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ABSTRACT This study deals with a discrete simulation

optimization method for designing a complex probabilistic
This paper deals with a discrete simulation optimization discrete event system. An algorithm is proposed, which
method for designing a complex probabilistic discrete searches the effective and reliable alternatives satisfying
event system. The proposed algorithm in this paper the target values of the system to be designed through a
searches the effective and reliable alternatives satisfying single run in a relatively short time. It tries to estimate an
the target values of the system to be designed through aautoregressive model, and construct mean and confidence
single run in a relatively short time period. It tries to interval for evaluating correctly the objective function
estimate an autoregressive model, and construct mean andbtained by small amount of output data.
confidence interval for evaluating correctly the objective In this section we discussed general problems of
function obtained by small amount of output data. The simulation optimization method, and literature reviews on
experimental results using the proposed method are alsosimulation optimization method is explained in section 2.

shown. In section 3, we describe an algorithm to be proposed for
searching a feasible solution including the basic concept of
1 INTRODUCTION the proposed algorithm, the detailed algorithm to adjust the

value of decision variables, and the stopping conditions of
The modern systems become larger and more complex.the proposed algorithm. In section 4, in order to test
These systems, therefore, could not be solved by simpleavailability and efficiency of the proposed algorithm, we
analytical methods or mathematical methods, which experiment and analyze using &S)inventory model.
require the theoretical assumptions.  We must solve the Finally, the summaries of researches are described in
problems by using discrete event simulation as a designsection 5.
tool of a complex and stochastic discrete event system.

The difficulties and problems in using simulation 2 LITERATURE REVIEW

optimization method can be summaried as follows. First,
the values of object functions and constraints to evaluate Simulation optimization problems have been discussed by
performance measures of a system could not be obtainedGlynn (1986), Meketon (1987), Jacobson and Schruben
by simple calculation of known functions except (1989), Safizadeh (1990), Ho and Cao (1983), Rubinstein
simulation run. Second, because the results of simulationand Shapiro (1993), and etc. The methods using Finite
run include stochastic elements in a stochastic discrete Differences which is broadly used in optimization have
event system, an efficient statistical analysis and a disadvantage such that at leastl number of simulation
stochastic optimization approach are required. Third, when runs is necessary to estimate gradient of a given problem
the type of a simulation is a steady-state simulation, to with n number of parameters (Heidergott 1995). Therefore,
calculate performance measure of an alternative design in ain order to solve the problem of multiple replication runs in
steady state we need so many output data and expensivesimulation optimization, we need to develop simulation
calculation costs when the output data have the propertiesoptimization method using a single run. For the single run
of autocorrelation. Fourth, if the search space of the simulation optimization, Perturbation Analysis (Ho and
problem under study is large more calculation costs and Cao 1983) and Score Function (Rubinsten and Shapiro
time is needed. 1993) were developed, but all of them are focused on the
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cases of continuous decision variables and require thesteady state. In Step 2 of the previous Algorithm 3.1, the

theoretical assumptions. value of decision variablex, , is changed with the
For discrete variable simulation optimization, the

methods were studied using simulated annealing i

(Ahmed, Alkhamis, and Hasan 1997, Lee and Iwata Section3.1

1991), stochastic ruler method (Yan and Mukai 1992),

stochastic comparison method (Gong, Ho, and zhai 3.1 Adjustment of Decision Variables

1992), random walk (Andradottir 1996), nested _ ) ) )

partitions method (Shi and Sigurdur  1997), The basic algorithm is explained here to change value of

evolutionary(genetic) algorithm (Pierreval and Tautou decision variable, x;, at each At during simulation

1997), multi-armed bandit method (Barry and Fristedt according to the compared results of objective functions
1985), learning automata (Yakowitz and Lugosi 1990), and target values. The values of objective functions are
and etc. But most of the methods tried to optimize opserved, which are obtained by simulation output and
simulated systems using multiple runs. either a monotonic increasing function or a monotonic
Also, in the optimal design of discrete variable decreasing function. Using the form of given objective
stochastic systems using simulation optimization methods, fynctions in A, [{ f, =c}, {f, >c}, or{f, <c}] and target
the previous researches did not consider the long length of
simulation which must be mentioned, and only focused on

increment ofAx; during simulation using the algorithm in

value, ¢, the value of decision variabjeat timet-1 and

the algorithm of stochastic optimization based on Monte t.X;,., andx,,, the value of objective functiarat timet-1

Carlo simulation. and t, y,, and y, are obtained from simulation.
According to the increasing and decreasing information of

3 ALGORITHMS decision variables, the value of decision variables is

) ) ) . changed withAx; to the direction in which the frequencies
The general process for searching design alternatives in a o .
single run simulation is described in algorithm 3.1. of the accumulative number of none changed decision

variables are the largest.
[Algorithm 3.1] The notations and algorithms for adjusting the values

Step 1: Set objective functionsf,(X ),)decision of decision variables can be described as follows:

variablesx;, j =1...,n, target values 4 and c), x..:  Value of decision variablg, at time .

incremental value of decision variableAx(), and time

interval for evaluating objective functions and adjusting
values of decision variabled\(), and start simulation.

