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ABSTRACT

In this paper, we investigate the dynamic behavior of 
simple service-oriented supply chain in the presence 
non-stationary demand using simulation. The supply cha
contains four stages in series. Each stage holds no finish
goods inventory. Rather, the order backlog can only b
managed by adjusting capacity.  These conditions refle
the reality of many service (and custom manufacturing
supply chains. The simulation model is used to compa
various capacity management strategies. Measures 
performance include application completion rate, backlo
levels, and total cumulative costs.

1 INTRODUCTION

One of the great strengths of simulation modeling is th
ability to model and analyze the dynamical behavior of 
system. This makes simulation an ideal tool for analyzin
supply chains because supply chains can exhibit ve
complex dynamical behavior. For example, simulation ha
been used to demonstrate and study the bullwhip effe
(i.e., the amplification of demand variation as deman
signals move up the supply chain from the end custome
see Forrester 1958 and Lee et al. 1997) in the MIT Be
Distribution Game (Simchi-Levi et al. 1999). The Bee
Distribution Game involves the management of finishe
goods inventory of a single product in a serial supply cha
(Senge 1990, Sterman, 1989a,b).

In this paper, we develop a simulation model to
analyze the dynamic behavior of a simple service-oriente
supply using simulation. The supply chain contains fou
stages in series. Each stage holds no finished goo
inventory. Rather, the order backlog can only be manag
by adjusting capacity.  These conditions reflect the reali
of many service (and custom manufacturing) supp
chains. We use a simulation model to develop improve
control strategies for dynamically managing capacity an
backlog in the presence of non-stationary demand. 
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particular, we will investigate the use of local contro
strategies such as reducing the average flow time, set
the desired target capacity, and reducing capac
adjustment time at each stage. Additionally, we consid
the impact of a more global strategy in which end custom
demand is shared with all stages in the supply cha
Measures of performance include application completi
rate, backlog levels, and total cumulative costs.

The remainder of the paper is organized in th
following manner. Section 2 contains a description of t
simulation model. In section 3, we present an analysis
various capacity management strategies. Section 4 cont
some concluding remarks and future research directions

2 MODEL DESCRIPTION

Figure 1 contains a block diagram of our supply cha
simulation model developed in the Vensim© Simulatio
Package (Ventana Systems Inc., 1998). The simulation
designed to model a simplified mortgage approval proce
Each application passes through four stages: init
processing (that is filling out the application with a loa
officer), credit checking (confirmation of employment an
review of credit history), surveying (a survey of th
proposed property to check for its value, as well as a
infringements upon zoning laws or neighboring propertie
and title checking (ensuring that the title to the property
uncontested and without liens).

We recognize that the simulation model is a high
simplified version of reality. Real mortgage servic
processes would contain more than four stages. 
example, there are additional stages to perform prope
inspection and insurance endorsement. Additionally, so
of the stages depicted in Figure 1 would not be aligned i
series but would be performed in parallel. For examp
credit checks and title searches are often conducted
parallel by separate organizations. We keep the mo
simple in order to focus on the fundamental dynamics 
service supply chain management with as fe



Anderson and Morrice

t

o

t

f
r

e

se
ky.
is
pite
oes
the
r
m
y a
 its
s
w
es’
ip
ply
tly
no
in
er,
ing

 it

he
fer
g,

t
rts
er

 per
r
a

to
 to

e
or
ch

lay
ch

see
ge

nge
he
complications as possible. Including more stages adds lit
to our current analysis.

Mechanically, all the stages operate in an identica
manner, so we will describe here only the survey section 
the model as an example of each stage’s processing.

Processing
Backlogapplication

start rate

Title Check
Backlog

title checking

Survey Backlog

surveying

Processing
Capacity

Credit
Check

Capacity

Survey
Capacity

Title Check
Capacity

Credit Check
Backlog

Completed
Applications

initial
processing

credit
checking

Target
Processing
Capacity

Target Credit
Check

Capacity

Target Survey
Capacity

Target Title
Check

Capacity

Figure 1: Block Diagram of The Mortgage Service
Simulation

As each application is checked for the credi
worthiness of its applicant (credit checking in the diagram),
the application flows from the backlog of credit checks
(Credit Check Backlog) to join the backlog of surveys
(Survey Backlog).  Each week, based on the backlog o
surveys, a target capacity is set by deciding to hire or fi
employees: in this case, surveyors.  However, it takes tim
to actually find, interview, and hire or, conversely, to give
notice and fire employees; so the actual Survey Capacity
will lag the Target Survey Capacity by an average of one
month.  Those surveyors currently in the employ of th
survey company will then carry out as many surveys a
they can over the next week.  Finally, as each application
survey is completed (surveying), the application will then
leave the Survey Backlog to join the next backlog
downstream—in this case, the Title Check Backlog.  Each
of the other four stages functions analogously.
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In real life, of course, the purpose of each of the
checks is to eliminate those applications that are too ris
However, we will assume that each application 
ultimately approved.  This is reasonable because, des
the fact that a random survival rate for each stage d
indeed complicate real-life management of the chain, 
primary dynamic control problems derive from othe
sources.  In particular, the largest problem results fro
each stage of the process generally being managed b
separate company.  Each of these companies controls
own individual capacity; however, it typically only sees it
own backlog when making the decision, not the ne
application rate (i.e., end user demand) or other stag
backlogs.  This creates something akin to the bullwh
effect (Lee et al. 1997) seen in the physical goods sup
chains, albeit here the inventories controlled are stric
backlogs.  Also, as in many real life services, there is 
way for a stage to stockpile finished goods inventory 
advance as a buffer against fluctuating demand.  Rath
each stage must manage its backlog strictly by manag
the its capacity size, that is the number of workers
employs.

