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ABSTRACT

Variability in any manufacturing process negatively
impacts performance since it leads to system disruptio
Semiconductor manufacturing, with its characteristic re
entrant flow, typically experiences extreme variability.
The Automated Material Handling System (AMHS) in a
semiconductor fab is subject to this variability and yet mus
still complete deliveries within a specified time limit.
When designing the AMHS the variability used in the
simulation model will have a direct impact on the
equipment set selected.  Sizing a system based on t
average case scenario creates a system incapable 
meeting the extreme conditions often encountered i
reality.  The challenge for the modeler of a semiconducto
fab is to accurately represent this variability.  This pape
discusses how the hyperexponential distribution mor
accurately represents the variability in semiconductor fab
than the typically used exponential distribution.

1 INTRODUCTION

One of the characteristics of the semiconductor industry 
the complex re-entrant flow of wafers throughout the fab
and the number of process steps required in the producti
of an Integrated Circuit (IC).  These conditions cause hig
variability in Inter Arrival Times (IAT) between processes.
Due to the high cost of semiconductor processing tools, 
is important to maintain high utilization levels for these
tools.  One way of maintaining high tool utilization is to
have an efficient AMHS that will insure that the right lot is
at the place at the right time.

The AMHS must deliver product within a defined time
window.  If the lot misses this time window, the tool would
starve for material, resulting in lower utilization and hence
lower profit margin.  The challenge for the modeler is to
design an AMHS that can hit the time window no matte
the level of congestion in the real fab.
774
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When planning and designing an Automated Material
Handling System (AMHS) for a semiconductor facility,
advanced modeling tools are very useful.  One of the mos
useful tools is discrete event simulation.  However, in
simulation as in all types of modeling, good input data is
required for the model to produce valid results.  An
important realization for a model builder is that the output
from a model is only as accurate as the input data used 
drive it.

One of the most critical input parameters to a
simulation model is the distribution used to model entity
creations.  It has been hypothesized that the exponenti
distribution provides the proper amount of variability
common to most types of arrival processes. In
semiconductor fabs this is not the case.  Arrivals generate
from an exponential distribution exhibit the same average
characteristics, but have significantly less variability than
actual processes.

For this reason, modelers typically increase the mea
used with the exponential distribution to provide a safety
factor.  This has the effect of increasing bandwidth but no
really in a realistic statistical way (upper limit is higher but
average number of arrivals is also higher).  Using this
safety factor might result in an oversized design, and a
pessimistic performance prediction.  On the other hand, i
this safety factor was not introduced, the design could hav
been undersized and optimistic predictions would have
been made.  The criticality of a valid and accurate AMHS
design is evident when knowing that the cost of a complet
AMHS solution for a semiconductor fab (300mm) will be
close to $100 million.  When planning and designing an
AMHS it is essential to use representative distributions and
parameters for all of the processes.  If the data an
distributions used in the modeling effort are inaccurate, the
installed system will not perform as predicted in the model.
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2 PROBLEM STATEMENT

To validate and further improve the accuracy of 
simulation modeling of real fab AMHS, data have be
collected and analyzed (see Figure 1).  Comparing 
number of requested moves per hour from the real fab 
the simulated data based on exponential Time Betw
Creation (TBC) (see Figure 2) illustrates differences.  T
real fab move requests clearly exhibit much high
variability.

Table 1 shows how the simulated system was abl
replicate an average number of moves/hr very close to
observed in the real fab (78.4 moves/hr in the actual fab
79.1 moves/hr in the model).  However, the level 
variation is quite different (standard deviation of 14.37
the actual fab vs. 8.42 in the model).  Some of the rea
for the high variability are due to the surges in t
movement rate caused by operator shift changes 
batching of lots.  It was concluded that the variability in 
modeling stage must be increased to map the real
environment.

