
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

SIMULATION TO SUPPORT OPERATIONAL TESTING: A PRACTICAL APPLICATION

Bradford S. Canova
Peter H. Christensen

Michael D. Lee
Bruce R. Tripp

Michael H. Pack
David L. Pack

The MITRE Corporation
234 South Fraley Boulevard
Dumfries, VA 22026, U.S.A.

,
y

r
d
e
o

l

o
n
e

s
k
8
e

o
n

al
t

0
 1,

get

er
is

sile’s
rget
ng
tor
ield
get.
th

get
ABSTRACT

This paper describes a combined effort between Th
Marine Corps Systems Command (MARCORSYSCOM)
the Marine Corps Operational Test and Evaluation Activit
(MCOTEA) and the MITRE Corporation to exploit M&S
to support Operational Test (OT) of the Predator Sho
Range Assault Weapon (SRAW). When applie
appropriately, the cost benefits of using simulation assist
testing can be substantial. The March 23, 1998 edition
Aviation Week and Space Technology contains an article
entitled “Better Modeling Will Alter the Culture of Flight
Testing.” The first sentence reads:

“Over the next decade, budget pressures and a
growing dependence on modeling and simulation
will alter the philosophy and methods of flight
testing military aircraft and weapons.”

The Predator simulation system provides an examp
of how simulation can be applied to the system
development process to help reduce cost and ensure
higher quality product. The success of the Predat
simulation system shows that with a complete, cohere
VV&A process in place, a simulation system can b
developed to provide valuable input to the design
development, testing and training phases of the syste
development process.

1 PREDATOR SRAW OVERVIEW

The Predator SRAW was conceived in 1987 as a low-co
short-range anti-armor missile with a top down attac
warhead. The program began concept exploration in 19
with selection of five contractors each tasked to refin
missile design. In 1990, Demonstration/Validation
)

1071
e

t

d
f

e

 a
r
t

,
m

t,

9

(DEM/VAL) began with contract award to Loral
Aeroneutronic. Risk reduction was initiated in 1992, t
refine the missile tactical design. DEM/VAL completed i
1993 with multiple test firings. Engineering and
Manufacturing Development (EMD) began in 1994. EMD
will produce 125 missile systems to support Technic
Evaluation (TECHEVAL) and 103 missiles to suppor
Operational Test (OT).

The Predator SRAW missile weighs approximately 2
pounds and is about 35 inches long. As seen in Figure
the airframe holds three modular components: a Tar
Detection Device (TDD), warhead and Flight Module.

Laser

Detector

Module

Figure 1: Predator SRAW Missile Components

The TDD is a dual mode device that combines a las
ranger and magnetic detector. The laser ranger
depressed at a 60 degree angle and measures the mis
height above the terrain. The laser ranger locates a ta
by identifying changes in range associated with leadi
and trailing edges of a target. The magnetic detec
(magnetometer) senses changes in the magnetic f
around the missile as it approaches and flies over a tar
The TDD commands detonation of the warhead when bo
laser ranger and magnetic detector have confirmed tar
overflight. The Explosively Formed Penetrating (EFP

Canova, Christensen, Lee, Tripp, Pack, and Pack

o
ir
d

n

g
t
e
io
i
il
e
U

o
t

e
g
o
y
i

h

)
o
p

’
n
)
g

s
e
o
ta

t
n

o
g
a

e
t
ata
f

or

er

t
s,

ain.

.
m
f

e
nt
.)
ry

nd

ia
he
ls,
 to

ts
s
er,
n

warhead is contained within the missile’s airframe supp
structure. The support structure also houses a F
Through Cover, Surveillance/Test Connector, Manifol
Safe and Arm Assembly and Flex Cable. The EF
explodes downward through the Fire-Through Cover a
into the target.

