Proceedings of the 1999 Winter Simulation Conference

P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

USING SIMULATION AND GENETIC ALGORITHMS TO
IMPROVE CLUSTER TOOL PERFORMANCE

Mathias A. Dimmler

Institute of Computer Science
University of Wlrzburg
Am Hubland, 97074 Wrzburg, GERMANY

ABSTRACT

used to build simulation models of different types of cluster
tools. Schruben (1999) addresses the problem of detecting

In this paper, we present an approach to generate optimal and avoiding deadlocks when simulating cluster tools.

processing sequences of lots at cluster tools. We consider

the problem of sequencing lots, where each lot can be
processed by any of available cluster tools. The pro-

In (Perkinson et al. 1994) and (Perkinson and Gyurcsik
1996), an analytical approach for computing the time re-
quired to process a lot of wafers is presented. However,

posed method combines simulation and a genetic algorithm their analytic method is restricted to very simple models of
to generate lot processing sequences. We show that ourcluster tools. For example, process times are supposed to be
approach leads to a significant reduction of cycle times at identical in all chambers. In reality, however, process times

cluster tools.

1 INTRODUCTION

Cluster tools have gained importance in the fabrication of
semiconductor chips during the last decade. Especially in
upcoming 300 mm fabs, they will be an integral part of

vary significantly among different process chambers. Even
for a single chamber process times can vary for different
sequences. Venkatesh et al. (1997) use a similar approach
to compute the steady state throughput of a single-wafer
cluster tool. They compare the throughput for a single-blade
and a dual-blade robot. In (Wood et al. 1994) and (Wood
1996), the throughput time of a cluster tool is derived from

the production process. In a cluster tool, several processing four parameters, namely the fixed throughput time, the lot

steps required to produce a semiconductor chip are inte-
grated into a single piece of equipment. In this way, the
probability of contamination of the wafers, the space re-
quired for equipment, and waiting and transport times are
reduced.

Performance analysis of these tools is not straightfor-
ward and cannot be accomplished using simple analytic

size, the incremental throughput time and a correction term.
Shin and Lee (1999) use timed Petri nets to model cluster
tools. They also present a control method that increases the
performance of a cluster tool.

Since several simulation tools for cluster tools are avail-
able, it is possible to assess the performance of individual
cluster tools. However, these simulation tools can not be

approaches like spreadsheets. Instead, a performance analused for the performance analysis and control of a set of

ysis tool that predicts cycle times of wafers in a cluster tool
adequately has to take into account the effects of different
wafer recipes, cluster tool control and architecture, wafer
waiting times, and sequencing. Hence, cluster tools make
for an excellent area for the application of simulation.
There are already a number of publications available
that deal with the simulation and analysis of cluster tools.
In (Atherton et al. 1990), potential throughput advantages
of cluster tools and the problem of shifting bottlenecks are

cluster tools in the context of a wafer fab. In this paper,
we address a problem that arises in manufacturing practice,
namely the sequencing of lots that wait for processing at a set
of cluster tools. The sequence generated should minimize
a certain cost function, e.g. it should lead to minimal cycle
times for all lots. This task can, in general, not be solved
without the support of a manufacturing execution system.
However, the available systems usually do not take into ac-
count the special properties of cluster tools. For example,

discussed. Pierce and Drevna (1992) and LeBaron and the cycle times of lots in a cluster tool running in parallel
Pool (1994) present simulation models of cluster tools that mode depend strongly on the types of lots that are processed
were developed using general purpose simulation languages.in parallel. Therefore, a sequencing algorithm has to take
In (Mauer and Schelasin 1993) and (Mauer and Schelasin into account the effect of lot combinations. To solve this
1994), a general purpose simulation language has beenproblem, we propose an approach that combines simulation

875

DUimmler

and genetic algorithms to generate sequences of lots at a3 CLUSTER TOOL MODEL

set of cluster tools that lead to optimal or close—to—optimal
cycle times.
This paper is structured as follows. In Section 2, the

