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ABSTRACT

We describe a simulation output analysis methodology su
able for stochastic processes that are regenerative with
spect to multiple regeneration sequences. Our method
ploits this structure to construct estimators that are mo
efficient than those that are obtained with the standard
generative method. We illustrate the method in the settin
of discrete-time Markov chains on a countable state spa
and we present a result showing that the estimator is t
uniform minimum variance unbiased estimator for finite
state-space discrete-time Markov chains. Some empiric
results are given.

1 INTRODUCTION

A regenerative stochastic process has a sequence of r
dom times (regenerations) forming a renewal process su
that the process from each regeneration time forward is
probabilistic replica of the original process. The regen
erative method of simulation-output analysis exploits th
fact that the consecutive regeneration cycles are indep
dent and identically distributed (i.i.d.) by bringing to bea
the well-developed theory of i.i.d. sequences; see, e.
Shedler (1993) for details.

Many stochastic processes are regenerative with resp
to more than one regeneration sequence. For example,
successive hitting times to any fixed state of a positiv
recurrent discrete-time or continuous-time Markov cha
on a countable state space form a regeneration sequen
The standard regenerative method does not take adv
tage of this multiple-regeneration structure, but there h
been some previous work on developing estimators th
exploit this structure to increase efficiency. Calvin an
Nakayama (1998) developed simulation estimators that u
two regeneration sequences, and proved that the estima
have the same mean as and no greater (and often significa
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smaller) variance than the standard regenerative estimator
Calvin and Nakayama (2000) proved strong laws of large
numbers and central limit theorems for these estimators
so confidence intervals can be constructed. Calvin and
Nakayama (1999a) derived estimators for the expectation
of a product of two additive cycle rewards, which is the
performance measure we consider in the current paper, and
certain importance-sampling estimators, both for the case
when there are two regeneration sequences. Finally, Calvin
and Nakayama (1999b) developed estimators for processes
that have more than two regeneration sequences under the
assumption that the order of regenerations from the vari-
ous sequences have a “birth-death-type structure” (i.e., any
regeneration from sequencei and any regeneration from
sequencei + 2 must be separated by a regeneration from
sequencei + 1, and any regeneration from sequencei and
any regeneration from sequencei − 2 must be separated by
a regeneration from sequencei − 1).

In this paper we develop estimators for simulations
of processes having multiple regeneration sequences as in
Calvin and Nakayama (1999b), but we eliminate the re-
striction that the regeneration sequences possess a birth
death-type structure. We limit our discussion in this pa-
per to constructing estimators for discrete-time Markov
chains on a countable state space; see Calvin, Glynn, and
Nakayama (1999) for the extension to general processes
with multiple regeneration sequences, and a discussion on
the relationship between these types of processes and semi
regenerative processes (Chapter 10 of C¸ inlar 1975).

The rest of this paper is structured as follows. In
Section 2 we describe the basic framework in which we
derive our results, and give some examples of performance
measures that can be estimated using our approach. In
Section 3 we derive some identities for processes with
multiple regeneration sequences, and these identities form
the basis for our estimator, which we present in Section 4.
Section 5 contains a result showing that our estimator is the
5
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uniform minimum variance unbiased estimator for discrete
time Markov chains on a finite state space, which is a form
of small-sample optimality. In Section 6 we present som
empirical results.

2 REGENERATIVE MIXED-MOMENT
ESTIMATORS

Let X = (Xn : n = 0, 1, 2, . . .) be an irreducible, positive-
recurrent discrete-time Markov chain (DTMC) with finite
or countable state spaceS ⊂ {1, 2, 3, . . .}. Denote by
R = (Ri,j : i, j ∈ S) the transition probability matrix ofX,
and letπ = (πi : i ∈ S) denote the stationary distribution.
Let S0 = {x1, x2, . . . , xs} ⊂ S, s ≥ 1, be a finite subset
of the states, and letT (0) = inf {k ≥ 0 : Xk ∈ S0}, and
T (n + 1) = inf {k > T (n) : Xk ∈ S0}, n ≥ 0, denote the
successive hitting times to the setS0. For1 ≤ i ≤ s, denote
the successive hitting times toxi ∈ S0 by Ti(0) = inf {k ≥
0 : Xk = xi}, and Ti(n + 1) = inf {k > Ti(n) : Xk = xi},
n ≥ 0. We call the sample-path segment(Xk : Ti(j − 1) ≤
k < Ti(j)), j ≥ 1, the j th Ti-cycle.

