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ABSTRACT

In this paper we describe a class of algorithms for approx-
imating the global minimum of a function defined on a

subset ofd-dimensional Euclidean space. The algorithms
are based on adaptively composing a number of simple
Monte Carlo searches, and use a memory of a fixed finite
number of observations. Within the class of algorithms it
is possible to obtain arbitrary polynomial speedup in the
asymptotic convergence rate compared with simple Monte
Carlo.

1 INTRODUCTION

Let f be a real-valued function defined on a compact set
A c R%. We are interested in approximating the global
minimum of f over A based on observation of the function
value at sequentially selected points, while maintaining a
memory of a fixed finite number of function values. In
this paper we construct a class of randomized algorithms
with the following property: For a broad class of objective
functions, and for any integék, there exists an algorithm
for which the probability that the error afterobservations
exceeds: ¢ converges t@. Thus the convergence rate can
be made better than any polynomial in the reciprocal of the
number of observations.

The algorithms are based on Monte Carlo, or indepen-
dent uniform sampling over the domain. Simple Monte

Carlo global search has several attractive properties as a

method for approximating the global minimum of a com-
plicated function. For many objective functions the error,
when suitably normalized, converges in distribution. One
can use this fact to construct confidence intervals for the

minimum based on a sample of independent observations.
The convergence rate depends on the function, but is typ-

ically a small power of the reciprocal of the number of
observations. Another advantage, more important for this
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paper, is that the limiting distribution of points near the
global minimizer can be precisely characterized.

The algorithms described in this paper are general-
izations of an algorithm described in Calvin (1997). That
algorithm was only for one-dimensional objective functions,
and the analysis was only carried out in the setting of a
random objective function.

Let f* = min,c4 f(¢) denote the global minimum of
the function. We assume thgtattains its global minimum
at a unique point* in the interior of A. The object of a
global minimization method is to approximate the global
minimum f*, and sometimes also the locatiot. We
adopt the framework that the approximation is based on
observation of the function value at sequentially selected
points. That is, the searcher chooses pointg, ... € A
and forms an approximatio@, f¥) to (*, f*) based on
{t:, f(t;) i =1,2,...,n}. A general adaptive algorithm
in this setting will choose thén + 1)st pointz, 1 as a
function of all the previous observations and some auxiliary
randomization; i.e.,

tn+1 == hn+1 (tlv f(tl)a t27 f(t2)’ AL t}’h f(tl’l)’ Zn)

for some functiom:,, 1 and random variabl&,,.

In this paper we are concerned with the case of bounded
memory. If a total ofM observation pairs are allowed, then
to keep a new observation an old one must be discarded
(after M are stored), so an algorithm takes the form

In41 =
hn+1 (li]_’ f(til)s tizv f(tiz)v ERE) tiM’ f(liM)a Zn) .

The questions include how to choage; given the past his-
tory, and what information to keep and what to discard. Our
ultimate aim is to determine how fast the global minimum
can be approximated.
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Let
Ay =min f(t;) — f(t%)

denote the error aftet observations. We are mainly in-
terested in the convergence rate &f to 0 under various
algorithms; that is, we undertake an asymptotic analysis.

The obtainable convergence rates depend on the characteris

tics of the objective functiorf, as well as on the cardinality
of information M.

In the next section we describe the basic assumption
that we make on the objective functions and the basic facts

about Monte Carlo random search. In Section 3 we describe
the adaptive extension. Section 4 presents the results of

numerical simulations of the algorithm.
2 SIMPLE MONTE CARLO SEARCH

In this section we review the basic facts about simple Monte
Carlo search; a detailed treatment is given in Zhigljavsky
(1991). The behavior of the error variables is relatively well
understood in the case of uniform independent sampling,
and we will exploit that fact in this study.

ForT > Olet By = {x € RY : ||x|| < T} be the
closed ball of radiug” in R?. By rescaling and extending
the function if necessary we can take the domaia- Bj.
Denote the Boreb-field on By by Br.

Let {U; : i > 1} be a sequence of independent random
variables, all uniformly distributed oB®;. Let U;* be that
observation point of the first with the smallest function
value: i.e, U} = U; for somel < j < n and f(U;)) <
fWU),i < n, with ties broken arbitrarily. By “simple
Monte Carlo" we mean approximating(:*) by f(U))
aftern function evaluations.

