if the simulation but its expected value is taken as the criterion to manage the
model is accepted as credible - and the model’'s output shows P 9

: . . . . supermarket. (In the next section we shall see how both the
an acceptable risk. Details on statistical techniques are glvenmean and the variance otan be taken into account when
by Helton et al.(1997) and Kleijnen and Helton (1999).

validating a simulation model. However, if the purpose of the
. L 2
3 REAL OUTPUT DATA: CLASSIC TESTS simulation is to help manade(X) , thear(x) of  may

o . be ignored.)
How realistic is it to assume that there is data on the output - : .
not the input - of the real system? Let us return to the Ease Define the mean differencdy B, IJ'y Then the
study on the search for mines by means of sonar, reported byand m observations on the real and the simulated systems
Kleijnen (1995a)_. In this case study it is impossible to respectively give the classic estimatarsy ~Sx2 ,85;21d of
measure the environment - namely, the temperature and the . } ]
salinity of the sea water that affect sonar performance - at all the means and variancesxoéndy. These estimators yield
times and places. To obtain real output data on the detectiontWo-sample Student's t statistiath n + m - 2 degrees of
of mines, the navy has one team deposit mines on the sedreedom:

bottom; next another team searches for these mines (in t -
. . . . . n+m-2
general, the military conducts field tests; likewise, private
companies build pilot plants to obtain data). In general, if the X -y - My
real-world scenarios are not measured, then only the outputs 3 1o
of the real and the simulated systems can be compared. [(n - Ds + (m - 1s)] @)

Note that in some situations the analysts are ‘drown by
the numbers’; examples are data on supermarketsalesandon ~ [(0 + M - 2)nm
telecommunication operations. In general, data are abundant (n + m2
if systems arelectronically monitoredexamples are point
of sale systems (POSS) and electronic data interchange o )
(EDI). Another example is the milk robot simulation in Obviously, the null-hypothesis is that simulated and real
Halachmi et al. (1999): cows are monitored electronically means are equal; that is;:Hl; = 0. The power of this test
(also see the next section, 84).

Let us return to the supermarket example. Suppose that
the real output (sayis the 90% quantile of the individual  differences are easier to detentfyr mincreases (more days
(autocorrelated) waiting time#/; of the customers served ~ simulated or measured), o, of  decreases (less noise:
per day in the real system (the manager is assumed t0 b&yqre customers per day or lower traffic rate).
interested in ‘excessive’ waiting times, not in the mean
waiting time; neither is she interested in the whole time path
generated by the simulation run). Likewise, the simulated
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- 2 2 2 [ [ " arrival ti iers’
Note that definingd = X - y mears; & & - input datg consists of customers’ arrival times and cashlers,
y service times, whereas output data concerns customers

pr; 4050y SO the analysts may try to create a positive linear waiting times. Trace-driven simulation means that the
analysts feed real input data into the simulation program, in
historical order After running the simulation program, the
trace-driven simulation: see the next section (84). analysts compare the time series of simulated output with the

A type Il error is likely to be committed if only a few historical time series of real output. But how should they
days are simulated or there is much noise: an important make this comparison? What is wrong with the following
difference (H: |ud| >> 0) may go undetected (non- naiveanalysis of trace-driven simulation?

Make a scatter plot with (say) andy - real and
simulated outputs that use the same input. Fit a line

y = BO + le, and test Wheth&l =1 arﬁb =0: see
Figure 1 taken from the case study in Kozempel, Tomasula,

and Craig (1995). (This validation procedure is also
recommended by Van der Zouwen and Van Dijkum 1998.)

correlation betweer andy - seep,. y - through the use of

significantt). A type | error is also possible: if very many
data are available, then an unimportant difference between

the simulated and the real responseggs {ud| =€) can give

a significant:-value.

Unfortunately, the test in Equation (1) assumes that the
outputsx andy are normal (Gaussian) besides i.i.d., denoted
as n.i.i.d.. Simulation models, however, may give non-
normal outputs. The t statistic is known to be not very 160
sensitive to nonnormality. Nevertheless, outputs such as
estimated quantiles may show serious non-normality.

Let us briefly return to the sonar case study. This
application gives ainary response variable: detect or miss
a mine. Then simulation runs give a binomial variable with
parametersm and (say)p, the detection probability.
Analogously, the field test gives a binomial variable with
parametersr andqg. To test the null-hypothesis of equal
simulated and real probabilities £k =), Kleijnen (1995a)
uses thé-statistic as an approximate test. Another case-study
that applies this-test is the traffic simulation by Rao et al. 80 100 120 140 160
(1998) Experimental Drum Rate, Kg/h

An alternative to thetest islohnson's modified Student
statistic which includes an estimator for the skewness of the
output distribution; see Johnson (1978) and Kleijnen,
Kloppenburg, and Meeuwsen (1986).

Another alternative is the classdi$tribution-freetests
(such as the rank test); see Conover (19Fdgkknifingis
also a robust technique, which requires only slightly more . ! i .
computer time for the analysis of the simulation output; see S|mu|at.|on m'od.el too often. Indeed, suppose the S|mu|at|on
Efron and Tibshirani (1993). In practice, however, these model is valid in the sense that the real and the simulated
alternatives are rarely applied - unfortunately. An application OUtputs have the same m¢gn P= [= ) and the same
of a distribution-free (Kolmogorov-Smirnov) test is given by
Rao et al. (1998).

