
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

USING SIMULATION AND GENETIC ALGORITHMS TO
IMPROVE CLUSTER TOOL PERFORMANCE

Mathias A. D̈ummler

Institute of Computer Science
University of Würzburg

Am Hubland, 97074 Ẅurzburg, GERMANY

ma
ide

hm
ou
a

of
in
f
in
te
e

e-
re

r-
tic
n

ol
n

fer
ke

le
ls.
es
re
n
at
e

sin
ee

g

r,

be

t
ch
r

e

t
.
r
e

l

f

e,
t

e

.
-
,

d
e

n

ABSTRACT

In this paper, we present an approach to generate opti
processing sequences of lots at cluster tools. We cons
the problem of sequencingn lots, where each lot can be
processed by any ofm available cluster tools. The pro-
posed method combines simulation and a genetic algorit
to generate lot processing sequences. We show that
approach leads to a significant reduction of cycle times
cluster tools.

1 INTRODUCTION

Cluster tools have gained importance in the fabrication
semiconductor chips during the last decade. Especially
upcoming 300 mm fabs, they will be an integral part o
the production process. In a cluster tool, several process
steps required to produce a semiconductor chip are in
grated into a single piece of equipment. In this way, th
probability of contamination of the wafers, the space r
quired for equipment, and waiting and transport times a
reduced.

Performance analysis of these tools is not straightfo
ward and cannot be accomplished using simple analy
approaches like spreadsheets. Instead, a performance a
ysis tool that predicts cycle times of wafers in a cluster to
adequately has to take into account the effects of differe
wafer recipes, cluster tool control and architecture, wa
waiting times, and sequencing. Hence, cluster tools ma
for an excellent area for the application of simulation.

There are already a number of publications availab
that deal with the simulation and analysis of cluster too
In (Atherton et al. 1990), potential throughput advantag
of cluster tools and the problem of shifting bottlenecks a
discussed. Pierce and Drevna (1992) and LeBaron a
Pool (1994) present simulation models of cluster tools th
were developed using general purpose simulation languag
In (Mauer and Schelasin 1993) and (Mauer and Schela
1994), a general purpose simulation language has b
875
l
r

r
t

g
-

al-

t

d

s.

n

used to build simulation models of different types of cluster
tools. Schruben (1999) addresses the problem of detectin
and avoiding deadlocks when simulating cluster tools.

In (Perkinson et al. 1994) and (Perkinson and Gyurcsik
1996), an analytical approach for computing the time re-
quired to process a lot of wafers is presented. Howeve
their analytic method is restricted to very simple models of
cluster tools. For example, process times are supposed to
identical in all chambers. In reality, however, process times
vary significantly among different process chambers. Even
for a single chamber process times can vary for differen
sequences. Venkatesh et al. (1997) use a similar approa
to compute the steady state throughput of a single-wafe
cluster tool. They compare the throughput for a single-blad
and a dual-blade robot. In (Wood et al. 1994) and (Wood
1996), the throughput time of a cluster tool is derived from
four parameters, namely the fixed throughput time, the lo
size, the incremental throughput time and a correction term
Shin and Lee (1999) use timed Petri nets to model cluste
tools. They also present a control method that increases th
performance of a cluster tool.

Since several simulation tools for cluster tools are avail-
able, it is possible to assess the performance of individua
cluster tools. However, these simulation tools can not be
used for the performance analysis and control of a set o
cluster tools in the context of a wafer fab. In this paper,
we address a problem that arises in manufacturing practic
namely the sequencing of lots that wait for processing at a se
of cluster tools. The sequence generated should minimiz
a certain cost function, e.g. it should lead to minimal cycle
times for all lots. This task can, in general, not be solved
without the support of a manufacturing execution system
However, the available systems usually do not take into ac
count the special properties of cluster tools. For example
the cycle times of lots in a cluster tool running in parallel
mode depend strongly on the types of lots that are processe
in parallel. Therefore, a sequencing algorithm has to tak
into account the effect of lot combinations. To solve this
problem, we propose an approach that combines simulatio

Düm

a
a

n
ri
n
b
e
t
e
o

i
f
is
a
c

e

u
e
h

o
a
f

c
u

r

d.
e
d

s

s,
m
t
ve
e
ur

l
er,

he
in

te
is

in

l-
l

and genetic algorithms to generate sequences of lots
set of cluster tools that lead to optimal or close–to–optim
cycle times.

