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ABSTRACT smaller) variance than the standard regenerative estimator.
Calvin and Nakayama (2000) proved strong laws of large
We describe a simulation output analysis methodology suit- numbers and central limit theorems for these estimators
able for stochastic processes that are regenerative with re-so confidence intervals can be constructed. Calvin and
spect to multiple regeneration sequences. Our method ex- Nakayama (1999a) derived estimators for the expectation
ploits this structure to construct estimators that are more of a product of two additive cycle rewards, which is the
efficient than those that are obtained with the standard re- performance measure we consider in the current paper, and
generative method. We illustrate the method in the setting certain importance-sampling estimators, both for the case
of discrete-time Markov chains on a countable state space, when there are two regeneration sequences. Finally, Calvin
and we present a result showing that the estimator is the and Nakayama (1999b) developed estimators for processes
uniform minimum variance unbiased estimator for finite- that have more than two regeneration sequences under the
state-space discrete-time Markov chains. Some empirical assumption that the order of regenerations from the vari-

results are given. ous sequences have a “birth-death-type structure” (i.e., any
regeneration from sequenc¢eand any regeneration from
1 INTRODUCTION sequence + 2 must be separated by a regeneration from

sequenceé + 1, and any regeneration from sequericand

A regenerative stochastic process has a sequence of ran-any regeneration from sequence 2 must be separated by
dom times (regenerations) forming a renewal process such a regeneration from sequence- 1).
that the process from each regeneration time forward is a In this paper we develop estimators for simulations
probabilistic replica of the original process. The regen- of processes having multiple regeneration sequences as in
erative method of simulation-output analysis exploits the Calvin and Nakayama (1999b), but we eliminate the re-
fact that the consecutive regeneration cycles are indepen- striction that the regeneration sequences possess a birth-
dent and identically distributed (i.i.d.) by bringing to bear death-type structure. We limit our discussion in this pa-
the well-developed theory of i.i.d. sequences; see, e.g., per to constructing estimators for discrete-time Markov
Shedler (1993) for details. chains on a countable state space; see Calvin, Glynn, and

Many stochastic processes are regenerative with respectNakayama (1999) for the extension to general processes
to more than one regeneration sequence. For example, thewith multiple regeneration sequences, and a discussion on
successive hitting times to any fixed state of a positive- the relationship between these types of processes and semi-
recurrent discrete-time or continuous-time Markov chain regenerative processes (Chapter 10, ofl&® 1975).
on a countable state space form a regeneration sequence. The rest of this paper is structured as follows. In
The standard regenerative method does not take advan-Section 2 we describe the basic framework in which we
tage of this multiple-regeneration structure, but there has derive our results, and give some examples of performance
been some previous work on developing estimators that measures that can be estimated using our approach. In
exploit this structure to increase efficiency. Calvin and Section 3 we derive some identities for processes with
Nakayama (1998) developed simulation estimators that use multiple regeneration sequences, and these identities form
two regeneration sequences, and proved that the estimatorsthe basis for our estimator, which we present in Section 4.
have the same mean as and no greater (and often significantlySection 5 contains a result showing that our estimator is the
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uniform minimum variance unbiased estimator for discrete-
time Markov chains on a finite state space, which is a form
of small-sample optimality. In Section 6 we present some
empirical results.

2 REGENERATIVE MIXED-MOMENT
ESTIMATORS

Let X =(X,:n=0,1,2,...) be an irreducible, positive-
recurrent discrete-time Markov chain (DTMC) with finite
or countable state spacg c {1,2,3,...}. Denote by
R = (R, :i,j € S) the transition probability matrix ok,
and letr = (; : i € S) denote the stationary distribution.
Let So = {x1,x2,...,x} C S, s > 1, be a finite subset
of the states, and Ief'(0) = inf{k > 0: X; € Sp}, and
Tn+ 1 =inf{k > T(n) : X; € So}, n > 0, denote the
successive hitting times to the s%t Forl <i < s, denote
the successive hitting times 16 € Sp by 7;(0) = inf{k >
0: Xy =x},andT;(n + 1) =inf{k > T;(n) : Xp = x;},
n > 0. We call the sample-path segment; : 7;(j — 1) <
k < T;(j)), j =1, the jth T;-cycle.