Define another Markov chainW = (Wn : n ≥ 0) by
Wn = XT (n); i.e., Wn is the state of theX chain on the
(n + 1)th visit to the setS0. We let Q = (Qi,j : i, j ∈ S)

denote the transition probability matrix ofW , and ν =
(νi : i ∈ S0) its stationary distribution, which is given by
νi = 1(i∈S0)πi/π(S0), whereπ(S0) = ∑

j∈S0
πj .

We consider estimating the mixed moment

α = E[U(1) V (1)], (1)

where

U(k) =
T1(k)−1∑

n=T1(k−1)

fU (Xn, Xn+1), (2)

V (k) =
T1(k)−1∑

n=T1(k−1)

fV (Xn, Xn+1), (3)

for k ≥ 1, andfU , fV : S ×S → < are “reward” functions.
Based on a sample pathEX of exactly m T1-cycles, i.e.,
EX = (Xn : 0 ≤ n < T1(m)) with X0 = x1, we construct
the “standard estimator” ofα as

α̂( EX) = 1

m

m∑
k=1

U(k) V (k).

(Throughout this paper we will assume that all of the esti
mators are based on sample pathsEX consisting of exactly
m T1-cycles withm fixed, but the estimators can also be
constructed from more general sample paths; e.g., the pa
does not have to start and end in statex1 nor does it have
to consist of a fixed number ofT1-cycles. However, to
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simplify the presentation we consider only the case whe
EX consists of exactlym T1-cycles.)

Calvin and Nakayama (1999a,1999b) developed es
mators for (1) in more restrictive settings than we conside
here and showed that the following performance measur
can be expressed as functions of quantities having the for
in (1).

Example 1 Time-Average Variance Constant.Con-
sider estimating

σ 2 = E[Y (f ; 1)2] − 2rE[Y (f ; 1) τ (1)] + r2E[τ(1)2]
E[τ(1)] ,

(4)
wheref : S → < is a “reward" function,

r = E[Y (f ; 1)]
E[τ(1)] (5)

is a steady-state average reward, and fork ≥ 1,

τ(k) = T1(k) − T1(k − 1),

Y (f ; k) =
T1(k)−1∑

n=T1(k−1)

f (Xn).

The constantσ 2 is known as the time-average variance
constant and arises in the central limit theorem for th
time-average reward:

n1/2(rn − r)
D→ N(0, σ 2),

asn → ∞, wherern = 1
n

∑n
k=0 f (Xk) and

D→ denotes con-
vergence in distribution; see Theorem 2.3 of Shedler (199
for details. Observe that in (4), the termsE[Y (f ; 1)2],
E[Y (f ; 1) τ (1)], and E[τ(1)2] each have the form given
in (1).

Example 2 Derivative Estimation. Suppose we
want to estimate the derivative ofr defined in (5) with re-
spect to some system parameterλ, and assume thatf = fλ

is continuously differentiable inλ. For example,r may be
the steady-state availability of a reliability system, and w
want to compute its derivative with respect to the failure
rateλ of some component. Assume that the random time
T1(0), T1(1), . . . do not depend onλ (but their distribution
may depend onλ). Differentiating the ratio formula in (5)
yields

∂r = (∂E[Y (f ; 1)]) E[τ(1)] − E[Y (f ; 1)] (∂E[τ(1)])
E2[τ(1)] ,

(6)
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where we use the notation∂A to denote the derivative ofA
with respect toλ. Under appropriate regularity conditions
applying the likelihood-ratio method of differentiation give