The Flight Module consists of an Inertial Measurin
Unit (IMU), Guidance and Control Unit (GCU), Je
Reaction and Control Assembly (JRCA) and a rock
motor. The IMU provides rate sensing and accelerat
data to the GCU. The IMU Rate Sensors translate track
motion of the operator into a trajectory bias for the miss
GCU. The trajectory bias compensates for targ
movement when the missile is fired. At launch, the GC
commands the missile to climb and corrects f
environmental factors in flight. The GCU provides fligh
path correction commands to the JRCA. The JRC
provides yaw, pitch and roll control for the missile. Th
JRCA opens and closes eight solenoid valves that port
laterally about the airframe. The missile intercept soluti
is designed to overfly the target. Predator SRAW emplo
a dual phase solid propellant rocket motor that perm
employment in an enclosed area, such as a building
bunker. The rocket motor’s first phase generates minim
back blast; the rocket motor’s flight phase propels t
missile to the target.

2 PREDATOR M&S SYSTEM

The Predator SRAW Modeling and Simulation (M&S
System is a duel mode system that executes in b
hardware-in-the-loop (HWIL) and software-in-the-loo
(SWIL) modes. It supports the evaluation of productio
representative missile hardware and software in
simulated environment that replicates the missile
operational environment. The simulation system runs o
Silicon Graphics ONYX Reality Engine 2 (SGI ONYX
Workstation. The simulation environment was built usin
the Force Level Analysis and Mission Effectivene
System (FLAMES). The missile’s flight dynamics ar
simulated by a physics based Six Degree of Freed
(6DOF) model currently used to support Developmen
Testing.

3 SYSTEM DESIGN

There are four major software components of the Preda
SRAW M&S system. These include the simulatio
environment, the 6DOF missile flyout model, the GCU
and the TDD. Figure 2 provides a graphical depiction
how the major components interact. The followin
sections describe the architecture associated with e
component, including their states, modes, and software.
107
rt
e-
,
P
d

t
n

ng
e
t

r

A

as
n
s

ts
or
al
e

th

n
a
s
 a

s

m
l

or

,
f

ch

UNIX
System Flags,

Accel.
Rates

Flags

Analog,
Digital

Digital

Commands

Initializations,

Actions,

Environment

Log data,

Trajectory

GCU
H/W

Flags,
Cycle
Time,
Range

Shared Memory

FLAMES

GCU S/W
or

H/W
Interface

TDD

Interrupt
Timer

R/T
Master

6DOF

Predator Software Configuration

Data Data

Magnetic
 Model

Optical
Models

Master
Utility

CPU 1 CPU 2 CPU 3 CPU 4

Gunner
Model

Figure 2: Predator M&S System Configuration

3.1 FLAMES Simulation Environment

FLAMES is a commercially available simulation
environment that provides the infrastructure to support th
representation of the natural environment, targe
representations, gunner behavior representations, and d
collection functions. The FLAMES component consists o
the software required to initialize and control the Predat
SRAW real-time simulation, to interface to the simulation
users and to record the results of simulation runs for lat
display, review and analysis.

3.1.1 FLAMES Architecture

FLAMES is an object-oriented simulation environmen
that provides the mechanisms to represent vehicle
weapons systems, sensor systems, munitions, and terr
Typically scripts completely control behavior of all
objects throughout the duration of the scenario
However, it is possible to build vehicle or weapon syste
object models that exercise varying degrees o
autonomous control.

For the Predator missile, FLAMES does not comput
missile behavior internally but rather reads the curre
missile state vector (position, velocity, mode, status, etc
from the other components through shared memo
interfaces. FLAMES controls the initial state of the
Predator SRAW model by reading the parameter tables a
the initial state vector from configuration files. FLAMES
then relays that information to the other components v
the same shared memory interfaces. FLAMES controls t
position, movement, and actions of several other mode
such as the target models and the gunner model used
sense targets and initiate missile firing.

In addition, FLAMES records the flight data (time,
position, attitude, mode, & status) during the engagemen
for later playback. In playback mode, FLAMES display
the engagement, showing the terrain, the target, the gunn
the Predator SRAW missile and also displays the locatio
of the impact of the EFP warhead.
2

Simulation to Support Operational Testing: A Practical Application

e
In
e
li
o
t

g
e
W

,
ry
n
e
.

in
t
l
e

 a
O
th
n

e
the
ng.
l.
for
ims
el
ed
e
e
ata
its
e
of
tor

e,
on
hat
fuel
he
nd

al-

nd
se

the
e.
3.1.2 FLAMES States and Modes

During a simulation run FLAMES executes in thre
modes: Initialization, Track, and Flight (see Figure 3).
the Initialization mode FLAMES reads the scenarios, th
target and gunner models, the parameter files that estab
the initial position of the target and the gunner and all
the data files required to initialize the other componen
from disk storage.