% Value of object functioni, at time.t.

counf: Accumulated number of unchanged

Step 2: During simulation, objective functions with value ofy.
target values(refer to Algorithm 3.2) are compared and the count : Accumulated number of increased value
values of decision variables are adjusted vii. ofy.

Step 3: If the stopping condition of the algorithm is counf : Accumulated number of decreased value

satisfied, then the values of decision variables that have

ggﬁ,?ioTOSt frequently visited are determined as the final a,b: EI)?//\'/er bound and upper bound of
Step 4: Simulation is conducted for verification with variable,].
the obtained solution and enough run length. L.  Set of the decision variables when the
Generally speaking, whem\t are small, objective value of a decision variablex, , is
funct[ons values are frequently evaluated and ther_1 .the increased (decreased), the value of object
algpnthm can fa_ster converge to the _value of decision function, i, is increased (decreased).
variables that satisfy target values. In this case because the - . .
gathered data are small the evaluation errors of objective L7 Set of the decision variables when the
functions are larger than the case of lafije Also much value of decision variable,x,, is
time to evaluate objective functions and adjust the value of decreased (increased) the value of object
decision variables is needed. Thus, an algorithm is function,i, is increased (decreased).
proposed, which effectively estimates the value of Lo - Set of decision variables that are not

objective functions with relatively short time simulation in , o .
included inL™ or L.
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[Algorithm 3.2]

Step O:
(initiali
zation)

Step 1:

Step 2:

Setcount = 0, counf =0, counf =0, for
allx;,j=1...,nand set the value a, and
b, . Setc ande for object functionj. Build
up the list of L', L™, and L.

Go to Step 5 after executing one of the
following steps fox;, j =1,...,n:

1) If x;,,<X;, then go to Step 2.

2) If x;,,>X;, then go to Step 3.

3) If x;,,=X;, then go to Step 4.
According to the object function, only one
of the cases listed below is executed.
(case 1)A ={f =c}

Step 2.1.1: If x 0L’ then go to Step

2.1.3, otherwise move to Step
2.1.2.

Step 2.1.2 |f y, =c, thencounf =
counf + 1.
If y,<candx [ L then
counf = count + 1.
If y,<candx [ L~ then
counf = counf + 1.
If y,>candx [ L then
counf = counf + 1.
If y,>candx [ L~ then
counf = count + 1.

Step 2.1.3: |f y, =c, thencounf =
counf +1.
If y.,<vy,andy, <cthen
counf = count + 1.
If y.,<vy,andy, >cthen
counf = counf + 1.
If vy, >y, andy, <cthen
counf = counf + 1.
If y.,>vy,andy, >cthen
counf = count + 1.

(case 2)A ={f, <c }

Step 2.2.1: If x, O L7 then go to Step

2.2.3, otherwise go to Step
2.2.2.
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Step 3:

Step 2.2.2: |f y, <c, thencounf =
counf + 1.
If y,=candx, [J L then
counf = counf + 1.
If y, 2candx, [ L~ then
count = count + 1.

Step 2.2.3: |f y, <c, thencounf =
counf + 1.
If v, 2y, andy =cthen
counf = counf + 1.
If y,, >V, andy >cthen
count = count + 1.

(case 3)A ={f >c}

Step 2.3.1: |f x L’ then go to Step

2.3.3, otherwise go to Step
2.3.2.

Step 2.3.2: |f y, >cthencounf =
count + 1.
If y, scandx, [ L then
counf = counf + 1.
If y,, scandx, [ L~ then
count = count + 1.

Step 2.3.3: |f y, >cthencounf =
count + 1.
If y.,<y,andy, <cthen
count = count + 1.
If y., >V, andy, <cthen

counf = counf + 1.

According to the object function, only one
of the cases listed below is executed.

(case 1)A ={f =c}
Step 3.1.1: |f x 0L’ then go to Step

3.1.3, otherwise go to Step
3.1.2.
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Step 3.1.2: |f y,, =cthencount =
counf +1.
If y, <candx, O L then
counf = count + 1.
If y, <candx, [ L~ then
count = counf + 1.
If y, >candx, O L then
counf = counf + 1.
If y, >candx, O L then
counf = count + 1.

Step 3.1.3: |f y,, =c thencount =
counf + 1.
If y., <y, andy, <cthen
counf = count + 1.
If y., <y, andy, >cthen
counf = counf + 1.
If y., >V, andy, <cthen
count = counf + 1.
If y,.,>y,andy, >cthen
counf = counf + 1.