Define another Markov chai = (W, : n > 0) by
W, = Xr@); i.e., W, is the state of theX chain on the
(n 4+ Dth visit to the setSg. We letQ = (Q; ;:i,j € 9)
denote the transition probability matrix d¥, and v
(v 1 i € Sp) its stationary distribution, which is given by
v, = 1(,‘650)711'/7T(So), wheren (Sg) = ZjeSo ;.

We consider estimating the mixed moment

a=EUD VD] @)

where

T1(k)—1
Z fU(an Xn+1)»
n=T1(k—1)
T1(k)—1

Z fV(Xm Xn+1)y

n=Ty(k—1)

U (k)

)

V (k) Q)

fork > 1, andfy, fv : S x § — N are “reward” functions.
Based on a sample patﬁ of exactly m Tp-cycles, i.e.,
X = (X, :0<n < Ti(m)) with Xg = x1, we construct
the “standard estimator” af as

P 1<
a(X) = ZZU(/{) V (k).
k=1

(Throughout this paper we will assume that all of the esti-
mators are based on sample paﬁ‘monsisting of exactly

m Ty-cycles withm fixed, but the estimators can also be
constructed from more general sample paths; e.g., the path
does not have to start and end in statenor does it have

to consist of a fixed number ofi-cycles. However, to
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simplify the presentation we consider only the case when
X consists of exactlyn T1-cycles.)

Calvin and Nakayama (1999a,1999b) developed esti-
mators for (1) in more restrictive settings than we consider
here and showed that the following performance measures
can be expressed as functions of quantities having the form
in (1).

Example 1
sider estimating

Time-Average Variance Constar@on-

g2 B (s D2 = 2 EY (f; DT ()] + r2Elr (1]

E[T(1)]
4)
where f : § — R is a “reward" function,
_E[Y(f; D]
"TTER@) ©)

is a steady-state average reward, andkfor 1,

(k) = Tik)— Tuk — D),
T1(k)—1

Y(fik = ) (X
n=Ty(k—1)

The constants? is known as the time-average variance
constant and arises in the central limit theorem for the
time-average reward:

72, — 1) B N, 0?),
asn — oo, wherer, = %Zizoﬂm andg denotes con-
vergence in distribution; see Theorem 2.3 of Shedler (1993)
for details. Observe that in (4), the ternigY (f; 1)2],
E[Y(f; 1) t(1)], and E[r(1)?] each have the form given
in (1).

Example 2  Derivative Estimation. Suppose we
want to estimate the derivative efdefined in (5) with re-
spect to some system parameteand assume that = f,
is continuously differentiable in. For exampler may be
the steady-state availability of a reliability system, and we
want to compute its derivative with respect to the failure
rate A of some component. Assume that the random times
71(0), T1(1), ... do not depend on (but their distribution
may depend on.). Differentiating the ratio formula in (5)
yields

_ QEIY(f; DD Elr(D] — E[Y(fs DIGE[T (D]

or EZ[t(1)]

)

(6)
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where we use the notatidi to denote the derivative of 3 IDENTITIES FOR PROCESSES WITH
with respect tor. Under appropriate regularity conditions, MULTIPLE REGENERATION SEQUENCES
applying the likelihood-ratio method of differentiation gives
We now derive a representation of the performance measure

AE[Y(f; DI=E[Y(f; HDOLD)]+ EPRY(f; D] (7) «a that explicitly exploits the multi-regeneration structure of
X. Tosimplify the development, we specialize the derivation
and to the setting when the reward functiofis and fy in (2)
and (3), respectively, depend only on the first parameter;
IE[t(D] = E[x(D)ILD)], (8) ie., fu, fv 1 S — M.
where Forl<i,j <sandk >0, let
T1(k)—1 inf {n>T (k): Xp=x;}—1
(k=Y X 0i, (k) = 3 fu (X,
n=Ty(k—1) [=T; (k)