The cluster tool model under investigation in this paper
is depicted in Figure 1. It consists of two main modules

simulation program that we developed in order to model and to which the individual processing chambers are attached.
simulate cluster tools is presented. In Section 3, we describe Transportation of wafers in the upper module is done by the
the cluster tool model that is used for our studies. Section 4 transfer robot, in the lower module the wafers are transported

contains a simple approach to identify advantageous combi-

by the buffer robot. There are two load locks that allow

nations of lot sequences. In Section 5, we present a geneticload lots into the cluster tool independently and process
algorithm that generates processing sequences of lots thatthem in parallel.

are optimal or close—to—optimal. Finally, in Section 6 we

discuss our results and indicate possible extensions of our

approach.
2 SIMULATION ENGINE

In order to perform the simulation studies described in

the previous section, we developed a simulation engine for

cluster tools in C++. The simulation model can consist
of an arbitrary number of cluster tools, each of which can

have an arbitrary number of process chambers, load locks
and handlers. The most important parameters that can be

specified in the simulation model are listed in Table 1.

Table 1: Model Parameters
Cluster tools: - Number of process chambers
- Number of load locks

- Number of handlers

Handlers: - Move time (with or without
wafer) for every origin/
destination pair

Load locks: - Pump/vent time

Sequences: - Number of process steps

Process steps: - Process chambers qualified|for
a step

- Process time in these chambe

- Number of wafers per lot

- Process sequence

Lots:
Wafers:

For each of the components of a cluster tool, down
times can be specified. However, for this study, down times
were not incorporated in the model.

The simulation engine computes a number of output
statistics after a simulation run, such as cycle times of wafers
and utilization of the components of a cluster tool. For the
studies described in this paper, the total completion time
for a given sequence of lots is of special interest.

The modular concept of the simulation tool allows to
exchange different parts of the model and test their impact
on performance. For example, the module responsible for
the control of the handler can currently be chosen from a
set of four modules: a FIFO based control, a Least Slack
based control, a Critical Ratio based control and a module
that uses backtracking to find optimal wafer moves.

876

Chamber 3

O

Chamber 2 Chamber 4

Load Lock 1

Load Lock 2
Figure 1: Cluster Tool Model

The model parameters are as follows. For both robots,
we assume that it takes 20 seconds to move a wafer from
any position (chamber or load lock) to another. Without
transporting a wafer, it takes the robots one second to move
from one position to another. Pump and vent times for the
load locks are zero, since they were not regarded in our
study.

We have conducted simulation studies for this model
for as many as 30 different process sequences. In this paper,
we restrict the number of process sequences to four. The
processing times in seconds at each chamber are listed in
Table 2. A cell is empty if a wafer of the corresponding
sequence does not visit the corresponding chamber. Note
that in all process sequences, process time in chamber A is
zero, since it is only used as a transfer to the upper main
module.

4 LOT COMBINATIONS

As the first step of our study, we tried to identify combi-

nations of two lots that lead to low lot cycle times when

processed in parallel. Therefore, we performed the fol-
lowing simulation experiment, using the cluster tool model

Using Simulation and Genetic Algorithms to Improve Cluster Tool Performance

Table 2: Processing Times in Chambers tools, 362,880 simulations would have to be run to do an
’ ChamberH EIF ‘ C ‘ D ‘ A ‘ 1 ‘ 2 ‘ 4 ‘ B ‘ exhaustive search over all possible sequences.
Seq. 1] 80 [60]40]0 |70] 40 30 To solve this problem, we implemented a heuristic
Seq. 2 || 60 0 170 30 method based on a genetic algorithm (GA) to generate the
' lot sequences. For an introduction to genetic algorithms,
Seq.3 (80 |60|40|0 90 30 .
g the reader is referred to (Goldberg 1989) and (Encore 1997).
Seq. 4 0 80 | 30 : . X \
For the implementation of the genetic algorithm we used

the programming library "GAlib" (Wall 1995). Since GAlib
is written in G++, it could be easily integrated into our
existing simulation tool.