(case 2)A ={f <c}

Step 3.2.1: |f x, 0 L° then go to Step

3.2.3, otherwise go to Step
3.2.2.

Step 3.2.2: |f y,, <cthencount =
counf + 1.
If y,2candx, [ L" <c
then count = counf + 1.
If y,2candx, [ L~ <c
then counf = count + 1.
If y,, <y, andy, >cthen
count = counf + 1.

Step 3.2.3: |f y,, <cthencounf =
counf + 1.
If y,., <y, andy, >cthen
counf = count + 1.
If y. >y, andy, =cthen
counf = count + 1.

(case 3)A ={f >c}
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Step 3.3.1: |f x 0L’ then go to Step

3.3.3, otherwise go to Step
3.3.2

Step 3.3.2 |f y, >cthencounf =
count + 1.
If y,<candx [ L" <c
then count = count + 1.
If y,<candx, [ L~ <c
then count = counf + 1.
Step 3.3.3: |f y, >cthencounf =
count + 1.
If vy, <y, andy, <cthen
counf = counf + 1.
If y,.,>y,andy, <cthen
count = count + 1.

Step 4: According to the object function, only one

of the cases listed below is executed.
(case 1)A ={f =c}

Step 4.1.1- 4t |y, -d/< e thencount =
count + 1.
If |y, —¢/>& andx O L

then go to Step 4.1.3,
otherwise go to Step 4.1.2

Step 4.1.2: |f x [ L thencounf =
counf + 1.
If x, O L~ thencount =
count + 1.

Step 4.1.30 count = count + 1 with
probability 0.5 orcount =

counf + 1 with probability
0.5

(case 2)A ={f <c}

Step4.2.1: if x 0L’ then go to Step

4.2.3, otherwise go to Step
4.2.3
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Step 4.2.2: |f y, < cthencounf =
counf +1.
If y, 2candx, L™ then
counf = counf + 1.
If y, 2candx, L~ then
counf = count + 1.
Step 4.2.3: |f y, <cthencounf =
counf +1.
Ify.,<vy,andy, =C
then counf = count’ + 1.
Ify.>y,andy, =
then count = counf + 1.
(case 3)A ={f, >c}
Step 4.3.1: If x 0L’ then go to Step

4.3.3, otherwise go to Step
4.3.2

Step 4.3.2 |f y, >cthencounf =
counf + 1.
If y, <scandx L~
then counf = count’ + 1.
If y, scandx 0L~
then count = counf + 1.
Step 4.3.3: If y, >cthencounf =
counf + 1.
Ify.,<y,andy,<c
then count = counf + 1.
Ify.,>y, andy, <c
then counf = count’ + 1.
Step 5: Forallx;, j=12,...,n,
count = maxfcount,count ,count] ( If

more than one, select randomly)
If count =count then

s = Min[(x,, +AX)),b]
If count =counf then

X

Xj.l+l = max[aJ 7(XJ,I _AXJ )]

3.2 Stopping Algorithm

When the algorithm satisfies the target values the
simulation must be stopped. The algorithm to inspect the
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stopping conditions of the proposed procedure is described
below.

K: The number of recent time intervals to inspect
the stopping conditionX is a constant and
set by userk=1, 2, ..., .

x; : The values of decision variables visited most
frequantly at current timeand withinK time
intervals.

n: The integer value to calculate the

tolerancgx; +nAx;) for allx,,j=12,..,n
for setting stopping conditiong(=0, 1, 2,
.M.

[Algorithm 3.3]
Step 0: Set the integer value &fandn .

Step 1. For allx,, j =1...,n, the folowing Step 1.1
is conducted and if it is satisfied by all
decision variables, then go to Step 2.

(Step 1.1) Using Algorithm 3.1,x; is
obtained and if the all values of decision
variables are included inx; inAxJJ in K
time intervals, then go to Step 2. Otherwise,
continue simulation to time interval

If it is satisfied by the target conditipthen

stop the simulation. Otherwise,
1) If n is 0 then stop the algorithm and the

simulation, and conclude that an alternative,
which satisfies the target value, does not
exist.

2) If n > 0, then changen to
n =max[0,n -1 and continue simulation to
next time intervalt + At .

Step 2:

3.3 Evaluation of Objective Functions

In Algorithm 3.1, whenAt are small, objective functions
values are frequently evaluated and then the algorithm
can faster converge to the value of decision variables that
satisfy target values. In this case because the gathered
data are small the evaluation errors of objective functions
are larger than the case of large. To solve this
problem, we propose the algorithm, which efficiently
estimates objective functions in steady state using the
small data that are obtained by relatively short simulation
run.