This paper is structured as follows. In Section 2, th
simulation program that we developed in order to model a
simulate cluster tools is presented. In Section 3, we desc
the cluster tool model that is used for our studies. Sectio
contains a simple approach to identify advantageous com
nations of lot sequences. In Section 5, we present a gen
algorithm that generates processing sequences of lots
are optimal or close–to–optimal. Finally, in Section 6 w
discuss our results and indicate possible extensions of
approach.

2 SIMULATION ENGINE

In order to perform the simulation studies described
the previous section, we developed a simulation engine
cluster tools in C++. The simulation model can cons
of an arbitrary number of cluster tools, each of which c
have an arbitrary number of process chambers, load lo
and handlers. The most important parameters that can
specified in the simulation model are listed in Table 1.

Table 1: Model Parameters
Cluster tools: - Number of process chambers

- Number of load locks
- Number of handlers

Handlers: - Move time (with or without
wafer) for every origin/
destination pair

Load locks: - Pump/vent time
Sequences: - Number of process steps
Process steps: - Process chambers qualified for

a step
- Process time in these chambers

Lots: - Number of wafers per lot
Wafers: - Process sequence

For each of the components of a cluster tool, dow
times can be specified. However, for this study, down tim
were not incorporated in the model.

The simulation engine computes a number of outp
statistics after a simulation run, such as cycle times of waf
and utilization of the components of a cluster tool. For t
studies described in this paper, the total completion tim
for a given sequence of lots is of special interest.

The modular concept of the simulation tool allows t
exchange different parts of the model and test their imp
on performance. For example, the module responsible
the control of the handler can currently be chosen from
set of four modules: a FIFO based control, a Least Sla
based control, a Critical Ratio based control and a mod
that uses backtracking to find optimal wafer moves.
87
mler

t a
l

e
d
be
4
i-
tic

hat

ur

n
or
t
n
ks
be

n
s

t
rs
e
e

ct
or
a
k
le

3 CLUSTER TOOL MODEL

The cluster tool model under investigation in this pape
is depicted in Figure 1. It consists of two main modules
to which the individual processing chambers are attache
Transportation of wafers in the upper module is done by th
transfer robot, in the lower module the wafers are transporte
by the buffer robot. There are two load locks that allow
load lots into the cluster tool independently and proces
them in parallel.

Figure 1: Cluster Tool Model

The model parameters are as follows. For both robot
we assume that it takes 20 seconds to move a wafer fro
any position (chamber or load lock) to another. Withou
transporting a wafer, it takes the robots one second to mo
from one position to another. Pump and vent times for th
load locks are zero, since they were not regarded in o
study.

We have conducted simulation studies for this mode
for as many as 30 different process sequences. In this pap
we restrict the number of process sequences to four. T
processing times in seconds at each chamber are listed
Table 2. A cell is empty if a wafer of the corresponding
sequence does not visit the corresponding chamber. No
that in all process sequences, process time in chamber A
zero, since it is only used as a transfer to the upper ma
module.

4 LOT COMBINATIONS

As the first step of our study, we tried to identify combi-
nations of two lots that lead to low lot cycle times when
processed in parallel. Therefore, we performed the fo
lowing simulation experiment, using the cluster tool mode
6

hms to Improve Cluster Tool Performance

y

c

.

e

a

b
c

c
o

c

t

l

.

c

nt
e

s

s
d

e

ing

s

to
Using Simulation and Genetic Algorit

Table 2: Processing Times in Chambers

Chamber E|F C D A 1 2 4 B

Seq. 1 80 60 40 0 70 40 30
Seq. 2 60 0 70 30
Seq. 3 80 60 40 0 90 30
Seq. 4 0 80 30

presented in the previous section. Starting with an initiall
empty cluster tool, we simultaneously put a lot of proces
sequencei ∈ {1, . . . , 4} in load lock 1 and a lot of process
sequencej ∈ {1, . . . , 4} in load lock 2. For all of the 16
possible combination of sequences, we measured the cy
time for both lots. For every combinationi, j , we computed
the ratiosTi,j /Ti , whereTi,j is the cycle time of a lot of
sequencei when processed together with a lot of sequenc
j . Ti is the cycle time of a lot of sequencei when processed
exclusively. The resulting ratios are displayed in Table 3