Figure 1: Hourly Moves Performed in Real Fab

Figure 2: Hourly Moves Obtained Using Exponential TB
e
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Table 1: Actual vs. Simulated Moves/Hr and Standa
Deviation

Actual Exponential
Average Moves/Hour 78.04 79.10
St. Dev. Moves/Hour 14.37 8.42

Using the exponential distribution to model the TBC
of requests of lots in a semiconductor facility does n
induce the correct amount of variability.  One of th
alternatives used in the analysis of simulation models h
been the application of safety factors to account for a
variations in the system not originally considered.  The
safety factors have a big impact on the sizing of th
AMHS, and can be hard to justify since these might res
in an oversized design.  Figure 3 below shows a sam
cumulative delivery time chart for systems run with an
without safety factors.  It can be seen that the performan
is seriously impacted by the addition of the safety factor.

Cumulative Delivery Time
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Figure 3: Performance Measure of Simulated Data

Another approach to increase the variability has be
to induce a surge in the movement rate.  These surges
induced with regular time intervals, representing surg
that might occur due to shift changes.  Again, th
variability was not representative of what was seen fro
the actual data.  In the actual data, no pattern due to s
surges was found.

Other avenues that allow a better representation of t
real variability occurring in the fab had to be found.

3 THE SIMULATION MODEL

This study is concerned with evaluation of differen
distributions with respect to how they affect the AMHS
performance and how the simulation results match t
actual AMHS performance in the fab.  An accurat
estimate can be obtained only if the simulation of th
5



Comparison of the Exponential a

n
i
e
o
v
r
n
a
v
o

a
n
v

a

g
t

e

i
e

n

th
w
ly
th

r
l

rs

e

h

e

s

f

e

l
e
s

o
.
s.
f

d

AMHS is an accurate reflection of the actual system.  F
this reason, PRI Automation created an accurate AutoM
(Phillips 1998) model of their AeroTrakTM interbay
delivery system (Colvin and Mackulak 1997).

PRI Automation's AMHS consists of independe
vehicles that travel on a track suspended from the ceil
of the fab.  The simulation model exactly mimics th
control logic software used to control the movement 
these vehicles.  In this simulator, the requests for mo
are created at every stocker and a destination stocke
given for the move.  In order to simulate the moveme
between each stocker pair, random samples are gener
from an exponential distribution.  Previous studies ha
shown that the distribution used for generating these m
requests have a large impact on simulated performan
(Wu et al. 1999)

3.1 Evaluation of Distributions

A special purpose simulator was created to evalu
different types of distributions for generating moveme
requests.  This simulation was built to model the mo
request pattern that is created in the AeroTrakTM simulator,
and to find a distribution that more closely resembles f
variability.

A hyperexponential distribution is a weighted avera
of two or more exponential distributions with differen
mean values (Gross et al. 1985).  The probability dens
function (pdf) for the hyperexponential distribution is th
following:
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One of the characteristics of the hyperexponent
distribution is that it has higher variability than th
exponential distribution.  It has an expectation
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and hence its coefficient of variation (C.V.) is larger tha
1.  C.V. is an essential measure of variability, and 
defined as standard deviation divided by the average (σ /
µ).  This non-dimensional ratio allows for a consiste
comparison among different types of distributions.

In an attempt to mimic the variability associated wi
actual fab move requirements, a hyperexponential of t
weighted exponential distributions was examined. Initial
50% of the creations were made with a lower mean for 
77
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TBC and 50% of the creations were made with a highe
mean for the TBC than the mean used in the origina
exponential distribution.  This split results in an
exponential pdf with one mean 50% of the time and
another mean in the remaining 50%.  In essence, numbe
are drawn from different exponential distributions.  In this
case there are two brackets k=2 (with a 50/50 split), but th
number of brackets could be higher if additional variability
is needed.  Additionally, the percentages drawn from eac
distribution can be weighted as described.