∂E[Y (f ; 1)] = E[Y (f ; 1) ∂L(1)] + E[∂Y (f ; 1)] (7)

and

∂E[τ(1)] = E[τ(1) ∂L(1)], (8)

where

∂Y (f ; k) =
T1(k)−1∑

n=T1(k−1)

∂f (Xn)

for k ≥ 1, and ∂L(1) is the derivative of the likelihood
ratio; see Glynn (1990) for more details. In our conte
with X a discrete-time Markov chain on a countable sta
spaceS, the derivative of the likelihood ratio over thekth
T1-cycle is

∂L(k) =
T1(k)−1∑

j=T1(k−1)

∂RXj ,Xj+1

RXj ,Xj+1

.

Note thatE[Y (f ; 1) ∂L(1)] in (7) andE[τ(1) ∂L(1)] in (8)
each have the form given in (1).

Example 3 Low-Bias Ratio Estimation.Suppose
our goal is to estimate some steady-state performance m
surer having the form in (5). The standard ratio estimato
based onEX is then

r̂(m) =
∑m

k=1 Y (f ; k)∑m
k=1 τ(k)

.

One can show that

E[r̂(m)] − r

= − 1

m

E[Y (f ; 1) τ (1)] − rE[τ(1)2]
E2[τ(1)] + O(m−2); (9)

see p. 104 of Shedler (1993). Hence, the standard estim
r̂(m) is typically biased, and various techniques have be
introduced to try to reduce the bias. One approach propo
by Tin (1965) is to modify the standard estimator by addin
to it terms that estimate the first-order bias term in (9
Observe thatE[Y (f ; 1) τ (1)] and E[τ(1)2] in (9) both
have the form given in (1).
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3 IDENTITIES FOR PROCESSES WITH
MULTIPLE REGENERATION SEQUENCES

We now derive a representation of the performance measur
α that explicitly exploits the multi-regeneration structure of
X. To simplify the development, we specialize the derivation
to the setting when the reward functionsfU andfV in (2)
and (3), respectively, depend only on the first parameter
i.e., fU , fV : S → <.

For 1 ≤ i, j ≤ s andk ≥ 0, let

EUi,j (k) =
inf {n>Ti(k):Xn=xj }−1∑

l=Ti(k)

fU (Xl),

EVi,j (k) =
inf {n>Ti(k):Xn=xj }−1∑

l=Ti(k)

fV (Xl)

denote the cumulative rewards over thekth xi to xj meander
(or excursion ifxi = xj ). By anxi to xj meander, we mean
a path segment starting in statexi and going to the next
visit to xj . With this notation, our goal can be expressed
as estimatingα = E[ EU11(1) EV11(1)].

For 1 ≤ i, j ≤ s, set

βU
i,j = E

[ EUi,j (1)
]

,

βV
i,j = E

[ EVi,j (1)
]

,

βUV
i,j = E

[ EUi,j (1) EVi,j (1)
]

,

and set

γ U
i,j = Ei

T (1)−1∑
l=0

fU (Xl) | XT (1) = xj

 ,

γ V
i,j = Ei

T (1)−1∑
l=0

fV (Xl) | XT (1) = xj

 ,

γ UV
i,j = Ei

T (1)−1∑
l=0

fU (Xl)

T (1)−1∑
l=0

fV (Xl) | XT (1) = xj

 ,
7



Calvin, Glynn, and Nakayama

e
whereEi is the expectation for the chain starting in stat
xi ∈ S0. Then

βUV
i,j = Ei

[ EUi,j (1) EVi,j (1)
]

=
s∑

k=1

Qi,k Ei

[ EUi,j (1) EVi,j (1) | XT (1) = xk

]

=
s∑

k=1

Qi,k Ei

T (1)−1∑
l=0

fU (Xl) + EUk,j (1)1(k 6=j)


×

T (1)−1∑
l=0

fV (Xl) + EVk,j (1)1(k 6=j)

 | XT (1) = xk


=

s∑
k=1

Qi,k γ UV
i,k

+
∑
k 6=j

Qi,k

(
γ U

i,k βV
k,j + γ V

i,k βU
k,j + βUV

k,j

)
.

