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ABSTRACT

In this paper we describe a class of algorithms for appro
imating the global minimum of a function defined on
subset ofd-dimensional Euclidean space. The algorithm
are based on adaptively composing a number of sim
Monte Carlo searches, and use a memory of a fixed fin
number of observations. Within the class of algorithms
is possible to obtain arbitrary polynomial speedup in t
asymptotic convergence rate compared with simple Mo
Carlo.

1 INTRODUCTION

Let f be a real-valued function defined on a compact s
A ⊂ Rd . We are interested in approximating the glob
minimum off overA based on observation of the functio
value at sequentially selected points, while maintaining
memory of a fixed finite number of function values. I
this paper we construct a class of randomized algorith
with the following property: For a broad class of objectiv
functions, and for any integerk, there exists an algorithm
for which the probability that the error aftern observations
exceedsn−k converges to0. Thus the convergence rate ca
be made better than any polynomial in the reciprocal of t
number of observations.

The algorithms are based on Monte Carlo, or indepe
dent uniform sampling over the domain. Simple Mon
Carlo global search has several attractive properties a
method for approximating the global minimum of a com
plicated function. For many objective functions the erro
when suitably normalized, converges in distribution. O
can use this fact to construct confidence intervals for t
minimum based on a sample of independent observatio
The convergence rate depends on the function, but is t
ically a small power of the reciprocal of the number o
observations. Another advantage, more important for t
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paper, is that the limiting distribution of points near the
global minimizer can be precisely characterized.

The algorithms described in this paper are genera
izations of an algorithm described in Calvin (1997). That
algorithm was only for one-dimensional objective functions,
and the analysis was only carried out in the setting of a
random objective function.

Let f ∗ = mint∈A f (t) denote the global minimum of
the function. We assume thatf attains its global minimum
at a unique pointt∗ in the interior ofA. The object of a
global minimization method is to approximate the global
minimum f ∗, and sometimes also the locationt∗. We
adopt the framework that the approximation is based o
observation of the function value at sequentially selecte
points. That is, the searcher chooses pointst1, t2, . . . ∈ A

and forms an approximation(t∗n , f ∗
n ) to (t∗, f ∗) based on

{ti , f (ti) : i = 1, 2, . . . , n}. A general adaptive algorithm
in this setting will choose the(n + 1)st point tn+1 as a
function of all the previous observations and some auxiliary
randomization; i.e.,

tn+1 = hn+1 (t1, f (t1), t2, f (t2), . . . , tn, f (tn), Zn)

for some functionhn+1 and random variableZn.
In this paper we are concerned with the case of bounde

memory. If a total ofM observation pairs are allowed, then
to keep a new observation an old one must be discarde
(after M are stored), so an algorithm takes the form

tn+1 =
hn+1

(
ti1, f (ti1), ti2, f (ti2), . . . , tiM , f (tiM ), Zn

)
.

The questions include how to choosetn+1 given the past his-
tory, and what information to keep and what to discard. Ou
ultimate aim is to determine how fast the global minimum
can be approximated.
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Let

1n = min
i≤n

f (ti) − f (t∗)

denote the error aftern observations. We are mainly in
terested in the convergence rate of1n to 0 under various
algorithms; that is, we undertake an asymptotic analy
The obtainable convergence rates depend on the charac
tics of the objective functionf , as well as on the cardinality
of informationM.

In the next section we describe the basic assumpt
that we make on the objective functions and the basic fa
about Monte Carlo random search. In Section 3 we desc
the adaptive extension. Section 4 presents the result
numerical simulations of the algorithm.

2 SIMPLE MONTE CARLO SEARCH

In this section we review the basic facts about simple Mo
Carlo search; a detailed treatment is given in Zhigljavs
(1991). The behavior of the error variables is relatively w
understood in the case of uniform independent sampli
and we will exploit that fact in this study.

For T > 0 let BT = {x ∈ Rd : ‖x‖ ≤ T } be the
closed ball of radiusT in Rd . By rescaling and extending
the function if necessary we can take the domainA = B1.
Denote the Borelσ -field on BT by BT .

