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ABSTRACT

The Linear Move and Exchange Move Optimization (LE
is an algorithm based on a simulated annealing algor
(SA), a relatively recent algorithm for solving ha
combinatorial optimization problems. The LEO algorith
was successfully applied to a facility layout problem
scheduling problem and a line balancing problem. In 
paper we will try to apply the LEO algorithm to th
problem of optimizing a manufacturing simulation mod
based on a Steelworks Plant. This paper also demons
the effectiveness and versatility of this algorithm. W
compare the search effort of this algorithm with a Gen
Algorithm (GA) implementation of the same problem.

1 INTRODUCTION

There are a number of characteristics that make simul
a powerful tool, considered as one of the most u
techniques in OR. Firstly, its inherent ability to evalu
complex systems with a large number of variables 
interactions for which there is no analytic solutio
Secondly, simulation can model the dynamic a
stochastic aspects of systems, generating more pr
results when compared with static and determini
spreadsheet calculations. It is also considered as a to
answer “What if” questions. Simulation itself is a solut
evaluator technique, not a solution generator techn
(Harrell and Tumay 1994). This scenario could be chan
with the aid of optimization procedures. In this ca
simulation could answer not only “What if” questions b
also answers “How to” questions (Azadivar 199
providing with the best set of input variables that maxim
or minimize some performance measure(s) (based on
modeling objectives).

According to Stuckman et al. (1991), simulationi
can be classified into 3 categories with regards to 
optimization of quantitative variables: the first categ
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tend to use the "trial and error" method, varying the input
variables in order to find which set gives the best
performance. The second category tends to systematicall
vary the input variables, to see their effects on the outpu
variables. The third category will apply an automated
simulation optimization approach. In the paper we are
concentrating on the last category. That is, an automate
optimization approach.

The rest of this paper is organized as follows. In
section 2 we present a brief review of simulation
optimization. In Section 3, we describe LEO algorithm that
is based on simulated annealing, developed to solve har
combinatorial optimization problems. In Section 4 we
present the simulation model adopted for this study. In
section 5 we report on the implementation of the LEO
algorithm to the Steelworks simulation problem and show
its results. Finally, section 6 draws conclusions.

2 BRIEF REVIEW OF A SIMULATION
OPTIMIZATION PROBLEM

A simulation optimization problem could simply be
defined as an optimization problem where the objective
function, constraints or both are responses that can only b
evaluated by computer simulation (Azadivar 1992). In
these cases suppose a simulation model M, has n input
variables (x1, x2,….xn) and m output variables (y1, y2, … ym).
The objective of the Simulation Optimization is to find the
optimum values (x1

*, x2
*…xn

*) for the input variables (x1,
x2,….xn) that minimizes or maximizes the output
variable(s). In order to solve a simulation optimization
problem both the operational simulation model (i.e.
simulation model implemented on the computer) and an
optimization method or procedure are needed. Figure 1
depicts the interrelationship between the simulation mode
and the optimization procedure, where output from the
simulation model is the input to the optimization
procedure.
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Feedback Information

Simulation
Model (M)

Optimisation
Procedure (P)

Figure 1: Relationship Between Simulation Model (M
And Optimization Procedure (P)

We can classify simulation optimization problem
regarding their input variables (1), output variables (2),
by their Optimization Procedure (3). Regarding 1, we c
have both quantitative variables and qualitative variab
regarding 2 we can have a single objective simula
optimization problems (if there is only one output variab
or multi-objective problems (for optimizing multipl
output variables). The most reported optimization meth
or procedures reported in the literature could be classi
basically into four categories: Gradient based sea
Stochastic Approximations, Response Surfa
Methodology and Heuristic Search Methods. The last 
has been widely applied because of its ability to solve h
combinatorial optimization problems (including simulatio
optimization).

There are many articles in the literature regarding m
known heuristic search methods. Here we give some: T
Search (TS) (Glover 1990); Genetic Algorithm (GA
(Goldberg 1989); and Simulated Annealing (S
(Kirkpatrick 1983). GA application to simulation
optimization problems is reviewed by Tompkins a
Azadivar (1995). A comparison of SA and GA was ma
by Stuckman et al. (1991), with respects to simulat
optimization problems. Both Lee and Iawate (1991) a
Manz et al. (1989) presented an application to a simula
optimization problem using a SA algorithm.