The basic idea behind a genetic algorithm is to imitate
an evolutionary process: The best individualgenomesf
a generation survive and reproduce to pass on their genetic
material to the next generation. Roughly spoken, the GA
needs three pieces of input data: A data structure to represent
the genomes, operators on this data structure that allow the
genetic algorithm to create new solutions and an objective
function to evaluate th&tnessof a genome.

In our case, the genomes of the GA are represented as

presented in the previous section. Starting with an initially
empty cluster tool, we simultaneously put a lot of process
sequence € {1,...,4} in load lock 1 and a lot of process
sequenceg € {1,...,4} in load lock 2. For all of the 16
possible combination of sequences, we measured the cycle
time for both lots. For every combinatién;, we computed

the ratiosT; ;/T;, whereT; ; is the cycle time of a lot of
sequencé when processed together with a lot of sequence
j. T; is the cycle time of a lot of sequenc@hen processed
exclusively. The resulting ratios are displayed in Table 3.

Table 3: Cycle Time Ratios for Combinations

follows. If n lots, numbered, ..., n, have to be scheduled
| Sequenceg j=1],=2],j=3],j=4] onm cluster tools, numbered . . ., m, a genome consists of
i=1 186 | 1.85 | 1.85 | 1.35 a list of integer numberg € {1,...,n}, k=1,...,n and
i=2 166 | 1.78 | 1.29 | 1.34 an array of integer numbesg € {1,...,m}, k=1,...,n,.
i=3 150 | 1.38 | 1.88 | 1.39 The listl; represents the processing sequence of the lots
i=4 125 | 153 | 1.76 | 1.72 and the array entrieg, denote the cluster tool on which lot

k is scheduled for processing. We use the default operators
Obviously, there are combinations that lead to more ©n lists and arrays that are implemented and documented

favorable cycle times for both lots than other combinations. in the GAlib library to generate new genomes. As the

For example, combining sequence 2 and 3 leads to an Objective function, we use the time required for processing

increase in cycle time of 29% for sequence 2 and of 38% all lots according to the sequence that the genetic algorithm

for sequence 3. Hence, this is a more favorable combination suggests. This time is derived using the simulation model

than, e.g., sequence 1 and 3, which leads to an increase inOf the cluster tools. The GA uses this objective function to

cycle time of 85% for sequence 1 and of 50% for sequence evaluate a genome and to decide whether it is "fit" enough

3. Combining process sequences 2 and 3 leads to shorterto survive and reproduce.

cycle times since sequence 2 does not make use of chamber ~ Three problem instances have been used to test the

2, which is the bottleneck chamber of sequence 3 and vice genetic algorithm. In the first problem, four lots, one of

versa. On the other hand, when combining sequences 1 €ach process sequence, have to be sequenced for processing

and 3, wafers of sequence 1 visit chamber 2, the bottleneck at a single cluster tool. The optimal sequence can be found

resource for sequence 3, causing higher waiting times for in this case by simulating a##! = 24 lot sequences. This

both sequences. sequence has a makespan of 10031 seconds. The GA was
Table 3 can be used as a guideline for operators to chooseun five times for this problem. The parameters of the GA

combinations of process sequences that lead to short cyclecan be found in Table 4.

times. However, when a large number of lots has to be

sequenced on several cluster tools, this task can no longer Table 4: Parameters for Problem 1

be performed manually. Population size >
Number of generations | 5

5 LOT SEQUENCING Probability of crossover| 0.6
Probability of mutation | 0.1

The next step is to automate the sequencing of lots at cluster Number of replacements 2

tools. It can be shown that far lots andm cluster tools,

there are(n +m — 1)!/(m — 1)! ways to distribute the lots The results of the GA are displayed in Table 5. For
over the cluster tools. It is obvious that even for small each of the five test runs, the best lot sequence that the GA
values ofrn and m it is not feasible to test all possible found is displayed. In the following columns, the makespan
sequences. For example, for= 8 lots andm = 2 cluster for the best sequence, the number of sequences tested to