Let {Ui : i ≥ 1} be a sequence of independent rando
variables, all uniformly distributed onB1. Let U∗

n be that
observation point of the firstn with the smallest function
value: i.e.,U∗

n = Uj for some1 ≤ j ≤ n and f (U∗
n ) ≤

f (Ui), i ≤ n, with ties broken arbitrarily. By “simple
Monte Carlo" we mean approximatingf (t∗) by f (U∗

n )

after n function evaluations.
We now describe the basic assumption we make on

objective function and its consequences in the context
independent, uniform sampling. Assume thatf is Borel
measurable and that for anyδ ∈ (0, 1),

n(1−δ)/d‖U∗
n − t∗‖ P→ 0 (1)

as n → ∞. Here
P→ denotes convergence in probability

that is, for random variablesXn, n ≥ 1 and X, Xn
P→ X

if P (‖Xn − X‖ > ε) → 0 as n → ∞ for any ε > 0.
This assumption is satisfied, for example, if the object
function is continuous and differentiable on a neighborho
of t∗ (recall the assumption that the minimizer is unique

Let b1 = |B1| denote the Lebesgue measure of the u
ball in Rd . ForT > 0, define a sequence of point process
NT

n on BT by

NT
n (A) =

n∑
k=1

I{(n/b1)1/d (Uk−t∗)∈A}, A ∈ BT ,
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whereIA is the indicator function of the setA. Therefore,
NT

n (A) is the number of observations of the firstn that
land in the sett∗ + (n/b1)−1/dA. It is well known (see
Kallenberg 1976) that for anyT > 0, NT

n converges in
distribution to a Poisson point process with unit intensit

on BT as n → ∞; we denote this byNT
n

D→ NT , where
NT is a Poisson process onBT with intensity one. This
means that for disjointA1, A2, . . . , Ak ∈ BT , theNT (Ai),
1 ≤ i ≤ k are independent random variables, andNT (Ai)

has a Poisson distribution with mean|Ai |:

P (NT (Ai) = k) = |Ai |k
k! exp(−|Ai |) , k ≥ 0.

Thus, under uniform sampling, the point process of obse
vations near the minimizert∗ (normalized by multiplying
the distance fromt∗ by (n/b1)1/d ) looks like a Poisson
point process.

How can we exploit the results of the uniform sampling

search? SinceU∗
n

P→ t∗, U∗
n gives an approximation tot∗,

which we use to guide a second search which progress
in parallel with the first. On thenth iteration, the second
search chooses a point uniformly on a ball of radiusn−(1−δ)/d

centered atU∗
n . Sincen(1−δ)/d‖U∗

n − t∗‖ P→ 0, the radius
tends to be large compared with the distance betweenU∗

n

and t∗, and so the ball is eventually likely to containt∗.
Therefore, the points are raining down uniformly (at an
intensity that varies withn) around t∗. It turns out that
under appropriate scaling the points of the second sear
neart∗ converge to a Poisson point process. From this w
obtain an approximation tot∗ from the second search that is
used to guide a third search, in an analogous way to the fi
search guiding the second. We continue on for an arbitra
number of searches. In the next section we introduce t
notation needed to describe precisely the extension toM

parallel searches.

3 ADAPTIVE MONTE CARLO

The adaptive algorithm is most easily explained in terms o
an implementation onM ≥ 2 processors (M corresponds to
the cardinality of information alluded to in the Introduction).
The processors communicate in a way that will be describe
below.

Let Ui:j , 1 ≤ i ≤ M, 1 ≤ j be an array of independent
random variables, uniformly distributed overB1. We will
define an array of observation pointsti:j , 1 ≤ i ≤ M, 1 ≤ j ,
whereti:1, ti:2, . . . is the sequence of observations made b
processori, 1 ≤ i ≤ M, which will be randomized by the
sequenceUi:1, Ui:2, . . ..