FLAMESTM Executive

Missile Movement

Read Script

Predator Initialization

Main Loop

Spawn Real-time Process

Target Movement

OR

In All Modes

Cleanup / Reset

}

- rehosted, reused, or COTS code

Initialization Mode}
1 millisecond

Loop

Gunner Model
(In Track Mode)

Data Logging

Laser Ranging
(In Flight Mode)

Figure 3: FLAMES Component Modes & Control Flow

The FLAMES component is capable of performin
single runs or of performing multiple runs that cover th
entire range of environments in which the Predator SRA
is to be tested.

In addition to initializing its own data structures
FLAMES allocates and initializes all of the shared memo
structures required for inter-process communication a
starts the Master Real-time process and the TDD proc
on separate CPUs. The CPU layout is shown in Figure 4

Each process is given its own CPU to ensure real-tim
performance. CPU 0 contains all the system process
and the operating system housekeeping. Because
Master Graphical User Interface (GUI) Utility is not a Rea
Time process, it is also put on CPU 0 along with any oth
non-Real Time utilities.

In order to collect telemetry data from the simulation,
telemetry shared memory segment is created and the 6D
and TDD populate the shared memory segment during
simulation. The data is stored in a large array until the e
of a run when this data is written to an output file.
1073
sh
f
s

d
ss

e
g
he

r

F
e
d

Figure 4: Process Locations

After completing initialization, FLAMES enters the
Track mode. In Track mode FLAMES invokes th
subroutine that reads the current missile state from
6DOF component and records that data via data loggi
In Track mode FLAMES also invokes the gunner mode
The gunner model scans the simulated environment
targets. Once a target is acquired, the gunner model a
the simulated Predator SRAW. The gunner mod
continues to point the missile at the target for a predefin
tracking interval and then initiates firing. After the missil
is fired FLAMES enters the Flight mode. In Flight mod
the missile movement, the target movement and the d
logging continue but the gunner model is terminated. In
place FLAMES invokes a function that computes th
distance from the missile to the terrain along the line
sight of the laser ranging sensor housed in the Preda
SRAW nose-cone. FLAMES remains in this mod
continuing to read missile position, compute target positi
and laser ranging until the 6DOF component signals t
the run has ended due to either warhead detonation,
exhaustion, or time or distance overrun. At the end of t
Flight mode FLAMES captures the data from that run a
then re-enters the Initialization mode for the next run.

3.1.3 FLAMES Component

The FLAMES component is not executed under the re
time simulation executative for two reasons:

1) The FLAMES component must perform
limited I/O functions, which would cause
frame overruns under the real-time executive.

2) A non real-time processes is needed to
initiate and manage the execution of the real-
time executive during the execution of the
simulation.

However, it is essential that the main FLAMES
programming loop complete a cycle in under 1 milliseco
in both Track and Flight modes. This is required becau
the target, gunner, and laser ranging models within
FLAMES component are updating critical data items (i.

ONYX RE2 4 CPU Set

UNIX
System
Housekeeping
Master GUI
Data Monitor

UNIX
System
Housekeeping
Master GUI
Data Monitor

CPU 0

FLAMES TMFLAMES TM

CPU 1

RTS
Realtime
Frame
Sequencer

6DOF
Predator
GCU SWIL

RTS
Realtime
Frame
Sequencer

6DOF
Predator
GCU SWIL

CPU 2

TDD
Target
Detection
Device

TDD
Target
Detection
Device

CPU 3

Canova, Christensen, Lee, Tripp, Pack, and Pack

cy
DD
d
t
ly
e

re
el
os
th

nt
io
is
n

e
on

 o
W
 o
nt
 a
so
e

te
P
 a

s

in

es
X
o
ea
n
on

F
en

th
rs
 a

is
 o

r
al
e.
C
d
al
in

s:

rs
.
al
t
e.
m
e

ns
ng
at
e

l
d.
t

e
ht
he
l-
ed
target position, gunner tracking technique and accura
and the laser range) used by the 6DOF, GCU and T
components. The other components are executing un
strict real-time constraints, which requrires that the da
being shared with FLAMES must be updated in a time
manner. If it is not, a lag will be introduced in th
simulation that would degrade its overall fidelity.