877

DUimmler

generate the sequence and the total run time of the algorithm Finally, in the third problem three lots of each process
are given. The runs were performed on a Pentium Il 266 sequence are sequenced for processing on two cluster tools.

processor. The parameters used in this case are the same as in Table 6.
The results of five test runs are displayed in Table 8. Again,
Table 5: Results for Problem 1 the improvement in makespan for the best sequence is
Best Sequen-| Run compared to the average makespan of 20 randomly generated
Lot Make- ces Time sequences. The random sequences were generated by evenly
Run | Sequencg span | tested | (sec.) distributing the lots over the cluster tools.
1 4123 | 10036 13 9
2 1432 | 10052 9 6 Table 8: Results for Problem 3
3 3241 | 10031 14 9 Best Sequen-| Run
4 2341 | 10142 10 6 Make- % ces Time
5 2341 | 10142 14 10 Run | span | Improved| tested | (sec.)
1 | 14418 10.8 111 213
The GA found the optimal sequence in one of the five 2 | 14182 13.0 100 197
runs, the results for the other runs differed not more than 3 13979 13.7 89 165
one percent from the shortest makespan. However, instead 4 14059 14.9 111 213
of testing all 24 sequences, the GA needed to test only 14 5 13860 14.9 118 228

sequences to find its best solution.
Inthe second problem, two lots of each process sequence It can be noted in general, that the GA generated se-
are sequenced for processing on one cluster tool. The quences thatlead toan optimal or near—to—optimal makespan.

parameters of the GA are given in Table 6. It is expected that applying the presented approach on the
manufacturing floor will lead to a significant reduction of
Table 6: Parameters for Problem 2 and 3 cycle times.
Population size 20 The run time of the GA is small enough to make it
Number of generations | 10 useful in the actual dispatching of cluster tools. Sequences
Probability of crossover| 0.6 can be re—optimized in only a few minutes if the set of
Probability of mutation | 0.1 lots waiting for processing changes. Another advantage of
Number of replacements 8 the genetic algorithm is that it is aanytime algorithm.

This means, that if a result is needed before the genetic

Five test runs have been performed. The results are algorithm has terminated, the computation can be stopped
displayed in Table 7. For each run, the makespan of the and the genetic algorithm will respond with the best current
best sequence that the GA found is displayed. To the solution.
author’s knowledge, no algorithm is available that finds the
optimal sequence of lots for this problem in adequate time. 6 CONCLUSION
Therefore we compare the makespan of the best sequence to
the average makespan of 20 randomly generated sequencesin this paper we presented an approach that uses a simulation
The reduction in makespan is given in the third column. model of a set of cluster tools and a genetic algorithm (GA)
Finally, the number of sequences generated to find the to find optimal processing sequences of lots at these cluster

optimum and the run time of the GA are displayed. tools. Several sample applications showed that the proposed
method can be used to produce optimal or close—to—optimal
Table 7: Results for Problem 2 sequences in short time. When applied on the production
Best Sequen-| Run floor, this algorithm can lead to a significant reduction in
Make- % ces Time Cyc|e times.

Run | span | Improved| tested | (sec.) Several improvements to the approach are possible. For
1 |19562| 125 114 160 example, a GA-within-GA might lead to better performance.
2 | 19840 11.3 113 157 In a first step, this algorithm distributes the lots over the
3 | 19601 12.3 117 161 cluster tools and then, as a second step, tries to find optimal
4 | 20067 10.3 105 149 sequences for each individual cluster tool.

