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ABSTRACT

It is argued that the two principal components 
simulating earthmoving operations are modeling a
providing input data.  The knowledge and proficiency 
modeling has been substantially improved throu
general purpose simulation systems such as CYCLO
and STROBOSCOPE.  However, the inability to provid
statistically reliable input data to the models is source
concern.  Automated data collection through instrumen
vehicles provides the first opportunity to collect cyc
time data in a continuous manner and hence, provid
statistically-reliable data set.  This paper presents the 
of automated data to fit probabilistic distributions that a
used as input to simulation models.  This paper a
describes a methodology to develop statistical parame
for simultaneous variation in payload and load tim
through the concept of a payload time (PLT) Map.  Fie
data from on-going earthmoving projects is used 
illustrate these concepts.

1 INTRODUCTION

Earthmoving operations can be divided into four elemen
activities, namely, load, haul, dump and return.  Ea
activity is associated with a probabilistic estimate of t
duration.  The load activity is the only one that is associa
with two variables – load time and payload.  The inte
relationship between payload and load time makes the 
activity more complicated than the other activities.  T
challenge is to model the simultaneous variation in paylo
and load time.  This paper addresses the simultane
variation in payload and load time by developing 
parametric form of payload in terms of load time.

Simulating the load activity requires the ability t
model the process as well as the data reduction capab
to support the modeling constructs.  The data reduct
process for the simultaneous variation in payload a
load time involves the development of a joint probabili
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function of payload and load time.  The direc
development of the joint probability function is
complicated.  Therefore, the joint probability function i
described using the marginal probability of load time an
the conditional probability of payload given load time
The modeling of the correlated payload and load time
demonstrated using STROBOSCOPE, a general-purp
simulation system.

2 BACKGROUND

Necessary background research can be grouped un
three areas: a) modeling environment, b) modeling t
load activity, and c) vehicle instrumentation.  Previou
research pertaining to each one of these areas of rese
is discussed under the appropriate sub-heading.

2.1 Modeling Environments

One of the earliest developments in the modelin
environment for construction simulation was CYCLONE
[Halpin 1977].  CYCLONE can model and simulate
repetitive construction processes that are cyclical.  
number of researchers have extended the capability
CYCLONE since then, the notable enhancements be
the development of MicroCYCLONE — a
microcomputer edition [Lluch and Halpin 1982] and UM
CYCLONE at University of Michigan [Ioannou 1990].
INSIGHT [Kalk 1980] is based on CYCLONE and
includes time-lapse photography for data acquisitio
graphics support and an interactive environment [Pauls
et al. 1987].  Since then, there have been several oth
simulation programs developed.  A recent addition to th
list is the development of STROBOSCOPE [Martine
1996], a comprehensive and sophisticated tool th
incorporates end-user programmability and extensibilit
Martinez and Ioannou [1995], and, Ioannou and Martin
[1996] illustrate the principles of construction simulatio
and capabilities of STROBOSCOPE.
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Most of the modeling environments mentioned he
use an activity-based approach which is conducive
modeling construction operations [Martinez and Ioann
1999].  The typical approach to modeling an operat
involves specifying an activity cycle diagram and t
corresponding probabilistic estimates for the durations
the activities.  Modeling the load activity, howeve
involves correlated variability among load time a
payload. Modeling this requires programmability and th
necessitates the use of STROBOSCOPE.

It must also be pointed out that there a
commercially available simulation environments such
GPSS/H and ProModel which allow for programmabilit
However, most of these environments are based o
process interaction (PI) strategy wherein a model
written from the point of view of entities that flow
through a system.  The PI strategy is very effective
modeling industrial applications but presents substan
challenges when used to model construction applicat
where there is a heavy interaction between resou
[Martinez and Ioannou 1999].

The above account suggests that current knowle
in modeling is capable of realistically replicatin
construction activities.  The implicit assumption ma
by various researchers in formulating their problem
that sufficient data is readily available.  AbouRizk a
Halpin [1992] have shown that input data is 
paramount importance in simulating constructi
operations.

2.2 Modeling the Load Activity

The load activity as part of the earthmoving cycle 
applicable to both scrapers and loader-truck operatio
Day [1973] presents a load-growth curve wherein 
payload is described as a function of the load time an
used as the basis of a non-linear optimization proc
These curves have been specifically used for scra
operations although their scope can be extended
loader-truck systems [Gransberg 1996].  The load-gro
curve for a loader-truck operation would have ste
increments instead of a continuous curve as in the cas
the scrapers.  Although the load-growth curves desc
the relation between the incremental payload and 
incremental load time, they do not include the variat
involved in either payload or load time.