We now describe the basic assumption we make on the
objective function and its consequences in the context of
independent, uniform sampling. Assume thyatis Borel
measurable and that for andye (0, 1),

P
n= U — | >0

@)

P . .
asn — oo. Here— denotes convergence in probability;

that is, for random variable¥X,,n > 1 and X, X, £ X
if P(|X,—X||>¢) - 0asn — oo for anye > 0.
This assumption is satisfied, for example, if the objective
function is continuous and differentiable on a neighborhood
of r* (recall the assumption that the minimizer is unique).
Let b1 = | B1| denote the Lebesgue measure of the unit
ballin R¢. ForT > 0, define a sequence of point processes
NI on Br by

n
T
Nn (A) = Z I{(n/bl)l/d(Uk—t*)EA}’ A e BT,
k=1
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wherel, is the indicator function of the set. Therefore,
NI (A) is the number of observations of the firstthat
land in the set* + (n/b1)~Y/?A. It is well known (see
Kallenberg 1976) that for any’ > 0, N/ converges in
distribution to a Poisson point process with unit intensity

. D
on By asn — oo; we denote this byVnT = NT, where

NT is a Poisson process @By with intensity one. This

means that for disjoini1, Ao, ..., Ay € Br, the NT(A)),
1 <i < k are independent random variables, anl(A4,)
has a Poisson distribution with mea#; |:

|A; ¥
—— exp(—|Ail),

P(INT(A) =k) = 0

k> 0.
Thus, under uniform sampling, the point process of obser-
vations near the minimizer* (normalized by multiplying
the distance fromr* by (n/b1)Y/?) looks like a Poisson
point process.

How can we exploit the results of the uniform sampling

search? Sinc& £ t*, Uy gives an approximation tgd",
which we use to guide a second search which progresses
in parallel with the first. On theth iteration, the second
search chooses a point uniformly on a ball of raging—%/4

centered at/;*. SincenX=9/4||U* — ¢*|| £ 0, the radius
tends to be large compared with the distance betwégn
and ¢*, and so the ball is eventually likely to contaif.
Therefore, the points are raining down uniformly (at an
intensity that varies with) around¢*. It turns out that
under appropriate scaling the points of the second search
near:* converge to a Poisson point process. From this we
obtain an approximation t& from the second search that is
used to guide a third search, in an analogous way to the first
search guiding the second. We continue on for an arbitrary
number of searches. In the next section we introduce the
notation needed to describe precisely the extensioMto
parallel searches.

3 ADAPTIVE MONTE CARLO

The adaptive algorithm is most easily explained in terms of
an implementation oM > 2 processorsM corresponds to
the cardinality of information alluded to in the Introduction).
The processors communicate in a way that will be described
below.

LetU;;,1<i <M,1< jbe an array of independent
random variables, uniformly distributed ovéq. We will
define an array of observation poimtg, 1 <i < M,1 < j,
wheret;.1, t;.2, . . . is the sequence of observations made by
processor, 1 < i < M, which will be randomized by the
sequencd/;.1, U;o, .. ..

We begin with a discussion of the situation with= 2,
since it forms the basis of what is to follow.
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Processotl makes thejth search aty.; = Uy.; inde-
pendent and uniformly distributed ovéi. Denote by},
the best location of the first; that is,#};, = r1.; for some
j <nandf(,) < f(tr;), i <n. (To connect to the
notation of the previous section,; corresponds t@/; and
t},; corresponds td/;*.)

ProcessorR searches uniformly over a ball of radius
n—1-9/d centered at the best location reported by processor
1;ie,

I2n = tik;n + ni(lis)/dUZ:n, n>1
Denote byz;, the best location of the first seen by the
second processor, and set, = (n/b1)/? and

L 1/d
il Z k(1—5)>
<b1 =1
1
b1(2-9)

C2:n
1d
) n@9/d 4 oY)

and son Y¢y, — o0; i.e., c1n = 0(c2p).
For anyT > 0, define the sequence of point processes

n
NZTn (A) = Z I{CZ:n(tZ:k_t*)EA}’ Ae BT'
k=1

Let N be a Poisson process with unit intensity BA, and
forany T > 0, let N7 be the restriction oV to By. The
key to the acceleration procedure is the fact that for any
T >0, asn — 00,

T D T
Ny, — N

This shows that the Poisson nature of the point processes
is preserved under the concentration scheme we have de-

scribed.
We have now established the results needed for the

two processor case. Naotice that the only interprocess com-

munication is the transmission of , from processor 1 to
processor 2.

In order to extend the results to three or more processors,

we need to determine how closely, approximates*. So
far we have only used the fact that' =2/, — ¢*| A

location reported by its predecessor. ProceSssearches
at

—(1-8
13n = t;:n + C2:;(1 )U31”‘

Denote by:3  the best location of the first and set

n 1/d
(1 d(1-5)
Can =\ 5. Lo C2k :
1k=1

For anyT > 0, define

n
N3, (A) = Z lics, (13 —1)ea), A € Br,

k=1
and note that
1-8)/d P
cézn )/ I3, —t*l = O.

The remaining processors follow a similar pattern.

In summary, processdr searches uniformly over the
unit ball, keeping track of the best location, which it com-
municates to process@r ProcessoR makes theith search
uniform over a sub-ball of radius~1~%/4 centered at the
best location transmitted from procesdomand keeps track
of its best location, transmitting it on to proces&rand
so on. At the end of the chain, proces3drmakes its:th
search uniform over a sub-ball of radiugl(::‘,? centered
at the best location transmitted from proces&b+ 1. The
radii are chosen to approachat such a rate that the dis-
tance from the center of a sub-ball £t is asymptotically
negligible compared to the radius of the sub-ball. Each
processor stores only one location, and the computational
cost grows linearly with the number of iterations.