Table 3: Cycle Time Ratios for Combinations

Sequences j = 1 j = 2 j = 3 j = 4

i = 1 1.86 1.85 1.85 1.35
i = 2 1.66 1.78 1.29 1.34
i = 3 1.50 1.38 1.88 1.39
i = 4 1.25 1.53 1.76 1.72

Obviously, there are combinations that lead to mor
favorable cycle times for both lots than other combinations
For example, combining sequence 2 and 3 leads to
increase in cycle time of 29% for sequence 2 and of 38%
for sequence 3. Hence, this is a more favorable combinatio
than, e.g., sequence 1 and 3, which leads to an increase
cycle time of 85% for sequence 1 and of 50% for sequenc
3. Combining process sequences 2 and 3 leads to shor
cycle times since sequence 2 does not make use of cham
2, which is the bottleneck chamber of sequence 3 and vi
versa. On the other hand, when combining sequences
and 3, wafers of sequence 1 visit chamber 2, the bottlene
resource for sequence 3, causing higher waiting times f
both sequences.

Table 3 can be used as a guideline for operators to choo
combinations of process sequences that lead to short cy
times. However, when a large number of lots has to b
sequenced on several cluster tools, this task can no long
be performed manually.

5 LOT SEQUENCING

The next step is to automate the sequencing of lots at clus
tools. It can be shown that forn lots andm cluster tools,
there are(n + m − 1)!/(m − 1)! ways to distribute the lots
over the cluster tools. It is obvious that even for sma
values of n and m it is not feasible to test all possible
sequences. For example, forn = 8 lots andm = 2 cluster
87
s

le

e

.
n

n
in
e
ter
er
e
1
k
r

se
le

e
er

er

l

tools, 362,880 simulations would have to be run to do an
exhaustive search over all possible sequences.

To solve this problem, we implemented a heuristic
method based on a genetic algorithm (GA) to generate the
lot sequences. For an introduction to genetic algorithms,
the reader is referred to (Goldberg 1989) and (Encore 1997)
For the implementation of the genetic algorithm we used
the programming library "GAlib" (Wall 1995). Since GAlib
is written in C++, it could be easily integrated into our
existing simulation tool.

The basic idea behind a genetic algorithm is to imitate
an evolutionary process: The best individuals orgenomesof
a generation survive and reproduce to pass on their geneti
material to the next generation. Roughly spoken, the GA
needs three pieces of input data: A data structure to represe
the genomes, operators on this data structure that allow th
genetic algorithm to create new solutions and an objective
function to evaluate thefitnessof a genome.

In our case, the genomes of the GA are represented a
follows. If n lots, numbered1, . . . , n, have to be scheduled
onm cluster tools, numbered1, . . . , m, a genome consists of
a list of integer numberslk ∈ {1, . . . , n}, k = 1, . . . , n and
an array of integer numbersak ∈ {1, . . . , m}, k = 1, . . . , n,.
The list lk represents the processing sequence of the lots
and the array entriesak denote the cluster tool on which lot
k is scheduled for processing. We use the default operator
on lists and arrays that are implemented and documente
in the GAlib library to generate new genomes. As the
objective function, we use the time required for processing
all lots according to the sequence that the genetic algorithm
suggests. This time is derived using the simulation model
of the cluster tools. The GA uses this objective function to
evaluate a genome and to decide whether it is "fit" enough
to survive and reproduce.

Three problem instances have been used to test th
genetic algorithm. In the first problem, four lots, one of
each process sequence, have to be sequenced for process
at a single cluster tool. The optimal sequence can be found
in this case by simulating all4! = 24 lot sequences. This
sequence has a makespan of 10031 seconds. The GA wa
run five times for this problem. The parameters of the GA
can be found in Table 4.