for k > 1, and 9L (1) is the derivative of the likelihood
ratio; see Glynn (1990) for more details. In our context inf {n>T; (k): X, =x,}—1

with X a discrete-time Markov chain on a countable state O —
et /cn . Vi,j(k) = > fv(Xp)
spaces, the derivative of the likelihood ratio over thigh =T
Ti-cycle is -
denote the cumulative rewards over itk x; to x; meander
T1()—1 (or excursion ify; = x;). By anx; to x; meanderwe mean
ORx; X1 Jrr = J .
aL(k) = Z g a path segment starting in state and going to the next
j=Tik-1 XX visit to x;. With this notation, our goal can be expressed
. . as estimatingr = E[U11(1) V11(1)].
Note thatE[Y (f; 1) 9L(1)] in (7) andE[z(1) L(1)] in (8) Forl<i,j<s, set

each have the form given in (1).
Example 3  Low-Bias Ratio Estimation.Suppose
our goal is to estimate some steady-state performance mea-

Y, = E[0,0)],

surer having the form in (5). The standard ratio estimator gY. = E [‘71 .(1)]
based onX is then b S
UV = E|U@ Vi@,
. Y Y(fi k) P i@ 7,)]
r(m) = =—3—-—.
> k=1 T (k) and set
One can show that C7(1)-1 7]
U
. vi; = Ei fuXD 1 Xt =x; |,
E[f(m)] — r / ; /
1 E[Y(f; 1) (D] - rE[t(1)? - .
_ _LEI(; )TZ( )] —rE[t(1)7] +omd: (9 ) T(1)-1
m E“[T(1)] Y= E; Z VXD Xt =x;5 |,
see p. 104 of Shedler (1993). Hence, the standard estimator - =0 -
7(m) is typically biased, and various techniques have been ry-1 rd-1
introduced to try to reduce the bias. One approach proposed Vi,; = Ei Z Ju(XD) Z XD Xrw =x; |,
by Tin (1965) is to modify the standard estimator by adding L (=0 I=0

to it terms that estimate the first-order bias term in (9).
Observe thatE[Y (f; 1) r(1)] and E[r(1)?] in (9) both
have the form given in (1).
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where E; is the expectation for the chain starting in state
x; € So. Then

Y = E [0 V)]

N
> 0ik Ei [ Uiy Vi () | Xry = x|
k=1

s T(D)-1
= Z Oix E; Z Ju(Xp) + (7k,j(1)1(k7éj)
k=1 1=0
T(1)-1
< | D7 XD + Vi jWlazp| [ Xr@) = x
1=0

N
= Z Oik V,‘%V
k=1
+ Z Qi k (Vi% ,312/] + Vi}/k ﬂ;f/, + ﬁ/f/]v) .
k#j
Forl<i,j <s, set

N

A= Z Qi,kj/i%‘/ + Z Oik (Vifjkﬁlzj + V,Yk/%f{j) )

k=1 k]
and letA = (A; ; : 1 <i, j <s). Then letting; Q0 denote

the matrix @ but with the elements of the first column
changed to zero, we have that

(I —10)8Y" = A4,

where we use the notation thét ; denotes thgth column
of a matrix M = (M; ;). Similar calculations yield

(I —10)5 =BY (10)
and

(I —10)85 = BY, (11)
where BV = (B :i € So), BY = (B :i € So), and

BYY = (BYV :i € Sp) are vectors with

S
U U
B,' = Z Qi,k Yik»
k=1
S
\%4 \4
Bi = Z Qi,k Viks
k=1

S
uv uv
B; = Z Qik Vik -
k=1
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In particular,
a =B = -10); A1

Now
o
I —1Q); = > 10%;
n=0

o0
Eq |:Z 1{W,,=x.,',T1(l)>n}j| = vj/v1,

n=0

wherel,., is the indicator function of the sdt }, and so

1 s
uv
— Vi Ak 1
e o ; ,

1 S s UV
Ly (Soo
=1 i—1

+ Z Ok, j (Vkl,]j ﬁXl + Vk‘,/j '311‘{1)
A1

Using expressions fogY and B! derived from (10) and
(11), respectively, we can rewrite the last expression as