Table 2: Inputs and Outputs from the Special Purpos
Simulator

Theoretical Mean Multiplier 1 Multiplier 2 Average St.Dev C.V.
Exponential 10 1.00 1.00 9.98 10.02 1.00
Hyper 0.50 10 0.50 1.50 10.00 10.26 1.03
Hyper 0.10 10 0.10 1.90 10.02 13.17 1.31
Hyper 0.05 10 0.05 1.95 10.02 14.85 1.48
Hyper 0.01 10 0.01 1.99 10.03 16.74 1.67

Simulator Input Simulator Output

By varying the mean values and ratios, different level
of variability can be obtained.  By changing the multipliers
the variability can be expanded until the desired level o
variability is reached.  Table 2 above illustrates this
concept and how the C.V. increases when changing th
multipliers.  Figure 4 below shows the cumulative TBC of
the exponential distribution and the hyperexponentia
distribution with different means.  It can be seen that th
hyperexponential is a bimodal distribution that introduce
more variability than the exponential.

Figure 4: Cumulative Time Between Creation for the
Tested Distributions

3.2 Matching Simulation Output with Real Fab Data

To match the simulation output with actual data from the
fab, the means of the hyperexponential were varied t
obtain a movement pattern similar to the one in the fab
Table 3 below shows the results obtained from these run
It can be seen that using the two multipliers with values o
0.03 and 1.97 will result in the most similar C.V. for the
moves per hour.  Using these multipliers also presente
6
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similar delivery time statistics for the simulated versus the
actual data.  With this increased confidence in the
simulation model, future modeling of potential expansions
or proposed changes of this AMHS will be done using
these multipliers.

Table 3: Simulation Results from Effort to Match the
Actual Variability

Actual Exponential Hyper 0.05 Hyper 0.04 Hyper 0.03 Hyper 0.02 Hyper 0.01
Average Moves/Hour 78.04 79.10 78.08 77.42 78.12 79.16 78.32
St Dev Moves/Hour 14.37 8.42 13.18 13.53 14.32 14.41 13.88
C.V. Moves/Hour 0.184 0.106 0.169 0.175 0.183 0.182 0.177
Average Delivery Time 5.99 4.92 5.82 5.86 6.03 6.45 6.69
St Dev Delivery Time 2.49 1.59 2.36 2.43 2.63 2.92 2.91

Figure 5 shows the hourly move rates performed by
the AMHS in the simulation model.  Comparing this chart
to the ones in the introduction, it is easy to see that the
variation is much higher.

Hyper exponential, 0.03
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Figure 5: Graph Showing the Hourly Movement Pattern

Further analysis showed that increasing the mean o
TBC with a safety factor resulted in an oversized design.
Additionally, the predicted performances were much worse
than what was seen in the fab.

3.3 Comparison of the Effect of Hyperexponential
Versus Other Distribution Types

A previous study (Wu et al. 1999) showed that using
different distributions for generation of movement rates
results in a significant difference in the simulated
performance output.  Previously, distributions with the
following characteristics were evaluated:

Constant distribution with C.V. = 0.0
Normal distribution with C.V. = 0.5 when σ = 0.5µ
Exponential distribution with C.V. = 1.0

A hyperexponential distribution with C.V. = 1.6 was
simulated using the same AMHS layout.  The delivery time
distribution is shown in Figure 6, and it can be seen that the
777
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distribution has a longer tail than the other distributions
This is caused by the large variability in the movemen
rates, which results in a large system surge and subsequ
delayed delivery times.  A similar analysis was performed
using other AMHS systems, and the same genera
performance characteristic is obtained.

Cumulative Delivery Time
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Figure 6: Comparison of System Performance with
Different Input Distributions

4 CONCLUSIONS

By evaluating different distributions for lot creations, it has
been shown that the hyperexponential distribution induce
more variability than the commonly used exponentia
distribution.  The level of variability that the
hyperexponential creates can be modified to accomplis
the level of variability desired by the modeler.  This feature
has successfully been utilized to match simulation outpu
with AMHS performance measures collected from a fab
Additionally, by using the hyperexponential, the necessity
of using a safety factor has been eliminated.

Future work in this area will be to compare simulation
results with actual data from other fabs.  A collection of
multipliers for use in the hyperexponential will be used to
try to find a heuristic for appropriate use of
hyperexponential distribution in the design process.
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