Table 4: Parameters for Problem 1
Population size 5
Number of generations 5
Probability of crossover 0.6
Probability of mutation 0.1
Number of replacements 2

The results of the GA are displayed in Table 5. For
each of the five test runs, the best lot sequence that the GA
found is displayed. In the following columns, the makespan
for the best sequence, the number of sequences tested
7

h

e
a
e
1

n

h
h

n
h

d
r

s
ls.

e 6.
,
is
ted
enly

e-
n.

he

es
f
of

tic
ed
t

ion
)
ter
ed
al
n

or
.

al
Düm

generate the sequence and the total run time of the algorit
are given. The runs were performed on a Pentium II 26
processor.

Table 5: Results for Problem 1
Best Sequen- Run
Lot Make- ces Time

Run Sequence span tested (sec.)
1 4 1 2 3 10036 13 9
2 1 4 3 2 10052 9 6
3 3 2 4 1 10031 14 9
4 2 3 4 1 10142 10 6
5 2 3 4 1 10142 14 10

The GA found the optimal sequence in one of the fiv
runs, the results for the other runs differed not more th
one percent from the shortest makespan. However, inst
of testing all 24 sequences, the GA needed to test only
sequences to find its best solution.

In the second problem, two lots of each process seque
are sequenced for processing on one cluster tool. T
parameters of the GA are given in Table 6.

Table 6: Parameters for Problem 2 and 3
Population size 20
Number of generations 10
Probability of crossover 0.6
Probability of mutation 0.1
Number of replacements 8

Five test runs have been performed. The results a
displayed in Table 7. For each run, the makespan of t
best sequence that the GA found is displayed. To t
author’s knowledge, no algorithm is available that finds th
optimal sequence of lots for this problem in adequate tim
Therefore we compare the makespan of the best sequenc
the average makespan of 20 randomly generated sequen
The reduction in makespan is given in the third colum
Finally, the number of sequences generated to find t
optimum and the run time of the GA are displayed.

Table 7: Results for Problem 2
Best Sequen- Run

Make- % ces Time
Run span Improved tested (sec.)

1 19562 12.5 114 160
2 19840 11.3 113 157
3 19601 12.3 117 161
4 20067 10.3 105 149
5 19691 11.9 115 163

In all five runs, the GA produced a sequence that lea
to more than ten percent reduction in makespan compa
to the randomly generated sequences.
87
mler

m
6

n
ad
4

ce
he

re
e
e
e
e.
e to
ces.
.
e

s
ed

Finally, in the third problem three lots of each proces
sequence are sequenced for processing on two cluster too
The parameters used in this case are the same as in Tabl
The results of five test runs are displayed in Table 8. Again
the improvement in makespan for the best sequence
compared to the average makespan of 20 randomly genera
sequences. The random sequences were generated by ev
distributing the lots over the cluster tools.

Table 8: Results for Problem 3
Best Sequen- Run

Make- % ces Time
Run span Improved tested (sec.)

1 14418 10.8 111 213
2 14182 13.0 100 197
3 13979 13.7 89 165
4 14059 14.9 111 213
5 13860 14.9 118 228

It can be noted in general, that the GA generated s
quences that lead to an optimal or near–to–optimal makespa
It is expected that applying the presented approach on t
manufacturing floor will lead to a significant reduction of
cycle times.

The run time of the GA is small enough to make it
useful in the actual dispatching of cluster tools. Sequenc
can be re–optimized in only a few minutes if the set o
lots waiting for processing changes. Another advantage
the genetic algorithm is that it is ananytime algorithm.
This means, that if a result is needed before the gene
algorithm has terminated, the computation can be stopp
and the genetic algorithm will respond with the best curren
solution.

6 CONCLUSION

In this paper we presented an approach that uses a simulat
model of a set of cluster tools and a genetic algorithm (GA
to find optimal processing sequences of lots at these clus
tools. Several sample applications showed that the propos
method can be used to produce optimal or close–to–optim
sequences in short time. When applied on the productio
floor, this algorithm can lead to a significant reduction in
cycle times.