We emphasize that each processor centers its search on
the best location observed by its immediate predecessor in
the chain, not the minimum of all its predecessors.

In the two-dimensionald = 2) case, the sampling
density of the algorithm (all processors taken together) can
be pictured as the side view of a wedding cake wittayers.
Thus the density is highest in the smallest central section.
Note, however, that the sections need not be concentric, or
even overlap (though they typically would).

We are now ready to state our main result, which basi-
cally says that the normalized point process of observations

0. The extension to three processors uses the fact that corresponding to processpronverges to a Poisson process

cézl,:‘s)/dnt;:k — £ 0. The situation as seen locally it

is essentially as ifr‘Z’m observations, instead af had been
made uniformly over the entire interval. Sin:g:jn/n — 00,
there is a speedup.

The remaining processors follow the same pattern, each

with unit intensity for eactl < j < M.
Theorem 1  Fix an integerM > 1, a positive hum-
ber T, andé € (0, 1). Define

Cln = (n/bl)l/d’ t1:n = Ury,

searching a ball of decreasing radius centered at the best
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and forl < j < M set

Cjn = by k:1

L
Lim = Z‘j—lzn +c

1/d
d(1-8)
Cj—1k ) ’

—(1-9
j—1ln Uj:n ’

and forl < j < M define

n
T
Nj., (A) = Z Iicjn(tix—teay, A € Br.
k=1

Then for eachj < M,
r D T
ij —- N

asn — oo, where N7 is a Poisson point process, with
intensity one, omBr.

For the proof of the theorem (under a more general set
of assumptions) see Calvin (1999).

Denote the superposition of @lf point processes (with
the Mth scaling) by

M n
NI(A) =" Lieytys—1ea), A€ Br.
j=1k=1

Since ¢y, is the dominant ratecfs—;., = o(cy.,) as
n — oo for j > 1), NI' has the same limit distribution as
N!,. Inotherwords, the results of processbtisroughd/ —1

see de Haan (1981). Then

(i)[l(lﬁ)j]/rS ( 1
by [0 (11~ (1~ 8)71/)

+0(1/n)

= ani—00,

whereaq; is a constant independent @fand O (§) — 0 as

8 — 0. The constanta; — 0 as j — oo. Thus with M
processors, we can obtain an effective intensity: #f1
instead ofn, for example. In this case the claim made in
the Introduction is borne out; for arly> 0, we can define
an algorithm (choos@/ and$), such that the probability
that the error exceeds™* converges td.

4 NUMERICAL EXPERIMENTS

In this section we describe the results of some numerical
experiments. The purpose of the experiments is to gain
insight into how well the theoretical limit distribution ap-
proximates the empirical distribution of the error after a
moderate number of iterations.

For the tests we use a standard test function called
Rosenbrock’s saddldt is defined by

d-1

F(x1,...,xq) = Z ((1 — x;)? 4 1000x; 41 — Xiz)z)

i=1

for —2.048 < x; < 2048 1 < i < d; see Moe et all

serve only to guide the searches of the higher-numbered (1981). This function has a long curved valley which is

processors, and their approximations to the global minimum
are insignificant in the limit.

This is our main result. Under the basic assumption
(1), with memory of cardinality we can make the point
process of observations nedraftern observations look as
if we had maderj{,m observations instead uniformly over
B1.

Theorem 1 holds under the sole assumption that

n@= i — 4 5o
asn — oo. To say more about the error we must know
more about the objective functioff. For an example,
assume thatf is twice continuously differentiable at,

with nonsingular matrix of second partial derivativés
Then

A
P (Wm > y) — exp(—y"/?), y>0;
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only slightly decreasing towards the global minimumQof
atx; = 1for 1 <i <d. We modified the algorithm so
that instead of a unit ball, a ball large enough to include
the specified set was used by the first processor.

Figure 1 plots the empirical distribution functions for the
error and the theoretical cumulative distribution function for
the Rosenbrock function witth = 4 and 1,000 independent
replications. Three different experiments were performed,
each withM = 2 processors, and 10, 50, and 100 thousand
observations per processor, respectively. As can be seen,
the empirical distributions have fat tails, and approach the
theoretical CDFL—exp(—x2) as the number of observations
increases.

The explanation for the way the empirical CDFs change
with the number of iterations is as follows. If the first pro-
cessor happens to have made an observation near the global
minimizer, then the second processor will be concentrating
its effort near the minimizer and the limit distribution will be
well-approximated. On the other hand, if the first processor
has not placed an observation near the global minimizer
(an event that has probability converging to 0), then the
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Figure 1: Comparison of Empirical CDFs

second processor will be wasting its effort away from the
minimizer. In short, there is a vanishing probability that the
best observation point is far from¥, but if it is far away,
then it is likely to be very far away.
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