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ABSTRACT

It is argued that the two principal components of
simulating earthmoving operations are modeling and
providing input data. The knowledge and proficiency in
modeling has been substantially improved through

function of payload and load time. The direct
development of the joint probability function is
complicated. Therefore, the joint probability function is
described using the marginal probability of load time and
the conditional probability of payload given load time.
The modeling of the correlated payload and load time is

general purpose simulation systems such as CYCLONE demonstrated using STROBOSCOPE, a general-purpose
and STROBOSCOPE. However, the inability to provide simulation system.
statistically reliable input data to the models is source of
concern. Automated data collection through instrumented 2 BACKGROUND
vehicles provides the first opportunity to collect cycle
time data in a continuous manner and hence, provide aNecessary background research can be grouped under
statistically-reliable data set. This paper presents the usethree areas: a) modeling environment, b) modeling the
of automated data to fit probabilistic distributions that are load activity, and c¢) vehicle instrumentation. Previous
used as input to simulation models. This paper also research pertaining to each one of these areas of research
describes a methodology to develop statistical parametersis discussed under the appropriate sub-heading.
for simultaneous variation in payload and load time
through the concept of a payload time (PLT) Map. Field 2.1 Modeling Environments
data from on-going earthmoving projects is used to
illustrate these concepts. One of the earliest developments in the modeling
environment for construction simulation was CYCLONE
[Halpin 1977]. CYCLONE can model and simulate
repetitive construction processes that are cyclical. A
Earthmoving operations can be divided into four elemental number of researchers have extended the capability of
activities, namely, load, haul, dump and return. Each CYCLONE since then, the notable enhancements being
activity is associated with a probabilistic estimate of the the development of MicroCYCLONE — a
duration. The load activity is the only one that is associated microcomputer edition [Lluch and Halpin 1982] and UM-
with two variables — load time and payload. The inter- CYCLONE at University of Michigan [loannou 1990].
relationship between payload and load time makes the loadINSIGHT [Kalk 1980] is based on CYCLONE and
activity more complicated than the other activities. The includes time-lapse photography for data acquisition,
challenge is to model the simultaneous variation in payload graphics support and an interactive environment [Paulson
and load time. This paper addresses the simultaneouset al. 1987]. Since then, there have been several other
variation in payload and load time by developing a simulation programs developed. A recent addition to this
parametric form of payload in terms of load time. list is the development of STROBOSCOPE [Martinez
Simulating the load activity requires the ability to 1996], a comprehensive and sophisticated tool that
model the process as well as the data reduction capabilityincorporates end-user programmability and extensibility.
to support the modeling constructs. The data reduction Martinez and loannou [1995], and, loannou and Martinez
process for the simultaneous variation in payload and [1996] illustrate the principles of construction simulation
load time involves the development of a joint probability and capabilities of STROBOSCOPE.

1 INTRODUCTION
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Most of the modeling environments mentioned here
use an activity-based approach which is conducive to
modeling construction operations [Martinez and loannou
1999]. The typical approach to modeling an operation
involves specifying an activity cycle diagram and the
corresponding probabilistic estimates for the durations of
the activities. Modeling the load activity, however,
involves correlated variability among load time and
payload. Modeling this requires programmability and thus
necessitates the use of STROBOSCOPE.

It must also be pointed out that there are
commercially available simulation environments such as
GPSS/H and ProModel which allow for programmability.

2.3 Vehicle Instrumentation

Vehicle instrumentation presents a viable opportunity for
continuous productivity data collection. The vehicle
instrumentation could include machine health diagnostic
systems, global positioning systems and radio frequency
identification systems. Machine health diagnostic
systems were used to collect performance data for the
purpose of providing input to simulation models.
Performance records refer to the activity durations of
different component of the earthmoving cycle. Different
equipment manufacturers have their own proprietary
onboard instrumentation systems. Examples of

However, most of these environments are based on aproprietary systems currently in use include VIM&

process interaction (PI) strategy wherein a model is
written from the point of view of entities that flow

TPMS’ (Caterpillar [http://www.cat.com]),
CONTRONICS (Volvo [http://www.vce.volvo.se]) and

through a system. The PI strategy is very effective in HMS® (Komatsu [http://www.komatsuamerica.com]).

modeling industrial applications but presents substantial

challenges when used to model construction applications3 MODELING THE LOAD ACTIVITY

where there is a heavy interaction between resources

[Martinez and loannou 1999]. The load activity can be measured using two quantitative
The above account suggests that current knowledge measures, namely, the final payload and the total load

in modeling is capable of realistically replicating time. Final payload refers to the payload of material

construction activities. The implicit assumption made placed on the truck as it leaves the load area and the total

by various researchers in formulating their problem is time reflects the time taken to achieve the final payload.