We begin with a discussion of the situation withM = 2,
since it forms the basis of what is to follow.
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Processor1 makes thej th search att1:j = U1:j inde-
pendent and uniformly distributed overB1. Denote byt∗1:n
the best location of the firstn; that is, t∗1:n = t1:j for some
j ≤ n and f (t∗1:n) ≤ f (t1:i ), i ≤ n. (To connect to the
notation of the previous section,t1:i corresponds toUi and
t∗1:i corresponds toU∗

i .)
Processor2 searches uniformly over a ball of radius

n−(1−δ)/d centered at the best location reported by process
1; i.e.,

t2:n = t∗1:n + n−(1−δ)/dU2:n, n ≥ 1.

Denote byt∗2:n the best location of the firstn seen by the
second processor, and setc1:n = (n/b1)1/d and

c2:n =
(

1

b1

n∑
k=1

k(1−δ)

)1/d

=
(

1

b1(2 − δ)

)1/d

n(2−δ)/d + O(n1/d),

and son−1/dc2:n → ∞; i.e., c1:n = o(c2:n).
For anyT > 0, define the sequence of point processe

NT
2:n (A) =

n∑
k=1

I{c2:n(t2:k−t∗)∈A}, A ∈ BT .

Let N be a Poisson process with unit intensity onRd , and
for any T > 0, let NT be the restriction ofN to BT . The
key to the acceleration procedure is the fact that for a
T > 0, asn → ∞,

NT
2:n

D→ NT .

This shows that the Poisson nature of the point proces
is preserved under the concentration scheme we have
scribed.

We have now established the results needed for t
two processor case. Notice that the only interprocess co
munication is the transmission oft∗1:n from processor 1 to
processor 2.

In order to extend the results to three or more processo
we need to determine how closelyt∗2:n approximatest∗. So

far we have only used the fact thatk(1−δ)/d‖t∗1:k − t∗‖ P→
0. The extension to three processors uses the fact t

c
(1−δ)/d

2:k ‖t∗2:k − t∗‖ P→ 0. The situation as seen locally att∗
is essentially as ifcd

2:n observations, instead ofn, had been
made uniformly over the entire interval. Sincecd

2:n/n → ∞,
there is a speedup.

The remaining processors follow the same pattern, ea
searching a ball of decreasing radius centered at the b
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location reported by its predecessor. Processor3 searches
at

t3:n = t∗2:n + c
−(1−δ)
2:n U3:n.

Denote byt∗3:n the best location of the firstn and set

c3:n =
(

1

b1

n∑
k=1

c
d(1−δ)
2:k

)1/d

.

For anyT > 0, define

NT
3:n (A) =

n∑
k=1

I{c3:n(t3:k−t∗)∈A}, A ∈ BT ,

and note that

c
(1−δ)/d

3:n ‖t∗3:n − t∗‖ P→ 0.

The remaining processors follow a similar pattern.
In summary, processor1 searches uniformly over the

unit ball, keeping track of the best location, which it com-
municates to processor2. Processor2 makes thenth search
uniform over a sub-ball of radiusn−(1−δ)/d centered at the
best location transmitted from processor1, and keeps track
of its best location, transmitting it on to processor3, and
so on. At the end of the chain, processorM makes itsnth
search uniform over a sub-ball of radiusc

−(1−δ)
M−1:n centered

at the best location transmitted from processorM − 1. The
radii are chosen to approach0 at such a rate that the dis-
tance from the center of a sub-ball tot∗ is asymptotically
negligible compared to the radius of the sub-ball. Eac
processor stores only one location, and the computation
cost grows linearly with the number of iterations.

We emphasize that each processor centers its search
the best location observed by its immediate predecessor
the chain, not the minimum of all its predecessors.

In the two-dimensional (d = 2) case, the sampling
density of the algorithm (all processors taken together) ca
be pictured as the side view of a wedding cake withM layers.
Thus the density is highest in the smallest central sectio
Note, however, that the sections need not be concentric,
even overlap (though they typically would).

We are now ready to state our main result, which bas
cally says that the normalized point process of observation
corresponding to processorj converges to a Poisson process
with unit intensity for each1 ≤ j ≤ M.