. — 1(vBUV—l—v(lQOJ/U)(I—lQ)_lBV

v1
+ vaQoy' ) —10)71BY), (12)
where(A o B); j = A; ; B; ;.
4  MIXED-MOMENT ESTIMATORS

We can use (12) to construct an estimaipfor « as follows.
First generate a sample paih: (X : 0 <k < T1(m)),
with Xg = x1. We then form the estimaté‘zr*()?) by insert-
ing the sample quantities into the formula (12) éorMore
precisely, forl <i < s, let&(0) =inf{k > 0: W, = x;}
andZi(n+1) = inf{k > &i(n) : Wi = x;}, n > 0, be the
sequence of hitting times to state for the W chain. For
1<ij<s, defineN;; = ilz(f)")_l Yw=x;, Wir1=x;}»
which is the number of(x;, x;) transitions that theW
chain makes up to thén + 1)th hit to statex;. Define
0 as the sample transition probability matrix &f, with
'Q\,',j = N, j/Ni, whereN; = Zj N;, ; is the total number of
transitions out of state;. Form the natural sample averages
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pY, 7V, andpUV, and letdy = Niy/N, whereN = >, N;
is the total number of transitions of tH& chain. Define

N
AU A ~U
B; Z Oik Yik
k=1

A
NV A ~V
B; Z Oik Vik
k=1

and

and
(I-10)BY =B".

Next, forl <i, j <s, let

s
Ai,j = Z Qi,k )Qi{]kv + Z Qi,k ()%Uk ,3/:/] + 771‘2 ,315]]) .
k=1 k#j

Finally, set@.(X) = AY", whereY" is the solution to
(I-10)BY" = As.

The new estimator is unbiased; that @, (X)] = «.
Toseewhythisistrue, itis useful to take another viewpointin
deriving the estimatai, (X). The cycles between successive
hits to a fixed state are i.i.d.; therefore, permuting the
cycles between visits to, say, statedoes not change the
distribution of the path (see Calvin and Nakayama 1998).
Therefore, if we form a “standard” regenerative estimator
@(X) based on a sample pakof m standard regenerative
T1-cycles, then

E[@(X)] = E[@(X")],

where X’ is obtained fromX by permuting cycles for any
collection of states i§p. It turns out that, (X) is precisely
the average a over all such cycle permutations. Therefore,
it has the same expectation ﬁsi), which is unbiased.

(The above argument for unbiasedness relies on the sample

path X consisting of exactlyn Ti-cycles,m fixed.)
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5 SMALL-SAMPLE OPTIMALITY

Now assume thatS| < co andSo =S =1{1,2,3,...,s};

i.e., we will construct our estimator using all states in the
state spaceS. Thus, we take the state; € So to be
xi=ifori =1,2 ...,5s = |S|, and so thel; sequence
consists of the successive hitting times to staté € S.

We will consider our estimator based on a sample path
X = (X; : 0 < k < T1(m)), with Xo = 1 andm > 2 fixed.

In this setting the estimatﬁ*(f() is the uniform minimum
variance unbiased estimator (UMVUE) of

To state this result precisely, we need some addi-
tional definitions. DefineFr; () = 0 (Xo, X1, .-, X1y0m)),
which is the sigma-field generated by the procEssp to
time T1(m). DefineRy to be the class of transition prob-
ability matricesR with R; ; > O for all i, j € S. Finally
define the familyP,, of probability measure® on Fr, )
induced by a transition probability matriR € R .

Our goal is to estimatep = Ep[U (1) V(1)], where
we use a subscripP to emphasize the measure used to
generate the DTMC. Then the following result holds, which
is a form of small-sample optimality; see Calvin, Glynn,
and Nakayama (1999) for the proof. _

Theorem 1 The permuted estimatai, (X) is the
UMVUE ofap overP € P, m > 2.

Remarks:

1. Theorem 1 establishes thét(f() has the
smallest variance of any unbiased estimator of
ap over P € P,,. However, the result can be
extended to showing that, (X) is the unique
(w.p. 1) unbiased estimator that uniformly min-
imizes the risk for any convex loss function;
see p. 88 of Lehmann and Casella (1998).