that sufficient data is readily available. AbouRizk and Measuring the final payload and the total load time for

Halpin [1992] have shown that input data is of the purpose of modeling the uncertainty in these measures

paramount importance in simulating construction requires a continuous form of data collection. Vehicle

operations. instrumentation provides the first opportunity to

continuously and to autonomously collect data on final

payload and the total load time. Therefore, the primary

assumption is that instrumented data on the load activity

The load activity as part of the earthmoving cycle is are available.

applicable to both scrapers and loader-truck operations.

Day [1973] presents a load-growth curve wherein the 3.1 Payload and Load Time as Recorded

payload is described as a function of the load time and is by the Vehicle Instruments

used as the basis of a non-linear optimization process.

These curves have been specifically used for scraperTwo possible scenarios can be considered in modeling the

operations although their scope can be extended toload activity. The first scenario is that the final payload

loader-truck systems [Gransberg 1996]. The load-growth and the total load time are independent of one another and

curve for a loader-truck operation would have step- the second scenario is that the final payload and load time

increments instead of a continuous curve as in the case ofare correlated. The second scenario may appear more

the scrapers. Although the load-growth curves describe intuitive because of the knowledge of load-growth curves

the relation between the incremental payload and the as described for a scraper operation. The data used by the

incremental load time, they do not include the variation concept of load-growth curves reflects the incremental

involved in either payload or load time. time and the corresponding payload. The values for
Martinez [1996] and loannou and Martinez [1996] payload and load time recorded by the vehicle

show how to model correlated variation in payload and instruments are registered at the time when the truck

load time in STROBOSCOPE by using the marginal of |eaves the load area. It is not possible to capture the

payload and the conditional of load time given the “growth” process using the instrumented data.

payload. For illustration purposes, those examples use

empirical mathematical formulas that apply to a loading 3.2 Independent PDFs for Payload and Load Time

unit pass rather than to the entire multi-pass loading

activity of a loader-truck operation.

2.2 Modeling the Load Activity

The two variables, payload and load time are treated as
independent variables and an appropriate probability
density function (PDF) is defined for each variable. A

standard distribution that best defines the payload is
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determined using standard procedures [Law and Kelton values of load time are theoretically possible, the variable
1991]. The probability of obtaining a particular range of load time is also treated as a continuous random variable.

final payload is modeled by Eq (1). The joint probability of obtaining a combination of
payload and load time is the product of the individual
Up 1 probabilities under the assumption of independence. The
PU,>p>L,)= t[f(p)dIO (1) joint probability calculated in this manner will depend on
: the distributions that define the payload and load time. It

is also possible that more than one unique distribution can
whereP(x) is the probability of a random variabe L be used to define specific intervals of payload and load,
andU, are lower and upper limits of the range of payload, which makes the situation more complicated. Moreover,
p is the payload, and(p) is the PDF that defines the it is not intuitive to understand the simultaneous variation
variation in payload for the entire range. in payload and load time if defined by the two
Figure 1 shows a graphical representation of Eq(1l) independent PDFs. A powerful graphical format called a
wherein the integral of the PDF is calculated as the areaPLT Map is used to graphically present the simultaneous
enclosed by the cumulative frequency curve within the variation in payload and load time.
specified limits. Since all discrete values of payload are
theoretically possible, the variable payload is treated as a
continuous random variable. The probability of obtaining
a single value of payload is zero; hence, the need to use a
range to determine the probability.
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3.3 PLT Map
Figure 1: Frequency Distribution of Payload

Normalized Load Time

Figure 2: Frequency Distribution of Load Time

A PLT Map (Payload- Load Time Map) describes the
The probability of obtaining a particular range of joint frequency of payload and load time. An example of

total load time can be developed in a manner similar to @ PLT Map is shown in Figure 3. The abscissa is
that used for payload and is given by Eq (2). represented by final payload and the ordinate by total
load time. The values are normalized to maintain a