Martinez [1996] and Ioannou and Martinez [199
show how to model correlated variation in payload a
load time in STROBOSCOPE by using the marginal
payload and the conditional of load time given t
payload.  For illustration purposes, those examples 
empirical mathematical formulas that apply to a load
unit pass rather than to the entire multi-pass load
activity of a loader-truck operation.
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2.3 Vehicle Instrumentation

Vehicle instrumentation presents a viable opportunity fo
continuous productivity data collection.  The vehicle
instrumentation could include machine health diagnost
systems, global positioning systems and radio frequen
identification systems.  Machine health diagnosti
systems were used to collect performance data for t
purpose of providing input to simulation models
Performance records refer to the activity durations o
different component of the earthmoving cycle.  Differen
equipment manufacturers have their own proprieta
onboard instrumentation systems.  Examples o
proprietary systems currently in use include VIMS® &
TPMS® (Caterpillar [http://www.cat.com]),
CONTRONICS® (Volvo [http://www.vce.volvo.se]) and
HMS® (Komatsu [http://www.komatsuamerica.com]).

3 MODELING THE LOAD ACTIVITY

The load activity can be measured using two quantitativ
measures, namely, the final payload and the total lo
time.  Final payload refers to the payload of materia
placed on the truck as it leaves the load area and the to
time reflects the time taken to achieve the final payloa
Measuring the final payload and the total load time fo
the purpose of modeling the uncertainty in these measu
requires a continuous form of data collection.  Vehicl
instrumentation provides the first opportunity to
continuously and to autonomously collect data on fina
payload and the total load time.  Therefore, the prima
assumption is that instrumented data on the load activ
are available.

3.1 Payload and Load Time as Recorded
by the Vehicle Instruments

Two possible scenarios can be considered in modeling t
load activity.  The first scenario is that the final payloa
and the total load time are independent of one another a
the second scenario is that the final payload and load tim
are correlated.  The second scenario may appear m
intuitive because of the knowledge of load-growth curve
as described for a scraper operation.  The data used by
concept of load-growth curves reflects the increment
time and the corresponding payload.  The values f
payload and load time recorded by the vehicl
instruments are registered at the time when the tru
leaves the load area.  It is not possible to capture t
“growth” process using the instrumented data.

3.2 Independent PDFs for Payload and Load Time

The two variables, payload and load time are treated 
independent variables and an appropriate probabili
density function (PDF) is defined for each variable.  A
standard distribution that best defines the payload 
7
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determined using standard procedures [Law and Kelt
1991].  The probability of obtaining a particular range o
final payload is modeled by Eq (1).

∫=>>
p

p

U

L

pp dppfLpUP )()(  (1)

where P(x) is the probability of a random variable x, Lp

and Up are lower and upper limits of the range of payloa
p is the payload, and f(p) is the PDF that defines the
variation in payload for the entire range.

Figure 1 shows a graphical representation of Eq(
wherein the integral of the PDF is calculated as the ar
enclosed by the cumulative frequency curve within th
specified limits.  Since all discrete values of payload a
theoretically possible, the variable payload is treated a
continuous random variable.  The probability of obtainin
a single value of payload is zero; hence, the need to us
range to determine the probability.
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Figure 1: Frequency Distribution of Payload

The probability of obtaining a particular range o
total load time can be developed in a manner similar 
that used for payload and is given by Eq (2).

∫=>>
t

t

U

L

tt dttfLtUP )()( (2)

where Lt and Ut are lower and upper limits of the range o
load time required, t is the load time, and f(t) is the PDF
that defines the variation in load time for the entire rang

Figure 2 presents the graphical form of Eq (2
wherein the integral of the PDF is calculated as the ar
enclosed by the cumulative frequency curve within th
specified limits.  It is again noted that since all discre
1018
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values of load time are theoretically possible, the varia
load time is also treated as a continuous random variab

The joint probability of obtaining a combination o
payload and load time is the product of the individu
probabilities under the assumption of independence.  
joint probability calculated in this manner will depend o
the distributions that define the payload and load time.
is also possible that more than one unique distribution 
be used to define specific intervals of payload and lo
which makes the situation more complicated.  Moreov
it is not intuitive to understand the simultaneous variati
in payload and load time if defined by the tw
independent PDFs.  A powerful graphical format called
PLT Map is used to graphically present the simultaneo
variation in payload and load time.
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Figure 2: Frequency Distribution of Load Time

3.3 PLT Map

A PLT Map (Payload- Load Time Map) describes th
joint frequency of payload and load time.  An example
a PLT Map is shown in Figure 3.  The abscissa 
represented by final payload and the ordinate by to
load time.  The values are normalized to maintain
consistent scale.  The contour plot uses color or patter
indicate areas with equal probability, the legend f
which is shown above the plot.  For example, t
payload-time pair (1-1.1, 1.1-1.3) occurs with 
probability between 9% and 10%.  The payload-tim
pairs represented by a particular color or pattern h
equal probability of occurrence.  The shape or footprint
the plot, the location of the modal region and the a
occupied by each color or pattern provide interesti
insights into the operation.
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Figure 3: An Example of a PLT Map

The joint probability of obtaining a particular rang
of payload and load time is given by Eq (3).