The only way to resolve this discrepancy is to ensu
that the FLAMES component completes execution w
ahead of the required interval. To achieve this, m
normal housekeeping subroutines were removed from
FLAMES “calendar”. The FLAMES calendar is an
internal list (discrete event list) that determines what eve
are to be processed in the main loop. Synchronizat
between FLAMES and the real-time executive
accomplished through the shared memory interface. A
inability of FLAMES to maintain the real-time frame rat
of the real-time executive will cause the current simulati
run to be terminated.

3.2 Six Degree of Freedom Model

The Six Degree of Freedom (6DOF) component consists
the software required to model the Predator SRA
airframe, aerodynamics, external environment, and all
the missile internal electrical and mechanical compone
excluding the GCU and the TDD. The 6DOF also uses
input parameter file which initializes 6DOF parameters
the results of each run vary similarly to what would b
expected in the real world.

3.2.1 6DOF Architecture

The main module of the 6DOF component is the Mas
Real-time Sequencer (MRS). The MRS uses the React
real-time extensions to the SGI operating system to call
of the other functions in this component. React Pro is
commercial software package written by Silicon Graphic
It adds real-time capability to the standard SGI operat
system (IRIX) by providing high-precision time
management functions, microsecond-resolution proc
dispatching, and the capability to override normal IRI
processor and interrupt control. The MRS uses React Pr
ensure that the 6DOF software executes under strict r
time control. In the Predator SRAW HWIL Simulatio
mode, the 6DOF code is executed 1000 times per sec
When in SWIL mode both the GCU code and the 6DO
code must execute 1000 times a second. As a consequ
the software must complete its computations in under
millisecond. If the code requires less than 1 millisecond
MRS executes a wait until the next millisecond tick occu
If the software does not complete in 1 millisecond then
fatal error occurs and the simulation is aborted.

The core functionality of the 6DOF component
contained in the code that provides the six degree
1074
,

er
a

l
t
e

s
n

y

f

f
s
n

r
ro
ll
a
.
g

s

to
l-

d.

ce,
1
e
.

f

freedom flight characteristics for the simulated Predato
missile. The 6DOF contains the models of all the intern
functions and components of the Predator SRAW Missil
The 6DOF was originally hosted on a Pentium-based P
written in Ada. Relatively few code changes were require
to re-host the 6DOF on the SGI host. Some addition
changes to the 6DOF were required to allow it to run
strict real-time. All communication in and out of the
6DOF component is via shared memory.

3.2.2 6DOF States and Modes

The 6DOF component has two operational mode
Initialization and Real-time. In the Initialization mode the
6DOF component reads the initialization paramete
supplied by the FLAMES component from shared memory

The Master Sequencer then calls the 6DOF intern
initialization routines, locks the 6DOF componen
process into memory and enters the real-time mod
Once in real-time, the MRS reads the current state fro
shared memory and calls the 6DOF model. When th
6DOF completes one pass through its code it retur
control to the Master Sequencer. The real-time operati
system keeps control until the millisecond tick is issued
which time the next simulation cycle is executed (Se
Figure 5).

Master Real-time Sequencer

Real-time Loop

Enqueue 6DOF Model

Cleanup / Exit

Return to Master

1 Millisecond
Loop

*Calls GCU SWIL or
HWIL as appropriate

Predator Initialization

Read Shared Memory

Update Shared Memory

Call 6DOF*

Figure 5: 6DOF Component Modes & Control Flow

The real-time loop continues until the 6DOF mode
sets a flag indicating that the firing scenario has complete
After completion of the scenario, the 6DOF componen
exits.

3.2.3 6DOF Component

The 6DOF component is comprised of Master Real-tim
Sequencer (MRS) and a 6DOF model that models the flig
dynamics and characteristics of the Predator missile. T
MRS is responsible for controlling the constrained, rea
time execution of the simulation system. The steps requir

Simulation to Support Operational Testing: A Practical Application

st

y
m
le
in
m
on
im
o
te

m
o

se
is
te
e
be
le
r
n
o
l

d
o
u

io
ic
o
je
an

ure
the
F
an

om
U
rol

ed
as
W
In
to
ht
he
by
ery
is
U
an

he
are
the

es:
e

e
ded
 the
nd

and
re.
to establish a set of real-time processors with determini
response to interrupts are outlined below:

1. Direct interrupts not related to real-time
processes away from real-time processors.
Direct real-time interrupts to the real-time
processors.