Mathematically, the structure for each stage of t
process is as follows (Let stages 1, 2, 3, and 4 re
respectively to the application processing, credit checkin
surveying, and title checking stages):

titititi rrBB ,,1,1, −+= −+ (1)

),min( ,1,,, titititi rBCr −+= (2)

where B(i,t), C(i,t), and r(i,t) refer respectively to the
backlog, the capacity, and the completion rate at stage i on
day t.  Note that r(0, t) represents new application star
rate.  In the simulation, this variable will remain at 20 sta
per day until after week 5, when it jumps to 24 starts p
day.  The number of starts then remains constant at 24
day until the end of the simulation in week 50.  Fo
simplicity, we will assume that each employee has 
productivity of one application per day. This allows us 
constrain the completion rate of applications at any stage
the minimum of the backlog plus any inflow from th
previous stage (if material is constraining processing) 
the number of employees (the more typical case).  Ea
stage’s backlog begins the simulation at λ[r(i,0)]  where λ
is a constant representing the average nominal de
required to complete a backlogged application.  Ea
stage’s capacity begins at r(i,0) so that the backlogging and
completion rates at each stage are in balance (
Equations 3 and 4 below).  Hence, if there were no chan
in the application start rate, there would never be a cha
in any backlog, capacity, or completion rate throughout t
service chain.
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At the beginning of each week (i.e. every 5 busine
days), each stage can change its target capacity by deci
to hire more or fewer employees.  However, it takes time
advertise for, interview, and hire employees; so the rate
capacity change is given in Equation 3.

)(
1

,
*
,,1, titititi CCCC −+=+ τ

(3)

The target capacity C*(i, t) is restricted to be
nonnegative.  For purposes of this simulation, τ, the
capacity adjustment time, is set to one month, that is 
business days (which is, in reality, a bit optimistic if larg
hiring rates are required).  In essence, each stage’s capa
will move one twentieth of the gap from its current valu
toward its target each day.  On the average in a station
system, this will translate into an average 20 business-d
lag in hiring (or firing) employees.

The target capacity decision will be made as follows:

λ
t,i*

t,i

B
C =  if ( t modulo 5) = 0 (4)

*
t,i

*
t,i CC 1−=  otherwise.

Thus, each week the target capacity for each stage will
set directly proportional to the stage’s current backlo
B(i,t) and inversely proportional to the nominal servic
delay time λ. This is not meant to be an optimal policy in
any sense; however, it seems to reflect reasonably w
how real players make decisions in capacity managem
simulations (Sterman 1989a).  Thus, if the application st
rate is unvarying, the long-run average application w
take λ weeks to complete per stage.  One can of cou
vary λ either by stage or over time to make the simulatio
more complex.

Based on Equation 4, each stage operat
autonomously and makes its capacity decisions based
its own backlog. As an alternative, we propose anoth
strategy called the new starts information strategy. In th
strategy, each stage makes capacity decisions based o
own backlog and the new application rate. In other word
each stage gains more visibility by being able to obser
end user demand in each time period. For those stage
which the computer makes the target capacity decisio
Equation 4 changes to:

λ
αα t,i*

t,i

B
)()t,(rC −+= 10 , if ( t modulo 5) = 0 (5)

*
t,i

*
t,i CC 1−= , otherwise

where 0 ≤ α ≤ 1.The degree to which each stage in th
chain bases its target capacity on the new application r
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is determined by the magnitude of α . In this case, the
same value for α is used for all stages that set targe
capacity using Equation 5. A more complicated version 
the simulation could be designed to permit a different α for
each stage.

We include the following costs for the mortgag
service simulation. Each employee will cost $2000 to h
or terminate and $1000 per week to employ (or $200 p
application processed when fully utilized). Eac
backlogged application costs $200 per week in poten
customer alienation. The costs will be used to compa
different supply chain management strategies.

3 ANALYSIS

We simulate the mortgage service applications proc
using the model depicted in Figure 1 for 500 days (or 1
five day weeks). We analyze several scenarios defined
the parameters λ, τ, and α. For each scenario, we examin
total cumulative cost, and the dynamic behavior 
applications completed per day in each stage a
application backlog in each stage. For all scenarios 
system is initialized in equilibrium, i.e., each stage has t
capacity to process 20 applications per day and contain
backlog equal to 20λ.