∫ ∫=>>>>
t

t

p

p

U

L

U

L

pptt dpdtptfLpULtUP ),(),( (3)

where f(t,p) is the surface which is depicted by the PL
Map that represents the joint frequency distribution 
load time and payload.  The frequency of a pair 
payload and load time is normalized and so the volu
under the surface is equal to one.  Therefore, the colo
pattern corresponding to a particular combination 
payload and load time represents the probability 
occurrence of that pair.

It is possible to imagine that the PLT Map is a seri
of continuous payload distributions, each conditioned 
a given range of load time as shown in .  A similar set
distributions can be created for load time  conditioned 
ranges of payload.

3.4 Joint Probability Distribution in
a Parametric Form

The significance of the independence assumption is t
both payload and load time can be independently samp
from their respective distributions.  It is possible t
generate a high value for load time and a low value 
payload for an instance of the load activity and vic
versa.  It is possible that a longer load time cou
generate a higher payload.  The most elemental way
determine if a correlation exists is to observe the P
Map.  If the PLT Map has elliptical regions and th
ellipses makes an angle with the payload axis, then th
exists a relation between final payload and total lo
time.  This relation is strong if the ellipses make a 4
angle.  The discussion under this heading makes use
the assumption that payload is dependent on load time
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The procedure under this assumption is based 
marginal distributions of load time and condition
distributions of payload given load time (discretized
This is because the probabilistic models needed 
describe the joint distribution using this approach a
more tractable than an approach in which the margina
load time and the conditionals of payload are used e
though the latter is directly supported b
STROBOSCOPE.

Figure 4: Payload Distribution for Each Discrete Interv
of Load Time

First, the load time — treated as the independen
variable — is modeled as a continuous distributio
AbouRizk and Halpin [1992] used a transformed meth
to determine the statistical properties of construction da
They used the values of skewness and kurtosis
determine the type of distribution associated with vario
construction activities. From the field data shown 
Figure 5, it is clear that most instances of the load time
a truck can be modeled by a Beta distribution, confirmi
the findings of AbouRizk and Halpin [1992].  Let it b
assumed that load time is modeled as a Beta distribu
as shown in Eq (4).

P(t) = Beta [a, b, s1, s2]  (4)

where P(t) is the PDF describing the load time, a is the
lower bound of the distribution, b is the upper bound of
the distribution, s1 and s2 are scale and shape facto
respectively of a Beta distribution.

The second step is to parametrically define paylo
in terms of the load time and at the same time capture
variance in payload.  Figure 6 suggests the distribut
corresponding to payload could be modeled as a Nor
distribution.  For reference, a line corresponding to Lo
Normal distribution is shown in the figure.  It can b
noted that the Log-Normal offers the next best altern
distribution to model the data.
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The intent is to develop equations that define th
mean and standard deviation of a Normal distribution th
defines payload in terms of load time.  The equations f
the mean and standard deviation are developed 
constructing a grid of payload and load time an
calculating the mean and standard deviation of paylo
for each interval of load time.  The data from the grid 
used to generate a graph as shown in Figure 7 where b
average and standard deviation of payload is plotted
terms of load time.

The best-fit equations for the mean and standa
deviation of payload are shown in Figure 7.  The ne
step is to define a Normal distribution with a mean an
standard deviation using these best-fit equations.  Eq
shows the form of the Normal distribution.

P(p) = Normal [-0.0363t2 + 0.1239t + 0.8933, -0.0015t2 -
0.013t + 0.1221] (5)

where P(p) is the PDF that describes the payload, t is an
instance of load time that is generated by the Be
distribution defined in Eq (4).  A pair of load time-
payload coordinates is generated by sampling from Eq 
1020
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and Eq (5) for modeling each instance of the load activit
during a simulation run.

y = -0.0363x2 + 0.1239x + 0.8933

y = -0.0015x2 - 0.013x + 0.1221
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Figure 7: Parametric Form of Payload and Load Time

4 DEMONSTRATING THE JOINT
PROBABILITY DISTRIBUTION

Most of the general purpose simulation systems allow th
duration of the activity to be modeled using a PDF.  Th
implementation of the joint probability distribution
requires programmability.  STROBOSCOPE offers the
user programmability to accomplish this requirement an
hence it will be used to demonstrate the methodology
The syntax and other details of STROBOSCOPE ar
available in Martinez [1996].