2. Observe that (4), (6), and the first-order bias
termin (9) are all nonlinear functions of means.
We obtain the standard estimators of these
guantities by replacing the means with their
respective sample means. Thus, the standard
estimators of these quantities are nonlinear
functions of sample means and so are typically
biased. Thus, eventhough our estimatgiX)
is unbiased fow p, our overall new estimators
for (4), (6), and the first-order bias term in (9)
are typically biased.

3. For simplicity we assumed in Theorem 1 that
the probability transition matrixk used to
generated the sample path was strictly positive;
i.e., R € R+. We can relax this assumption
to allow for non-negativeR as follows. Let
® C S x § such that for any pair of states
i,j € S, there exists a sequence of states
i1 =1,i2,i3,...,i, = j, n > 2, such that
(g ik+1) € ©, k= 1,2,...,n —1. Now
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consider the clas®& of probability transition Table 1: Variances of Estimators of
matricesR such thatR; ; > 0 if and only if _ — —
(i, j) € ©®. Any R € R is irreducible by our x| @ | @ | Efficiency |
definition of ®. Finally define the familyp,, 0 || 0.10| 130.55| 1318.90
of probability measure® on Fr ) induced 1010 1245 | 120.48
by a transition probability matriR € R. Then 2 || 0.10| 257 26.22
with these changes, Theorem 1 holds. 3] 010] 081 8.50
4 | 0.09| 0.39 4.16
6 EMPIRICAL RESULTS 5] 0.09| 0.22 2.31
6 || 0.09| 0.14 1.54
We now present results from applying our proposed tech- 7 10.09] 012 1.32

nigue in simulations of two different models. We first
consider a discrete-time Markov chaixi = (X, : n =

0,1,2,...) on a finite state spacg = {0, 1, ..., s} with rate 5, and an arriving customer is equally likely to go

transition probability matrix defined by; ;11 = A/(i+A) = to any of the stations. We simulated the procéSs=

1-Rjj—1for0O<i <s,andRo1 = Rs5—1 = 1. This (X, :n=0,12,...), which is the discrete-time version

chain is the discrete-time version of the Erlang loss system. of this queueing system, where the state spaceX af

Our goal is to estimate the time-average variance constant S = {(n1,n2,...,n8) : 0 < n; < 151i =1,2,...,8}.

o2 of X using the proposed technique wifa = S. We Note that|S| = 16% ~ 4 x 10°. The goal of our simulation

ran numerical experiments with= 15 andi = s/2. experiment is to estimate the time-average variance constant
Table 1 reports the results of simulations of 1,000 o2 of the total number of customers in the system.

independentreplications for various choices for the state In this experiment we leSy be a strict subset of the

So used to determine th& -cycles. In each replication we  state spaceS, where So = {0, 3}8 is the set of states

fixed the number of;-cycles simulated. Since the expected (n1, n2, .. ., ng) in which each station has either; = 0 or

length of theT:-cycles depends on the choice of the siate n; = 3; thus,|Sg| = 256 We letx; = (0,0,0,0,0, 0,0, 0),

we adjusted the number df;-cycles in a replication for i.e., no customers in the system. We ran 1000 indepen-

each choice ofr; so that the expected total number of dent replications in which we constructed both the standard

transitions of the Markov chain is aboiit000, 000. Thus, estimator and our proposed estimator. Each replication con-

the results across the various rows are comparable. Thesisted of approximately 100,000 transitions. We obtained

-~ N (Lo ]

columns labeled with@,.” and “a” are the sample variances  a 6-fold reduction in variance by using our proposed tech-
of the proposed and standard estimators, respectively, overnique. The time required for the post-processing needed to
the 1,000 replications. The last column contains the ratio of construct our proposed estimator was negligible compared
the estimated efficiency of the proposed estimator over that with the time required to generate the sample path. Thus,
of the standard estimator, where the efficiency is defined the increase in efficiency is also about 6-fold.

as the inverse of the product of the work and variance, and

the work is defined as the expected CPU time required to ACKNOWLEDGMENTS

run the simulation and construct the estimator.
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