Meketon (1987), Azadivar (1992), Fu (1994) a
Carson and Maria (1997) survey this issue. The last ma
also a review of some simulation optimization applicatio
and present some commercial software available.

3 OPTIMIZATION PROCEDURE

3.1 Simulated Annealing

Since the LEO algorithm is based on a Simulated annea
algorithm, a brief explanation of this is given in th
section. Simulated Annealing is a method based on Mo
Carlo simulation, which solves difficult combinatoria
optimization problems. The name comes from the anal
to the behavior of physical systems by melting a substa
and lowering its temperature slowly until it reach
freezing point (physical annealing). Simulated annea
was first used for optimization by Kirkpatrick et al. (1983

Suppose that there is a solution space S (the set of all
solutions) and an objective function (C) (real function
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defined on members of S). The purpose is to find a solution
(or state), i ∈ S that minimizes C over S. SA makes use of
an iterative improvement procedure which is determine
by a neighborhood generation. So starting with an initia
state, a neighbor state is generated, and the algorith
accepts or rejects this based on a certain criterion. In mo
cases, this acceptance is decided stochastically with t

probability of e-δ/T (Metropolis criterion), where δ is the
difference in costs between the current state and i
neighbor, and T is the current temperature (control
parameter). This is a mechanism for avoiding bein
trapped in local optima. Note that higher the temperatur
the higher will be the probability of uphill moves (moves
that “worsen” the objective function).

Some choices must be made for any implementation 
SA, which determines the cooling schedule. This consis
in finding basically the initial value of temperature To, the

temperature function which determines how the
temperature is lowered, the number of iterations N (Epoch
length) to be performed at each temperature or ea
“epoch” and the stopping criterion to terminate the method
A geometric temperature function is generally used, that i
T*(t+1) = R*T(t) where R is a constant called the cooling
ratio (0<R<1). N is also a constant called “Epoch Length”
which represents the number of interactions made at ea
temperature level. The algorithm proceeds until th
temperature reaches the final temperature Tf, which

corresponds in the analogy, to the frozen temperatur
Johnson (1989) has pointed out that the temperature va
has a direct relationship with the neighborhood acceptan
rate. Hence the initial and final temperature may be chos
by establishing their respective acceptance rates AR (To)

and AR (Tf) (Johnson 1989; Van Laarhoven and Aarts

1987; Eglese 1990).
The general simulated annealing algorithm in pseudo

code, with the adopted cooling schedule can be seen nex

Generate_state_i; {initial state}
T=To;
Repeat

Repeat
k:=0;

Generate_state_j; {neighbour state}

δδδδ=C(j) - C(i);
If δδδδ<0 then i:=j

else if random(0,1) < e (-δδδδ/T) then
 i:=j;

k:=k+1;
until k=N;
T:=R.T;

until T≤Tf.

For the above case C is a real number but also a
deterministic objective function. Since we are dealing with
7
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a stochastic objective function C in the case of simulation
and we have to generate multiple replications of t
simulation model, the code in bold above has to 
changed to:

δδδδ=m(C(j)) –m(C(i));
If compare(m(C(j)),sd(C(j));
m(C(i)),sd(C(i)) then i:=j

else if random(0,1) < e (-δδδδ/T) then i:=j;

where m(C(x)) is the mean of the objective function fo
state x and sd(C(x)) is its standard deviation. In our cas
the comparison to know which objective function is bett
given a certain level of confidence follows the Welc
Criteria (Law and Kelton 1991).

3.2 Linear And Exchange Move
Optimization Algorithm (LEO)

The LEO algorithm uses Simulated Annealing with 
specific neighborhood generation. With this approach, it
possible to solve combinatorial optimization problems wi
either real or integer variables. The LEO approach show
promising efficiency to solve layout problems (Chwif et a
1998) and scheduling problems (Barretto et al. 1998).