5 19691 11.9 115 163
ACKNOWLEDGEMENTS

In all five runs, the GA produced a sequence that leads
to more than ten percent reduction in makespan compared The author would like to thank Matthias Schmid, Markus
to the randomly generated sequences. Bohr and Andreas Reifert for their programming efforts.

878

Using Simulation and Genetic Algorithms to Improve Cluster Tool Performance

REFERENCES

Atherton, R. W., F. T. Turner, L. F. Atherton, and M. A. Pool
1990. “Performance Analysis of Multi-Process Semi-
conductor Manufacturing Equipment”. Froceedings
of IEEE/SEMI Advanced Semiconductor Manufacturing
Conferencepp. 131-136.

Encore 1997. “Encore (The EvolutioNary COmputation
REpository network)”. ftp://ftp.krl.caltech.edu/pub
/EC/Welcome.html.

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization, and Machine LearningAddison-Wesley.

LeBaron, T. H. and M. Pool 1994. “The Simulation of
Cluster Tools: A New Semiconductor Manufacturing
Technology”. InProceedings of the Winter Simulation
Conferencepp. 907-912.

Mauer, J. L. and R. E. Schelasin 1993. “The Simula-
tion of Integrated Tool Performance in Semiconductor
Manufacturing”. InProceedings of Winter Simulation
Conferencepp. 814-818.

Mauer, J. L. and R. E. Schelasin 1994. “Using Simulation To
Analyze Integrated Tool Performance in Semiconductor
Manufacturing”. Microelectronic Engineering 22/4),
139-146.

Perkinson, T. L. and R. S. Gyurcsik 1996. “Single-Wafer
Cluster Tool Performance: An Analysis of the Effects
of Redundant Chambers and Revisitation Sequences on
Throughput”. IEEE Transactions on Semiconductor
Manufacturing 93), 384—400.

Perkinson, T. L., P. K. McLarty, and R. S. Gyurcsik 1994.
“Single-Wafer Cluster Tool Performance: An Analysis
of Throughput”. IEEE Transactions on Semiconductor
Manufacturing 13), 369-373.

Pierce, N. G. and M. J. Drevna 1992. “Development of
Generic Simulation Models to Evaluate Wafer Fab-
rication Cluster Tools”. InProceedings of Winter
Simulation Conferencepp. 874—-878.

Schruben, L. W. 1999. “Deadlock Detection and Avoidance
in Cluster Tools”. InProceedings of the 1999 Inter-
national Conference on Semiconductor Manufacturing
Operational Modeling and Simulatiopp. 31-35.

Shin, Y.-H. and T.-E. Lee 1999. “Performance Modeling of
Cluster Tools Using Timed Petri Nets”. Rroceedings
of the 1999 International Conference on Semiconductor
Manufacturing Operational Modeling and Simulatjon
pp. 36—41.

Venkatesh, S., R. Davenport, P. Foxhoven, and J. Nulman
1997. “A Steady-State Throughput Analysis of Cluster
Tools: Dual-Blade Versus Single-Blade Robot#£EE
Transactions on Semiconductor Manufacturing(4)0
418-424.

Wall, M. 1995. “GAlib. A C++ Library of Genetic
Algorithm Components”. http://lancet.mit. edu/ga/.

879

Wood, S. C. 1996. “Simple Performance Models for
Integrated Processing Tools”IEEE Transactions on
Semiconductor Manufacturing(®), 320-328.

Wood, S. C., S. Tripathi, and F. Moghadam 1994. ‘A
Generic Model for Cluster Tool Throughput Time and
Capacity”. InProceedings of IEEE/SEMI Advanced
Semiconductor Manufacturing Conference

AUTHOR BIOGRAPHY

M. A. DUMMLER is a Ph.D. candidate at the Department
of Distributed Systems (Informatik IIl), Institute of Com-
puter Science, University of Wzburg, Germany. He is
interested in the modelling, analysis and control of manu-
facturing systems, especially in the area of semiconductor
manufacturing. He is a member of SCS and INFORMS.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