Voss, Haddock, and Willemain (1996) propose the
algorithm that obtains efficiently the value of objective
functions in steady state during a short simulation of
transient period using an autoregressive model. Through
experimentation compared with the other methods,
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unweighted batch means (Law and Kelton 1995) and In this paper we use Equation (5) to consider aptness
weighted batch means (Bischak, Kelton, and Pollock and efficiency of future data that are not used.
1993), the method is superior or similar to the other
methods with respect to mean error, root mean square
error, coverage, mean interval length, and etc.

Therefore, in this paper we propose an algorithm to
estimate the value of objective functions with a
relatively short value ofAt based on the method
proposed by Voss, Haddock, and Willemain (1996).
Because the output data obtained during a short transientPaper we setp,,, = 2@o consideip=15(=256) proposed
period strong autocorrelation exists between data, the by Voss, Haddock, and Willemain (1996) gndalue used
output process fits very well the autoregressive model by Bischak, Kelton, and Pollock (1993)'s Weighted Batch

FIC(p) =In{S*(p) +25 v } (5)

In theoretical aspects when we use Batch Means
method, p,., has the value of (batch size —1). But, in this

(Fishman 1978). Means method.
The autoregressive model, AR(with order,p, could i, an estimate of averagegy(®), in steady state is
be expressed by Equation (1) (Fuller 1996). expressed by Equation (6) to consider standard average and
bias correction. The method to obtain average in steady
Y, =@, +§(p‘yl_‘ +e,, t=12,... (1) state is arranged in Algorithm 3.5 ang, is applied to
= Algorithm 3.1, 3.2, and 3.3.
If we assume the average of system responses i(,} iy! - iyﬁ
converges to only one point, the average in steady state, f=vy +2 O=fa’ efaa (6)
u = u(g) , is expressed by Equation (2). ro _ _e
(n-pH-3 00
P -
H(®) =lim E[X ] =@ {1-5 @} " @ [Algorithm 3.5]

Step 1: Calculatep” using Algorithm 3.4.

And the conditional least square estimatedofis obtained Step 2: Calculated using Equation (3).

by Equation (3) (Fuller 1996) and the procedures are Step 3: Calculatgl, using Equation (6).
explained by the Algorithm 3.4.

. 4 EXPERIMENTATION
D=A'Y, €)
An (s,S)inventory control problem (Law and Kelton 1995)
[Algorithm 3.4] was selected to evaluate the developed algorithm.

In this experimentation, firds,S)was set as (40, 60)
and a pilot simulation was conducted with long run of
Step 2: CalculateS*(p ) 0< p< p,,, 10,000 months. The obtained average total cost is 125.74.

) Using the obtained results it was tested to see if the final
Step 3: Calculate FIC(p)O< P< P, solution could be found near to the obtained solution with
Step 4: Select order,p” minimizing FIC(). changingAt .
The mathematical model of the explaindd,S)
In this paper we use Yule-Walker method that the inventory control system could be expressed as

variance of ®@ is minimized by the experimentation of
Broerson and Wensink (1993), and the formula is expressed  arg {E[f(X)] <c}
by Equation (4).

Step 1: Select the maximum valuey,,, of p.

where
1 n p
S*(p) = = 2 A Ma-v.) E[ f (X)]: Average inventory cost per unit time
1. . A: {E[f(X)] =c} =
In{S?(p)} = InB— > A H+ > In(l-v)) (4) {Average cost per unit time125.74}
= o= [x,%,]: [s, Reorder point, S, Reorder quantity].
_ n-i Dl
"~ n(n+2) n The lower bound and the upper bound of reorder point,

s, was set as (10, 50) and the lower bound and the upper
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bound of quantityS, as (20, 70). Simulation was started 5 CONCLUSIONS

with the initial value ofs,S)as (10, 30). Also, the stopping

condition, K, was set as 10 and the incremental value of A discrete simulation optimization method for designing a

decision variablesis and AS, as 1. complex probabilistic discrete event system was proposed.
The Figure 1 shows the results of the proposed The proposed algorithm searches the effective and reliable

algorithm when theAt are 10, 30, and 100. Also, we know alternatives satisfying the target values of the system to be

the total cost converges to target value 127. The Table 1designed through a single run in a relatively short time

shows the final results ¢§,S)and average inventory costs  period. Using the proposed algorithm, decision variables

obtained when simulation stops with differekit. could be obtained the final values satisfying target level
In the Table 1 whenAt is 50 we observe that the With a single run and a small output data. .

average inventory cost converge to 125.20 near to 125.74  But, because the size okt depends on the given

which is target value, and the obtained value, (39, 59), of problem and characteristics of decision variables and it

decision variables(s,S)is approximately near to (40, 60). af'fect. on thg final result, selection of the suitable value

When At is 100 we know thafs,S)is determined to be ~ OfAt is very important.

(39, 59) and the obtained average total cost, 125.62, is

approximately near to 125.74.
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Figure 1: Average Total Cost At in the(s,S)Inventory System
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