For 1 ≤ i, j ≤ s, set

Ai,j =
s∑

k=1

Qi,kγ UV
i,k +

∑
k 6=j

Qi,k

(
γ U

i,kβV
k,j + γ V

i,kβU
k,j

)
,

and letA = (Ai,j : 1 ≤ i, j ≤ s). Then letting1Q denote
the matrix Q but with the elements of the first column
changed to zero, we have that

(I − 1Q)βUV
·1 = A·1,

where we use the notation thatM·j denotes thej th column
of a matrixM = (Mi,j ). Similar calculations yield

(I − 1Q)βU
·1 = BU (10)

and

(I − 1Q)βV
·1 = BV , (11)

where BU = (BU
i : i ∈ S0), BV = (BV

i : i ∈ S0), and
BUV = (BUV

i : i ∈ S0) are vectors with

BU
i =

s∑
k=1

Qi,k γ U
i,k,

BV
i =

s∑
k=1

Qi,k γ V
i,k,

BUV
i =

s∑
k=1

Qi,k γ UV
i,k .
65
In particular,

α = βUV
11 = (I − 1Q)−1

1· A·1.

Now

(I − 1Q)−1
1,j =

∞∑
n=0

1Qn
1,j

= E1

[ ∞∑
n=0

1{Wn=xj , T1(1)>n}

]
= νj /ν1,

where1{ · } is the indicator function of the set{ · }, and so

βUV
11 = 1

ν1

s∑
k=1

νkAk,1

= 1

ν1

s∑
k=1

νk

 s∑
j=1

Qk,j γ UV
k,j

+
∑
j 6=1

Qk,j (γ U
k,j βV

j,1 + γ V
k,j βU

j,1)

 .

Using expressions forβU
·1 and βV

·1 derived from (10) and
(11), respectively, we can rewrite the last expression as

α = 1

ν1

(
νBUV + ν(1Q ◦ γ U )(I − 1Q)−1BV

+ ν(1Q ◦ γ V )(I − 1Q)−1BU
)

, (12)

where(A ◦ B)i,j = Ai,j Bi,j .

4 MIXED-MOMENT ESTIMATORS

We can use (12) to construct an estimatorα̂∗ for α as follows.
First generate a sample pathEX = (Xk : 0 ≤ k < T1(m)),
with X0 = x1. We then form the estimator̂α∗( EX) by insert-
ing the sample quantities into the formula (12) forα. More
precisely, for1 ≤ i ≤ s, let ζi(0) = inf {k ≥ 0 : Wk = xi}
and ζi(n + 1) = inf {k > ζi(n) : Wk = xi}, n ≥ 0, be the
sequence of hitting times to statexi for the W chain. For
1 ≤ i, j ≤ s, define Ni,j = ∑ζ1(m)−1

k=0 1{Wk=xi , Wk+1=xj },
which is the number of(xi, xj ) transitions that theW
chain makes up to the(m + 1)th hit to statex1. Define
Q̂ as the sample transition probability matrix ofW , with
Q̂i,j = Ni,j /Ni , whereNi = ∑

j Ni,j is the total number of
transitions out of statexi . Form the natural sample averages
8
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On the Small-Sample Optimalit

γ̂ U , γ̂ V , andγ̂ UV , and letν̂k = Nk/N , whereN = ∑
i Ni

is the total number of transitions of theW chain. Define

B̂U
i =

s∑
k=1

Q̂i,k γ̂ U
i,k,

B̂V
i =

s∑
k=1

Q̂i,k γ̂ V
i,k,

and

B̂UV
i =

s∑
k=1

Q̂i,k γ̂ UV
i,k .

Then calculateβ̂U and β̂V as the solution to the equations

(I − 1Q̂)β̂U
·1 = B̂U

and

(I − 1Q̂)β̂V
·1 = B̂V .

Next, for 1 ≤ i, j ≤ s, let

Âi,j =
s∑

k=1

Q̂i,k γ̂ UV
i,k +

∑
k 6=j

Q̂i,k

(
γ̂ U

i,k β̂V
k,j + γ̂ V

i,k β̂U
k,j

)
.