U, consistent scale. The contour plot uses color or pattern to
P(Ut>t>|_t):T!’f(t)dt ) indicate areas with equal probability, the legend for
which is shown above the plot. For example, the
payload-time pair (1-1.1, 1.1-1.3) occurs with a
whereL, andU, are lower and upper limits of the range of probability between 9% and 10%. The payload-time
load time requiredt is the load time, an€{t) is the PDF pairs represented by a particular color or pattern have
that defines the variation in load time for the entire range. equal probability of occurrence. The shape or footprint of
Figure 2 presents the graphical form of Eq (2) the plot, the location of the modal region and the area
wherein the integral of the PDF is calculated as the areaoccupied by each color or pattern provide interesting
enclosed by the cumulative frequency curve within the insights into the operation.
specified limits. It is again noted that since all discrete
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Contour Plot for Payload vs Load Time The procedure under this assumption is based on
[Go w17 875 554 675 G56 B5T BT5 BP9 EID marginal distributions of load time and conditional
distributions of payload given load time (discretized).
This is because the probabilistic models needed to
describe the joint distribution using this approach are
more tractable than an approach in which the marginal of

I load time and the conditionals of payload are used even
though the latter is directly supported by
STROBOSCOPE.
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Figure 3: An Example of a PLT Map

The joint probability of obtaining a particular range
of payload and load time is given by Eq (3).

UlUP
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wheref(t,p) is the surface which is depicted by the PLT Figure 4: Payload Distribution for Each Discrete Interval
Map that represents the joint frequency distribution of of Load Time
load time and payload. The frequency of a pair of
payload and load time is normalized and so the volume First, the load time— treated as the independent
under the surface is equal to one. Therefore, the color orvariable — is modeled as a continuous distribution.
pattern corresponding to a particular combination of AbouRizk and Halpin [1992] used a transformed method
payload and load time represents the probability of to determine the statistical properties of construction data.
occurrence of that pair. They used the values of skewness and kurtosis to
It is possible to imagine that the PLT Map is a series determine the type of distribution associated with various
of continuous payload distributions, each conditioned on construction activities. From the field data shown in
a given range of load time as shown in . A similar set of Figure 5, it is clear that most instances of the load time of
distributions can be created for load time conditioned on a truck can be modeled by a Beta distribution, confirming

ranges of payload. the findings of AbouRizk and Halpin [1992]. Let it be
assumed that load time is modeled as a Beta distribution
3.4 Joint Probability Distribution in as shown in Eq (4).

a Parametric Form

P(t) =Beta[a, b, § S (4)
The significance of the independence assumption is that
both payload and load time can be independently sampledwhereP(t) is the PDF describing the load timaejs the
from their respective distributions. It is possible to lower bound of the distributiorh is the upper bound of
generate a high value for load time and a low value for the distribution,s, and s, are scale and shape factors
payload for an instance of the load activity and vice respectively of a Beta distribution.
versa. It is possible that a longer load time could The second step is to parametrically define payload
generate a higher payload. The most elemental way toin terms of the load time and at the same time capture the
determine if a correlation exists is to observe the PLT variance in payload. Figure 6 suggests the distribution
Map. If the PLT Map has elliptical regions and the corresponding to payload could be modeled as a Normal
ellipses makes an angle with the payload axis, then theredistribution. For reference, a line corresponding to Log-
exists a relation between final payload and total load Normal distribution is shown in the figure. It can be
time. This relation is strong if the ellipses make a 45° noted that the Log-Normal offers the next best alternate
angle. The discussion under this heading makes use ofdistribution to model the data.
the assumption that payload is dependent on load time.
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Load Time of a Truck

Bernoull Distribution

2 4
RSN
FER .

00000 02000 03000 04000 05000

Theta 1

06000 07000 08000 09000  1.0000

Most Skewed

01000
Least Skewed

Figure 5: Distribution to Model Load Time Data
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Figure 6: Distribution to Model Payload Data

The intent is to develop equations that define the

and Eq (5) for modeling each instance of the load activity
during a simulation run.
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Figure 7: Parametric Form of Payload and Load Time

4 DEMONSTRATING THE JOINT
PROBABILITY DISTRIBUTION

Most of the general purpose simulation systems allow the
duration of the activity to be modeled using a PDF. The
implementation of the joint probability distribution
requires programmability. STROBOSCOPE offers the
user programmability to accomplish this requirement and
hence it will be used to demonstrate the methodology.
The syntax and other details of STROBOSCOPE are
available in Martinez [1996].