STROBOSCOPE has direct, two-statement, suppo
for modeling a joint distribution where time (load time) is
a function of resource usage (payload) because 
STROBOSCOPE activity times are determined afte
resources have been acquired. In this case, however,
was more convenient to reduce the data to a format 
which payload is a function of load time. Modeling this
requires the more involved STROBOSCOPE snippet o
code shown in Figure 8.  The duration of the load truc
activity is determined by sampling from a ScaledBeta
distribution.  At the start of the load truck activity, the
conditional probability of Payload is determined as a
function of load time.  This two-statement approach in
STROBOSCOPE allows one to model the simultaneou
variation in payload and load time.

DURATION LoadTruck 
ScaledBeta[0,1.23,11.1,4.21];

ONSTART LoadTruck ASSIGN 
LoadTruck.Truck.Payload
Normal[0.0363*LoadTruck.Duration^2 +
0.1239*LoadTruck.Duration + 0.8933,
-0.0015* LoadTruck.Duration ^2-0.013*
LoadTruck.Duration +0.1221];

Figure 8: A Snippet of Code in STROBOSCOPE to
Implement the Joint Probability Distribution of Load Time
and Payload
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A model was created incorporating the code shown
Figure 8; the results of the payload - load time pai
created during run time is shown in the form of a PL
Map in Figure 9.  It is interesting to note the following
similarities between the PLT Map created using field da
as shown in Figure 3 and the PLT Map simulated usi
the PDFs as shown in Figure 9.

The range of payload represented by the field da
and the simulated data correspond to the same range 
to 1.3).

The modal region for the field data and the mod
region for the simulated data fall in the same region.

An important point to note regarding the field data 
that the trucks are loaded in integer passes.  Schexnay
et al. [1999] reported that there appears a good mat
between volumetric load and full shovel buckets cycle
Such granularity in the data is smoothened out wh
describing the data using a PDF.  Moreover, a uniq
Normal distribution is used for the entire range o
payload.  It is clear from  that different distributions ca
be modeled for each range of load time.  Similarly, it 
noted that the distribution that describes the load time a
the equations that describe the mean and stand
deviation will differ between ranges of data.  The da
can be dissected into as many granular slices as nee
by the application.  However, for the purpose o
illustration, the payload and load time are defined by
unique PDF models.
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5 CONCLUSION

This paper focussed on modeling the load activity in a
earthmoving operation involving a loader and a truc
The load activity is characterized by two quantitativ
measures, namely, final payload and total load time a
hence requires the knowledge of variation in bo
parameters.  This paper described a methodology 
develop the statistical parameters necessary to define 
simultaneous variation in payload and load time.
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The statistical parameters in the form of probability
distributions can be used to define the load time as we
as the payload of the load activity.  Two scenarios a
possible in terms of payload and load time.  The firs
scenario is that the payload may be independent of t
load time in which case a product of the individua
probabilities of payload and load time can be used 
determine the joint probability of a payload-load time
combination.  The second scenario is that payload may 
dependent on the load time in which case a paramet
form of payload in terms of load time must be used t
determine the joint probability.  The second scenario wa
discussed in detail using field data.

The probabilistic distributions define the input to
simulation models.  However, they are not intuitive
enough to provide an immediate response regarding t
operation.  A PLT Map was developed to provide 
graphical representation of the simultaneous variation 
payload and load time.  The PLT Maps can improve on
the-job communications and hence facilitate productivit
improvement.

Finally, it is pointed out that the performance record
collected by the vehicle instrumentation are no
characterized, that is, there is no record of the operati
conditions under which the data is collected.  The effe
of the operating conditions on the variance of th
activity’s performance is not captured automatically
Recording the operating condition requires manually da
collection because it involves subjective data.  If th
operating conditions are available, the performanc
records collected by the vehicle instruments can b
filtered based on the conditions.  It then becomes possib
to generate a PLT Map and hence the PDF for each set
operating conditions.

REFERENCES

AbouRizk, S. M. and D. W. Halpin, (1992), Statistical
properties of construction duration data, Journal of
Construction Engineering and Management, ASCE,
118(3), pp525-544.