Several improvements to the approach are possible. F
example, a GA-within-GA might lead to better performance
In a first step, this algorithm distributes the lots over the
cluster tools and then, as a second step, tries to find optim
sequences for each individual cluster tool.

ACKNOWLEDGEMENTS

The author would like to thank Matthias Schmid, Markus
Bohr and Andreas Reifert for their programming efforts.
8

Using Simulation and Genetic Algorithms to Improve Cluster Tool Performance

l
i-

g

n

r

o
or

r
s
on

r

.

r

f
-

e

g

f

or

an
r

-
r

REFERENCES

Atherton, R. W., F. T. Turner, L. F. Atherton, and M. A. Poo
1990. “Performance Analysis of Multi-Process Sem
conductor Manufacturing Equipment”. InProceedings
of IEEE/SEMI Advanced Semiconductor Manufacturin
Conference, pp. 131–136.

Encore 1997. “Encore (The EvolutioNary COmputatio
REpository network)”. ftp://ftp.krl.caltech.edu/pub
/EC/Welcome.html.

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley.

LeBaron, T. H. and M. Pool 1994. “The Simulation of
Cluster Tools: A New Semiconductor Manufacturing
Technology”. InProceedings of the Winter Simulation
Conference, pp. 907–912.

Mauer, J. L. and R. E. Schelasin 1993. “The Simula
tion of Integrated Tool Performance in Semiconducto
Manufacturing”. InProceedings of Winter Simulation
Conference, pp. 814–818.

Mauer, J. L. and R. E. Schelasin 1994. “Using Simulation T
Analyze Integrated Tool Performance in Semiconduct
Manufacturing”. Microelectronic Engineering 25(2/4),
139–146.

Perkinson, T. L. and R. S. Gyurcsik 1996. “Single-Wafe
Cluster Tool Performance: An Analysis of the Effect
of Redundant Chambers and Revisitation Sequences
Throughput”. IEEE Transactions on Semiconducto
Manufacturing 9(3), 384–400.

Perkinson, T. L., P. K. McLarty, and R. S. Gyurcsik 1994
“Single-Wafer Cluster Tool Performance: An Analysis
of Throughput”. IEEE Transactions on Semiconducto
Manufacturing 7(3), 369–373.

Pierce, N. G. and M. J. Drevna 1992. “Development o
Generic Simulation Models to Evaluate Wafer Fab
rication Cluster Tools”. InProceedings of Winter
Simulation Conference, pp. 874–878.

Schruben, L. W. 1999. “Deadlock Detection and Avoidanc
in Cluster Tools”. InProceedings of the 1999 Inter-
national Conference on Semiconductor Manufacturin
Operational Modeling and Simulation, pp. 31–35.

Shin, Y.-H. and T.-E. Lee 1999. “Performance Modeling o
Cluster Tools Using Timed Petri Nets”. InProceedings
of the 1999 International Conference on Semiconduct
Manufacturing Operational Modeling and Simulation,
pp. 36–41.

Venkatesh, S., R. Davenport, P. Foxhoven, and J. Nulm
1997. “A Steady-State Throughput Analysis of Cluste
Tools: Dual-Blade Versus Single-Blade Robots”.IEEE
Transactions on Semiconductor Manufacturing 10(4),
418–424.

Wall, M. 1995. “GAlib. A C++ Library of Genetic
Algorithm Components”. http://lancet.mit. edu/ga/.
87
-

Wood, S. C. 1996. “Simple Performance Models for
Integrated Processing Tools”.IEEE Transactions on
Semiconductor Manufacturing 9(3), 320–328.

Wood, S. C., S. Tripathi, and F. Moghadam 1994. “A
Generic Model for Cluster Tool Throughput Time and
Capacity”. In Proceedings of IEEE/SEMI Advanced
Semiconductor Manufacturing Conference.

AUTHOR BIOGRAPHY

M. A. DÜMMLER is a Ph.D. candidate at the Department
of Distributed Systems (Informatik III), Institute of Com-
puter Science, University of Ẅurzburg, Germany. He is
interested in the modelling, analysis and control of manu
facturing systems, especially in the area of semiconducto
manufacturing. He is a member of SCS and INFORMS.
9

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