Let's define n input variables (x1,x2,….xn), real or
integer, the set (max1,max2,….maxn) as their maximum
values, the set (mix1,mix2,….mixn) as the their minimum
values and the set (stepx1,stepx2,….stepxn) as their
resolution. The LEO algorithm works with basically tw
procedures for neighborhood generation LEO. The fi
procedure increases or decreases the variable va
according to their respective steps. The second change
value for another value generated by a uniform distributi
between mix and max rounded to their respecti
resolution. These two procedures are shown in pseudo c
below:

LINEAR MOVE:

Choose RANDOMLY 1≤k≤n

repeat

case (direction) of

"up": xk=xk-stepxk;

“down": xk=xk-stepxk

until (xk≤maxk) and (mixk≤xk)

EXCHANGE MOVE:

Choose RANDOMLY 1≤k≤n
xk=roundstep(uniform((mixk, maxk))
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In the first case (Linear Move) the values of the inpu
changes “smoothly” by increasing or decreasing the inpu
variable by one step. The probability of increasing o
decreasing one variable is 50%. The choice of the variab
to be modified on each neighborhood generation i
random. In the second procedure (Exchange Move), aft
randomly choosing one of the input variables, it receives 
completely new value within the interval given by [mink,
maxk] rounded according to its resolution. The second
procedure makes a more sharp change on the variabl
allowing the optimization algorithm to escape for instance
from a region where the values of input variables give ver
bad results in terms of the objective function. The choice o
which procedure to apply to each neighborhood generatio
(since for each neighborhood only one procedure has to 
applied) is taken with a fixed probability of 50%.

4 CASE STUDY

4.1 Steelworks Model

The steelworks simulation model is an example of a
manufacturing simulation model fully described in Pau
and Balmer (1993). We will only provide a brief
explanation here. In the Steelworks plant, there are tw
blast furnaces, which melt iron at certain daily volumes
which blows and fills as many torpedoes as available an
are used to transport molten iron. If no torpedo is available
the molten iron is dropped on the floor and waste i
produced. Each torpedo can hold a fixed quantity of molte
iron. All torpedoes with molten iron go to a pit, where
crane(s)-carrying ladles are filled from torpedoes, one at 
time. The ladle holds 100 tons of molten iron, which is
exactly the volume of a steel furnace that is fed from th
crane. There are a certain number of steel furnaces, whi
work together and produce the final product of the
steelworks. Figure 2 shows the schematic layout (not t
scale) for the steelworks plant.

Figure 2: Layout for the Steelworks Plant
8
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4.2 Input Parameters

As we can see from the brief explanation, the Steelwor
model has several input variables. We are interested 
know, in this particular simulation optimization problem, the
optimum values of four of them: number of torpedoes
number of cranes, number of steel furnaces and t
maximum volume that one torpedo could handle of molte
iron. In our case all of the variables have integer values w
resolution of 1. There is no restriction for the LEO
Algorithm to handle real number, but there is no real gain 
the optimum value of the volume of torpedo is 311.2
instead of 311. These input variables are depicted in table 

Table 1: Input Variables for the Steelworks problem

VARIABLE
DESCRIPTION

MIN
VALUE

MAX
VALUE

RESOL.
(STEP)

Number
Of Torpedoes (Nt)

1 12 1

Number
Of Cranes (Nc)

1 2 1

Number of Steel
Furnaces (Nsf)

1 6 1

Torpedo
Volume (Vt)

50 350 1

Hence a state is given by one combination of the inp
variables (Nt, Nc, Nsf, Vt). Note that the search space (a
possible combinations of the variables) in this case is equ
to 12*2*6*300 = 43200 points. This actually gives an ide
of how difficult the optimization problem is if we try to
obtain an optimum solution by evaluating all combination
of these variables.

4.3 Objective Function

The objective function in our case is basically the total co
of the Steelworks plant (Investment Cost and Operation
Costs) calculated on a monthly basis. The operational co
is given by the volume of wasted melted iron. Th
investment costs could be calculated by the amortization
equipment (torpedoes, cranes and steel furnaces). Tabl
shows the amortization cost per unit of each equipment 
a monthly basis.

Since the each ton of wasted melted iron cos
approximately £100 it is possible to calculate the tota
monthly costs generated by the plant as shown in equat
(1):

TMC = 2.1*Nt +8.3*Nc + 16.7*Sf + 0.3*Waste             (1)
(£K)

where “Waste” is the waste generated in 10 days 
production. The TMC above, which was generated by th
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simulation model, was used as the input of the optimizat
procedure.