Day, D. A., (1973), Construction Equipment Guide, John
Wiley & Sons, New York, NY.

Gransberg, D. G., (1996), Optimizing haul unit size an
number based on loading facility characteristics
Journal of Construction Engineering and
Management, ASCE, 123(3), pp248-253.

Halpin, D. W., (1977), CYCLONE- Methods for
modeling job site processes, Journal of Construction
Division, 103(3), pp489-499.

Ioannou, P. G. and J. C. Martinez, (1996) Comparison 
Construction Alternatives Using Matched Simulation
Experiments, Journal of Construction Engineering
and Management, ASCE, 112(3), ASCE, Reston,
VA.

Ioannou, P. G., (1990), UM-CYCLONE- Discrete Event
Simulation System—User’s Guide, UMCEE Report



Developing the Statistical Parameters for Simultaneous Variation

s

a
n

,

 o
f

s
f

o

),

9),
,

il
n
m
)
e

s
,

nt

f
f

f
as
d
of
h
e
t

f

d
n
In
h
d

No. 89-12, Dept. of Civil Engineering, University of
Michigan, Ann Arbor, MI.

Kalk, A., (1980), INSIGHT: Interactive simulation of
construction operations using graphical Technique
Technical Report No. 238, Dept. of Civil
Engineering, Stanford University, Stanford, CA.

Law, A.M. and W.D. Kelton, (1991), Simulation
Modeling and Analysis 2nd Edition, McGraw-Hill,
Inc, New York.

Lluch, J. and D. W. Halpin, (1982), Construction
operations and microcomputers, Journal of
Construction Division, ASCE, 108(CO1), pp129-145.

Martinez, J. C. and P. G. Ioannou, (1999), Gener
Purpose Systems for Effective Constructio
Simulation, Journal of Construction Engineering and
Management, ASCE,  (July/August 1999), Reston
VA.

Martinez, J. C. and P. G. Ioannou, (1995), Advantages
the Activity Scanning Approach in the Modeling o
Complex Construction Processes. In Proceedings of
the 1995 Winter Simulation Conference, San Diego,
CA.

Martinez, J. C., (1996), STROBOSCOPE: State and
resource based simulation of construction processe,
Ph.D. Thesis submitted to the University o
Michigan.

Ioannou, P. G., and Martinez, J. C. (1996). Simulation 
Complex Construction Processes, Proceedings of the
1996 Winter Simulation Conference, San Diego, CA,
1321-1328.

Paulson, Jr., B. C., W. T. Chan and C. C. Khoo, (1987
Construction operations simulation by
microcomputer, Journal of Construction Engineering
and Management, ASCE, 113(2), pp302-314.

Schexnayder, C., Weber, S. L., and Brooks, B. T., (199
Effect of truck payload weight on production
Journal of Construction Engineering and
Management, ASCE, 125(1), pp1-7.

AUTHOR BIOGRAPHIES

GOVINDAN KANNAN  received his Ph.D. degree from
the Via Department of Civil Engineering at Virginia Tech
in May 1999.  He received a Masters Degree in Civ
Engineering from the National University of Singapore i
1995 and a Bachelors Degree in Civil Engineering fro
the Regional Engineering College (Tiruchirapalli, India
in 1991.  He worked as a site engineer for a larg
construction company in India for two years.  Hi
interests include construction simulation, optimization
scheduling, and estimating.

MICHAEL C. VORSTER  is the David H Burrows
Professor of Construction Engineering and Manageme
in the Via Department of Civil Engineering at Virginia
Tech. He received his Ph.D. from the University o
Stellenbosch in 1981; an M.B.A. from the University o
1022
,

l

f

f

Capetown in 1971; and a B.Sc. from the University o
Capetown in 1965. He has published articles as well 
served as a reviewer for various construction-relate
journals.  To his credit, he has more than 14 years 
experience in the construction industry.  His researc
interests include construction scheduling, disput
resolution, construction methods, and equipmen
economics.

JULIO C. MARTINEZ  is an Assistant Professor in the
Via Department of Civil Engineering at Virginia Tech.
He received his Ph.D. in Civil Engineering at the
University of Michigan in 1996; an MSE in Construction
Engineering and Management from the University o
Michigan in 1993; an M.S. in Civil Engineering from the
University of Nebraska in 1987; and a Civil Engineer’s
degree from Universidad Catolica Madre y Maestra
(Santiago, Dominican Republic) in 1986.  He designe
and implemented the STROBOSCOPE simulatio
language as part of his Ph.D. dissertation research.  
addition to discrete event simulation, his researc
interests include construction process modeling an
decision support systems for construction.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