Theorem 1 Fix an integerM > 1, a positive num-
ber T , and δ ∈ (0, 1). Define

c1:n = (n/b1)1/d , t1:n = U1:n,
5
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and for 1 < j ≤ M set

cj :n =
(

1

b1

n∑
k=1

c
d(1−δ)
j−1:k

)1/d

,

tj :n = t∗j−1:n + c
−(1−δ)
j−1:n Uj :n,

and for 1 ≤ j ≤ M define

NT
j :n (A) =

n∑
k=1

I{cj :n(tj :k−t∗)∈A}, A ∈ BT .

Then for eachj ≤ M,

NT
j :n

D→ NT

as n → ∞, where NT is a Poisson point process, with
intensity one, onBT .

For the proof of the theorem (under a more general s
of assumptions) see Calvin (1999).

Denote the superposition of allM point processes (with
the Mth scaling) by

NT
n (A) =

M∑
j=1

n∑
k=1

I{cM:n(tj :k−t∗)∈A}, A ∈ BT .

Since cM:n is the dominant rate (cM−j :n = o(cM:n) as
n → ∞ for j > 1), NT

n has the same limit distribution as
NT

M . In other words, the results of processors1throughM−1
serve only to guide the searches of the higher-number
processors, and their approximations to the global minimu
are insignificant in the limit.

This is our main result. Under the basic assumptio
(1), with memory of cardinalityM we can make the point
process of observations neart∗ aftern observations look as
if we had madecd

M:n observations instead uniformly over
B1.

Theorem 1 holds under the sole assumption that

n(1−δ)/d‖U∗
n − t∗‖ P→ 0

as n → ∞. To say more about the error we must know
more about the objective functionf . For an example,
assume thatf is twice continuously differentiable att∗,
with nonsingular matrix of second partial derivativesD.
Then

P

(
n2/d 1n

(detD)1/d
> y

)
→ exp(−yd/2), y > 0;
e
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see de Haan (1981). Then

cd
j :n =(

n

b1

)[1−(1−δ)j ]/δ
(

1∏j−2
i=0

([1 − (1 − δ)j ]/δ
)

+O(1/n))

= aj nj−O(δ),

whereaj is a constant independent ofn andO(δ) → 0 as
δ → 0. The constantsaj → 0 as j → ∞. Thus withM

processors, we can obtain an effective intensity ofnM−1

instead ofn, for example. In this case the claim made in
the Introduction is borne out; for anyk > 0, we can define
an algorithm (chooseM and δ), such that the probability
that the error exceedsn−k converges to0.

4 NUMERICAL EXPERIMENTS

In this section we describe the results of some numerica
experiments. The purpose of the experiments is to ga
insight into how well the theoretical limit distribution ap-
proximates the empirical distribution of the error after a
moderate number of iterations.

For the tests we use a standard test function calle
Rosenbrock’s saddle. It is defined by

F(x1, . . . , xd) =
d−1∑
i=1

(
(1 − xi)

2 + 100(xi+1 − x2
i )2
)

for −2.048 ≤ xi ≤ 2.048, 1 ≤ i ≤ d; see Moŕe et all
(1981). This function has a long curved valley which is
only slightly decreasing towards the global minimum of0
at xi = 1 for 1 ≤ i ≤ d. We modified the algorithm so
that instead of a unit ball, a ball large enough to include
the specified set was used by the first processor.

Figure 1 plots the empirical distribution functions for the
error and the theoretical cumulative distribution function for
the Rosenbrock function withd = 4 and 1,000 independent
replications. Three different experiments were performed
each withM = 2 processors, and 10, 50, and 100 thousan
observations per processor, respectively. As can be see
the empirical distributions have fat tails, and approach th
theoretical CDF1−exp(−x2) as the number of observations
increases.

The explanation for the way the empirical CDFs chang
with the number of iterations is as follows. If the first pro-
cessor happens to have made an observation near the glo
minimizer, then the second processor will be concentratin
its effort near the minimizer and the limit distribution will be
well-approximated. On the other hand, if the first processo
has not placed an observation near the global minimize
(an event that has probability converging to 0), then th
6
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Figure 1:  Comparison of  Empirical CDFs

second processor will be wasting its effort away from the
minimizer. In short, there is a vanishing probability that the
best observation point is far fromt∗, but if it is far away,
then it is likely to be very far away.
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