Finally, setα̂∗( EX) = β̂UV
11 , whereβ̂UV

·1 is the solution to

(I − 1Q̂)β̂UV
·1 = Â·1.

The new estimator is unbiased; that is,E [̂α∗( EX)] = α.
To see why this is true, it is useful to take another viewpoint
deriving the estimator̂α∗( EX). The cycles between successiv
hits to a fixed state are i.i.d.; therefore, permuting th
cycles between visits to, say, statexi does not change the
distribution of the path (see Calvin and Nakayama 199
Therefore, if we form a “standard" regenerative estimat
α̂( EX) based on a sample pathEX of m standard regenerative
T1-cycles, then

E [̂α( EX)] = E [̂α( EX′)],

where EX′ is obtained fromEX by permuting cycles for any
collection of states inS0. It turns out that̂α∗( EX) is precisely
the average of̂α over all such cycle permutations. Therefore
it has the same expectation aŝα( EX), which is unbiased.
(The above argument for unbiasedness relies on the sam
path EX consisting of exactlym T1-cycles,m fixed.)
65
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5 SMALL-SAMPLE OPTIMALITY

Now assume that|S| < ∞ and S0 = S = {1, 2, 3, . . . , s};
i.e., we will construct our estimator using all states in th
state spaceS. Thus, we take the statexi ∈ S0 to be
xi = i for i = 1, 2, . . . , s = |S|, and so theTi sequence
consists of the successive hitting times to statei, i ∈ S.
We will consider our estimator based on a sample pa
EX = (Xk : 0 ≤ k < T1(m)), with X0 = 1 andm ≥ 2 fixed.
In this setting the estimator̂α∗( EX) is the uniform minimum
variance unbiased estimator (UMVUE) ofα.

To state this result precisely, we need some add
tional definitions. DefineFT1(m) = σ(X0, X1, . . . , XT1(m)),
which is the sigma-field generated by the processX up to
time T1(m). DefineR+ to be the class of transition prob-
ability matricesR with Ri,j > 0 for all i, j ∈ S. Finally
define the familyPm of probability measuresP on FT1(m)

induced by a transition probability matrixR ∈ R+.
Our goal is to estimateαP = EP [U(1) V (1)], where

we use a subscriptP to emphasize the measure used t
generate the DTMC. Then the following result holds, which
is a form of small-sample optimality; see Calvin, Glynn
and Nakayama (1999) for the proof.

Theorem 1 The permuted estimator̂α∗( EX) is the
UMVUE of αP over P ∈ Pm, m ≥ 2.

Remarks:

1. Theorem 1 establishes that̂α∗( EX) has the
smallest variance of any unbiased estimator of
αP over P ∈ Pm. However, the result can be
extended to showing that̂α∗( EX) is the unique
(w.p. 1) unbiased estimator that uniformly min-
imizes the risk for any convex loss function;
see p. 88 of Lehmann and Casella (1998).

2. Observe that (4), (6), and the first-order bias
term in (9) are all nonlinear functions of means.
We obtain the standard estimators of these
quantities by replacing the means with their
respective sample means. Thus, the standard
estimators of these quantities are nonlinear
functions of sample means and so are typically
biased. Thus, even though our estimatorα̂∗( EX)

is unbiased forαP , our overall new estimators
for (4), (6), and the first-order bias term in (9)
are typically biased.

3. For simplicity we assumed in Theorem 1 that
the probability transition matrixR used to
generated the sample path was strictly positive;
i.e., R ∈ R+. We can relax this assumption
to allow for non-negativeR as follows. Let
2 ⊂ S × S such that for any pair of states
i, j ∈ S, there exists a sequence of states
i1 = i, i2, i3, . . . , in = j , n ≥ 2, such that
(ik, ik+1) ∈ 2, k = 1, 2, . . . , n − 1. Now
9
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consider the classR of probability transition
matricesR such thatRi,j > 0 if and only if
(i, j) ∈ 2. Any R ∈ R is irreducible by our
definition of 2. Finally define the familyPm

of probability measuresP on FT1(m) induced
by a transition probability matrixR ∈ R. Then
with these changes, Theorem 1 holds.