One more alternative statistical technique is positive (1 > 0) - as is the usual case in queueing
bootstrapping which is a type of Monte Carlo simulation;  simylations - and that the simulation model is not perfect
see Efron and Tibshirani (1993) We shall return to (pxy < 1) In generaL for the linear regression model

bootstrapping, in the next section. y = Bo + le we haveBl szy o, 6, andﬁo :Fly

4 REAL I/O DATA: TRACE-DRIVEN B, K. Hence, a valid simulation model gives (s <1
and0 .Soifthe analyststestwhetber = d

Comparing data on the real and the simulated systems makes <BO H ! y W tﬁ? 1&51

more sense if both systems are observed usiheitar =0, then they are likely to reject the valid simulation model!

scenarios for example, a busy day at the real supermarket ~ This is indeed what happens in Lysyk (1989): he finds

should be compared with a busy day at the simulated store.an estimated slope significantly smaller than unity and an
More specifically, in queueing systems such a supermarketsintercept significantly positive. Since he expects a unit slope
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Figure 1. Example of Wrong Validation of Trace -driven
Simulation (Source: Kozempel et al. 1995, p. 232)

Itis easy to prove that this analysis tends to reject a valid

. 2 _2 . .
varianceo, =0, (=02 ) . Suppose further that this mean is
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and a zero intercept, he tries to explain this phenomenontype | error probability and has good power. They discuss in
away. Figure 1 also suggesﬁﬁ >0 ﬁld <1 (we cannotdetail how to bootstrap the real and the simulated outputs.

give the actual estimates since we do not have the original
numbers in Figure 1 available). More examples will follow
below.

A novel validation test for trace-driven simulation is
derived by Kleijnen, Bettonvil, and Van Groenendaal (1996,
1998). They compute not only thalifferenced, (also see
Equation 1 wittn =m), but also th& sums (sayjj; =X +V..

Next they fit a line d =Yy, * Y44 to thesa pairs
(d., g,). Then they formulate the null-hypothesis:H, = (i) No Real Data

Oandy, =0.Obviously, this (joint, composite) hypothesis Eyen if there is no data on the input or output of the real
implies J, = 0 orpl, :lJ'y . Moreover, assuming normality ~ System, the analysts can still genesiteulateddata. More

specifically, the analysts should perform sensitivity analysis
for x andy, it is easy to prove thay, = 0 implies equal to find out whether the simulation model contradicts
variances:oi =02 . To test this joint hypothesitandard ~ qualitative, expert knowledge If the simulation‘s
regression software (which applies an F test) can be used. input/output (I/O) behavior violates this knowledge, the
Kleijnen et al. (1998) apply both the naive and the novel model should be seriously searched for programming and
regression analyses to single server systems with Poissorfonceptual errors. This sensitivity analysis should be guided
arrival and service times (Markov systems with one server; by DOE including regression metamodels; an inferior

5 CONCLUSIONS

In practice, validation has many forms, but | focused on
validation through mathematical statistics. Statistical
validation may use various tests, depending on the type of
data available for the real system. | discussed the following
three situations.

M/M/1). This gives the following conclusions. approach changes only one factor at a time.
() The naive test rejects a truly valid simulation (if) Only Data on RealOutput
model substantially more often than the novel
test does. If there is data on the output of the real system, the means of
(i) The naive test shows ‘perverse’ behavior in a real and simulated output distributions may be compared
certain domain; that is, the worse the through the two-sample Studenttest. Alternatives are
simulation model is (in that domain), the higher Johnson's modifietstatistic (estimating the skewness of the
is its probability of acceptance. output distribution), distribution-free statistics, and
(i) The novel test does not reject a valid bootstrapping.
simulation model too often (that is, it rejects
with probability &), provided the outputs are (iii) 1/O Data on Real System
transformed logarithmically to realize
normality Real input data enable trace-driven simulation. The

validation of this type of simulation, however, should not use

Besides this academic M/M/1 study, there is a case study a scatter plot with real and simulated outputs, testing whether
that applies both the naive and the novel regression analysisthe fitted line has unit slope and zero intercept. Instead, two
namely the milk robot simulation in Halachmi et al. (1999). alternatives were discussed. Alternative #1 regresses
Again, the naive test rejects the simulation model much more differences on sums; this analysis applies if the outputs are
often than the novel test does. Obviously, it is unknown N.ii.d. Alternative #2 uses bootstrapping of a simple
whether this simulation model is valid or not: itis a real case Validation statistic based on differences; this provides

study - unlike the academic study by Kleijnen et 29, acceptable type | and Il errors.
1998). To demonstrate the applicability of the various statistical

Both the naive and the novel analyses assume n.i.i.d. methods, | summarized several case studies. Nevertheless,
(real and simulated) outputs. Kleijnen, Cheng, and Bettonvil because validation involves the art of modeling and the
(1999), however, consider the validation of simulation Philosophy of science, validation will remain controversial!
models withnon-normaloutputs. They study several test
statistics, using bootstrapping. They conclude that actually REFERENCES
the simplesttestis best: bootstrapping the difference between

the average simulated and real responses gives the correcBeck, M.B., J.R. Ravetz, L.A. Mulkey, and T.O. Barnwell
(1997), On the problem of model validation for
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