STROBOSCOPE has direct, two-statement, support
for modeling a joint distribution where time (load time) is
a function of resource usage (payload) because in
STROBOSCOPE activity times are determined after

mean and standard deviation of a Normal distribution that resources have been acquired_ In this case, however, it
defines payload in terms of load time. The equations for \yas more convenient to reduce the data to a format in
the mean and standard deviation are developed bywhich payload is a function of load time. Modeling this
constructing a grid of payload and load time and requires the more involved STROBOSCOPE snippet of
calculating the mean and standard deviation of payload code shown in Figure 8. The duration of the load truck
for each interval of load time. The data from the grid is activity is determined by sampling from $caledBeta
used to generate a graph as shown in Figure 7 where bothyjstribution. At the start of the load truck activity, the
average and standard deviation of payload is plotted in conditional probability ofPayload is determined as a
terms of load time. ) function of load time. This two-statement approach in
The best-fit equations for the mean and standard STROBOSCOPE allows one to model the simultaneous
deviation of payload are shown in Figure 7. The next yariation in payload and load time.
step is to define a Normal distribution with a mean and
standard deviation using these best-fit equations. EQq(5)
shows the form of the Normal distribution.

DURATION LoadTruck
ScaledBeta[0,1.23,11.1,4.21];

ONSTART LoadTruck ASSIGN
LoadTruck.Truck.Payload
Normal[0.0363*LoadTruck.Duration2 +
0.1239*LoadTruck.Duration + 0.8933,
-0.0015* LoadTruck.Duration #2-0.013*
LoadTruck.Duration +0.1221];

P(p) = Normal [-0.0363t+ 0.1239t + 0.8933, -0.0015¢
0.013t + 0.1221 (5)

whereP(p) is the PDF that describes the payload an
instance of load time that is generated by the Beta
distribution defined in Eq (4). A pair of load time-
payload coordinates is generated by sampling from Eq (4)

Figure 8: A Snippet of Code in STROBOSCOPE to
Implement the Joint Probability Distribution of Load Time
and Payload
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A model was created incorporating the code shown in The statistical parameters in the form of probability
Figure 8; the results of the payload - load time pairs distributions can be used to define the load time as well
created during run time is shown in the form of a PLT as the payload of the load activity. Two scenarios are
Map in Figure 9. It is interesting to note the following possible in terms of payload and load time. The first
similarities between the PLT Map created using field data scenario is that the payload may be independent of the
as shown in Figure 3 and the PLT Map simulated using load time in which case a product of the individual
the PDFs as shown in Figure 9. probabilities of payload and load time can be used to

The range of payload represented by the field data determine the joint probability of a payload-load time
and the simulated data correspond to the same range (0.€ombination. The second scenario is that payload may be
to 1.3). dependent on the load time in which case a parametric

The modal region for the field data and the modal form of payload in terms of load time must be used to
region for the simulated data fall in the same region. determine the joint probability. The second scenario was

An important point to note regarding the field data is discussed in detail using field data.
that the trucks are loaded in integer passes. Schexnayder The probabilistic distributions define the input to
et al. [1999] reported that there appears a good match simulation models. However, they are not intuitive
between volumetric load and full shovel buckets cycles. enough to provide an immediate response regarding the
Such granularity in the data is smoothened out when operation. A PLT Map was developed to provide a
describing the data using a PDF. Moreover, a unique graphical representation of the simultaneous variation in
Normal distribution is used for the entire range of payload and load time. The PLT Maps can improve on-
payload. It is clear from that different distributions can the-job communications and hence facilitate productivity
be modeled for each range of load time. Similarly, it is improvement.
noted that the distribution that describes the load time and Finally, it is pointed out that the performance records
the equations that describe the mean and standardcollected by the vehicle instrumentation are not
deviation will differ between ranges of data. The data characterized, that is, there is no record of the operating
can be dissected into as many granular slices as neededonditions under which the data is collected. The effect
by the application. However, for the purpose of of the operating conditions on the variance of the
illustration, the payload and load time are defined by a activity’'s performance is not captured automatically.

unique PDF models.

Contour Plot for Payload vs Load Time
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Figure 9: PLT Map Simulated Using the Parametric Form
of the Joint Probability Distributions

5 CONCLUSION
This paper focussed on modeling the load activity in an

earthmoving operation involving a loader and a truck.
The load activity is characterized by two quantitative

measures, namely, final payload and total load time and

hence requires the knowledge of variation in both
parameters.

simultaneous variation in payload and load time.

1021

This paper described a methodology to
develop the statistical parameters necessary to define the

Recording the operating condition requires manually data
collection because it involves subjective data. If the
operating conditions are available, the performance
records collected by the vehicle instruments can be
filtered based on the conditions. It then becomes possible
to generate a PLT Map and hence the PDF for each set of
operating conditions.
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