Table 2: Relative Equipment Prices

EQUIPMENTS PRICE PER UNIT
(MONTLY) (£)

Torpedoes 2,100.00
Cranes 8,300.00
Steel Furnaces 16,700.00

5 IMPLEMENTATION ISSUES AND RESULTS
The Steelwork models was built using Taylor II (Nordgre
1998) simulation software (v. 4.2) running on Window
NT operating systems on a Pentium II 300 MHz-bas
processor. The LEO algorithm was implemented in Visu
Basic embedded within Excel version 97. The da
exchange between Taylor II and the LEO algorithm w
performed via an Excel Spreadsheet using DDE facilitie
The front end of the optimization procedure is shown 
Figure 3.

INPUTS

VARIABLES MIN VAL MAX VAL STEP Comment
VAR1 1 12 1 # Torp
VAR2 1 2 1 # Cranes
VAR3 1 6 1 # Steel F.
VAR4 50 350 1 Vol. Torp
VAR5
VAR6
VAR7
VAR8
VAR9

INITIAL STATE VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 VAR9
STATE S0 3 1 5 300

T4/95% 2.571 Month Base OF 112.7
Num Rep. 5 Month Waste K£ 1.86E-10

Month Waste (t) 1.86E-09
Hourly AvgHWas 2.59E-12

Initial Temperat. Ti 10
Epoch Length N 10
Cooling Ratio R 0.7
Final Temperat Tf 0.1

OUTPUTS

STATE Si 6 2 5 260
STATE Sj 6 2 5 260

OUTPUTS MEAN SD
OUT1 Si 112.70 0.00
OUT2 Sj 112.70 0.00
OUT So 7490.16 227.56

CONTROL

ACCEPT RATE 0.00
TEMPERATURE 0.10
SEARCH SPACE 130
END RUN ? 1.00

Simulation O ptimisation Worksheet VS.1.2.1

STATES

CONTROL BOARD

ANNEALING  PARAMETERS

RUN MODEL

TEST NEIGHB

OPTIMIZE !

RESET

RESUME OPTIMISATION

Figure 3: Front End of the Simulation Optimization
Procedure (Excel Spreadsheet)

We simulated the operation of the plant during 12 da
(considering the first 2 days as the “Warm-up period”
Five replications were generated for each combination
the variables (or states) and then we adopted a 9
confidence interval. The initial solution was 3 torpedoes
crane, 5 Steel Furnaces and 300 tons of capacity for e
torpedo. Results from the optimization are depicted 
table 3.
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Table 3: Simulation Optimization Results

VALUES INITIAL
SOLUTION

OPTIMUM
SOLUTION

*
Objective
Function (K£)

7,490.16 112.70

Waste
Generated
(Tons/Month)

73,920 0

Number of
Torpedoes

3 6

Number of
Cranes

1 2

Number of
Steel Furnaces

5 5

Torpedo Vol. 300 260

For this study the following annealing parameter
were adopted: Initial temperature 10, final temperature 0
cooling Ratio = 0.7 and Epoch Length = 100. Note that t
algorithm evaluated 130 possibilities which give
130/43200 = 0.3% of the total search space. The solut
adopted was optimum because we verified furthermore t
the obtained number of resources is the minimum numb
that generates no waste. Another conclusion that 
obtained (doing post optimization runs) is that th
objective function (waste) is practically insensitive if th
volume of a torpedo is higher than 250.

6 CONCLUSIONS

In this paper we have presented an application of the LE
optimization algorithm, in this case to a simulatio
optimization problem. LEO algorithm proved suitable fo
solving this type of problems (Hard Combinatorial an
Stochastic). Paul and Chanev (1998) used a Gene
Algorithm to solve the same problem, but since th
objective function they utilized differs from the one
adopted here, we could not make a direct compariso
However they achieved their optimum values by explorin
0.4% of total Search Space which is very near to the o
we achieved (0.3 %). This demonstrates that bo
algorithms (Simulated Annealing and GA) are equal
powerful in solving problems of this nature.

In our future work we will try to dynamically vary the
amounts of Move and Exchanges for LEO, to see if we c
achieve improved performance and try to apply it to oth
kinds of optimization problems. Our intent is also for LEO
to be freely distributed as a general tool for optimization.
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