6 EMPIRICAL RESULTS

We now present results from applying our proposed tec
nique in simulations of two different models. We firs
consider a discrete-time Markov chainX = (Xn : n =
0, 1, 2, . . .) on a finite state spaceS = {0, 1, . . . , s} with
transition probability matrix defined byRi,i+1 = λ/(i+λ) =
1 − Ri,i−1 for 0 < i < s, and R0,1 = Rs,s−1 = 1. This
chain is the discrete-time version of the Erlang loss syste
Our goal is to estimate the time-average variance cons
σ 2 of X using the proposed technique withS0 = S. We
ran numerical experiments withs = 15 andλ = s/2.

Table 1 reports the results of simulations of 1,00
independent replications for various choices for the statex1 ∈
S0 used to determine theT1-cycles. In each replication we
fixed the number ofT1-cycles simulated. Since the expecte
length of theT1-cycles depends on the choice of the statex1,
we adjusted the number ofT1-cycles in a replication for
each choice ofx1 so that the expected total number o
transitions of the Markov chain is about1, 000, 000. Thus,
the results across the various rows are comparable.
columns labeled with “̂α∗” and “̂α” are the sample variances
of the proposed and standard estimators, respectively, o
the 1,000 replications. The last column contains the ratio
the estimated efficiency of the proposed estimator over t
of the standard estimator, where the efficiency is defin
as the inverse of the product of the work and variance, a
the work is defined as the expected CPU time required
run the simulation and construct the estimator.

First observe that our proposed method can significan
reduce the variance and increase the efficiency; e.g., see
row for x1 = 0 in Table 1. Also, note that the variance of th
standard estimator varies quite a bit over the various choi
for x1, showing that the standard estimator ofσ 2 is quite
sensitive to the choice of the regeneration sequence u
to control the simulation. On the other hand, the varian
of our proposed estimator does not seem to depend on
choice ofx1.

We also ran experiments on a large queueing syste
The system consisted of 8 stations, each with a single se
and a queue that can hold up to 14 waiting customers. T
service discipline at each station is first-come-first-serv
and the service distribution is exponential with rate 1.
a customer arrives to a station and the queue is full,
customer immediately leaves the system. The interarri
distribution of customers to the system is exponential w
66
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Table 1:  Variances of Estimators ofσ 2

x1 α̂∗ α̂ Efficiency

0 0.10 130.55 1318.90
1 0.10 12.45 120.48
2 0.10 2.57 26.22
3 0.10 0.81 8.50
4 0.09 0.39 4.16
5 0.09 0.22 2.31
6 0.09 0.14 1.54
7 0.09 0.12 1.32

rate 5, and an arriving customer is equally likely to go
to any of the stations. We simulated the processX =
(Xn : n = 0, 1, 2, . . .), which is the discrete-time version
of this queueing system, where the state space ofX is
S = {(n1, n2, . . . , n8) : 0 ≤ ni ≤ 15, i = 1, 2, . . . , 8}.
Note that|S| = 168 ≈ 4× 109. The goal of our simulation
experiment is to estimate the time-average variance const
σ 2 of the total number of customers in the system.

In this experiment we letS0 be a strict subset of the
state spaceS, where S0 = {0, 3}8 is the set of states
(n1, n2, . . . , n8) in which each stationi has eitherni = 0 or
ni = 3; thus,|S0| = 256. We letx1 = (0, 0, 0, 0, 0, 0, 0, 0),
i.e., no customers in the system. We ran 1000 indepe
dent replications in which we constructed both the standa
estimator and our proposed estimator. Each replication co
sisted of approximately 100,000 transitions. We obtaine
a 6-fold reduction in variance by using our proposed tec
nique. The time required for the post-processing needed
construct our proposed estimator was negligible compar
with the time required to generate the sample path. Thu
the increase in efficiency is also about 6-fold.
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