We separate our analysis into two main capac
management strategies: capacity management using l
backlog at each stage (i.e., Equations (1) through (4)), a
capacity management based on the new application 
and local backlog (i.e., Equations (1) through (3) an
Equation (5)).

3.1 Local Backlog Strategy

Figures 2 and 3 contain results for daily applicatio
completions and backlog for all stages in the mortga
service supply chain over a 500-day period. (Note: Com
Rate stands for completion rate and App Start Rate sta
for new applications start rate; P, C, S, and T stands 
Processing, Credit Check, Surveying, and Title Chec
The graphs in Figures 2 and 3 are generated by simula
Equations (1) through (4) for managing capacity 
backlog with λ = 5 and τ = 20, i.e., capacity decisions are
completely based on the local backlog at each stage. No
the erratic behavior that results in all stages of the sup
chain resulting from a change in the new application ra
from 20 to 24 after week five. Each stage transfers 
variation to subsequent stages. Consequently, dem
variation is magnified as it moves through the stages of 
supply chain. This is an illustration of something akin 
the bullwhip effect in managing backlog with capacit
adjustments. The total cumulative costs are $20,405,338
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Figure 2: Completions per Day for λ = 5 and τ = 20
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Figure 3: Backlog for λ = 5 and τ = 20

Figures 4 and 5 contain applications completed p
day and application backlog for all stages when λ = 10 and
745
r

τ = 20. With more backlog at each station, the tota
cumulative costs in the supply chain increases t
$28,527,483 due to the increase in backlog costs. Howeve
cost does not tell the whole story. Comparing Figures 2 an
3 with Figures 4 and 5, respectively, reveals that the long
processing delay leads to less erratic changes in th
performance measures. If fact, under a different costin
structure, either increased capacity adjustment costs 
reduced backlog costs, a different ranking of the two
scenarios based on cost can result. For example, if backl
costs drop to zero, the total cumulative costs for th
scenario with λ = 5 and τ = 20 is 10,322,990 and with λ =
10 and τ = 20 is $9,507,091.

The above result is somewhat surprising because 
differs from that seen in the classic bullwhip effect in
which shorter lead times generally reduce oscillatory
behavior (Anderson and Fine, 1998). However, a
Anderson and Morrice (1999) point out, the behavior is 
natural consequence of the shorter lead-time coupled wi
the relatively long capacity adjustment lag time. When th
two are more closely matched less erratic behavior resul
As further support, consider the results in Figures 6 and 
for the case when λ = 5 and τ = 10 (i.e., compare Figures 2
and 3 with Figures 6 and 7, respectively).
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Figure 4: Completions per Day for λ = 10 and τ = 20
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Figure 5: Backlog for λ = 10 and τ = 20
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Figure 6: Completions per Day for λ = 5 and τ = 10
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Figure 7: Backlog for λ = 5 and τ = 10

3.1 New Starts Information Strategy

Under this strategy, Equation (5) is used to establish targ
capacity rather than Equation (4). Figures 8 and 9 conta
results for the case when  λ = 5, τ = 20, and α = 0.5.
Including new starts information into the target capacit
decisions improves both performance measures 
smoothing out oscillations (compare Figures 2 and 3 wi
Figures 8 and 9, respectively). Furthermore it also reduc
total cumulative cost to $19,111,716.
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Figure 8: Completions per Day for λ = 5, τ = 20, α = 0.5
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Figure 9: Backlog for λ = 5, τ = 20, α = 0.5

Under the current costing structure, Figure 10 indicat
how much new starts information to include (i.e., how t
select α) in setting target capacity if the objective is to
minimize total cumulative costs. The current cost structu
747
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dictates that it would be optimal to set α = 1 and use onl
new starts information for setting the target capacity.
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Figure 10: Cumulative Cost versus α for λ = 5, τ = 20
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Once again total cumulative costs do not provide 
complete picture. Figure 11 indicates that with α = 1 the
erratic oscillations in backlog are eliminated. However, th
backlog remains unbalanced with the first stage holding th
most and never being able to work it off after the change 
demand. For the organization controlling the first stage o
the supply chain, this may be considered an inequitab
solution to adjusting to the changes in demand. Perhaps 
costing structure could be revised to more accurate
reflect the costs associated with inequitable solutions in th
supply chain.

4 CONCLUSION

We have presented a simple framework in which to stud
capacity management strategies in a serial supply cha
We have demonstrated that even this simple supply cha
model exhibits fairly complex dynamic behavior.
Therefore, simulation is an excellent tool for conducting
this type of analysis.

As part of future research, we will investigate the
impact of uncertainty in demand and process yield
Additionally, we will embellish the current model to
include such things as reentrant flow and parallel activitie
New management strategies and decision rules will b
investigated such as cooperation and coordination betwe
the various stages.  Finally, we will explore differen
costing structures in order to represent all the cos
involved more accurately.
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