2. Restrict each real-time processor so that all
processes not explicitly assigned to it will be
run on a non-real-time processor.

3. Lock real-time processes onto real-time
processors.

4. Allocate and lock physical memory to all
virtual addresses used by real-time processes.

5. Isolate the real-time processors from
interprocessor interrupts used in a
multiprocessor system.

6. Exempt real-time processors from system
clock interrupts and UNIX timesharing
scheduler activity.

Once these steps are performed the system is read
begin scheduling and executing events. The fra
scheduler is a kernel module that cyclically schedu
processes at intervals defined by a regularly occurr
interrupt. When enabled on a processor, the fra
scheduler replaces all other IRIX scheduling policies
that processor, and configures the processor for real-t
operation. Frame schedulers can be enabled on all but
processor in a multiprocessor system; i.e. all but the sys
processor. Each frame scheduler manages execution
processes only on its own processor, but multiple fra
schedulers can be synchronized to enable frames
separate processors in a system to be synchronized.

The 6DOF model consists of an initialization pha
and a state integration phase. The initialization
accomplished by calling the modules that have sta
requiring initialization. The state integration routin
employs a Runge Kutta integrator with a selectable num
of cycles. The model is commonly run using a 2-cyc
integration. During the execution of each cycle, calls a
made to the main modules of the 6DOF model. At the e
of each time step (1 millisecond), the state integrati
routine increments time if the flight has not ended and ca
the other modules again.

The 6DOF can be executed in a Monte Carlo mo
that provides random variations to specified variables
successive runs. The 6DOF has missile linear and ang
accelerations, rates and position, event times, and line
sight rates and accelerations as input data. In addit
there is a large input data file including aerodynam
coefficients, misalignments, wind data, inertial sens
compensation coefficients, inertial sensor errors,
reaction control errors and delay times, propulsion data
target data.
1075
ic

 to
e
s
g
e

e
ne
m
of
e
n

s

r

e
d
n
ls

e
n
lar
of
n,

r
t
d

3.3 Guidance and Control Unit

The GCU component provides the software infrastruct
that allows the GCU software to be executed in both
HWIL and SWIL modes. In the HWIL mode the 6DO
component provides input and receives output from
actual GCU hardware component through a cust
hardware interface. While in the SWIL mode the GC
software is executed on the SGI ONYX under the cont
of the real-time executive.

3.3.1 GCU Architecture

The core functionality of the GCU component is contain
in the GCU code itself. For the SWIL mode this code w
re-hosted to the SGI Onyx from the Predator SRA
missile onboard computer with minimal modifications.
the SWIL mode the GCU is essentially a function call
the main function in the GCU code that executes flig
control software used to control the flight dynamics of t
missile. The execution of the GCU code is controlled
the 6DOF component, which executes once ev
millisecond. When the Predator SRAW simulation
integrated with the real-world Predator SRAW GC
hardware, the SWIL code is not executed. Instead
interface routine is called that communicates with t
Predator SRAW hardware, through a custom hardw
interface, and relays all the signals to the rest of
simulation.

3.3.2 GCU States and Modes

As shown in Figure 6, the GCU component has two mod
SWIL and HWIL. In the SWIL mode the 6DOF calls th
GCU embedded code directly.

In the HWIL mode the 6DOF component calls th
hardware interface routine instead of the GCU embed
code. That interface routine sends the current state to
Predator SRAW GCU hardware through the analog a
digital VME boards, then reads the current commands
status flags back from the Predator SRAW GCU hardwa

6DOF Process

Update Shared Memory

Return to 6DOF
 RT Master

Call GCU

Call GCU H/W I/F

OR

In SWIL Mode

In HITL Mode

Figure 6: GCU Component Modes & Control Flow

Canova, Christensen, Lee, Tripp, Pack, and Pack

t

r

h
F
s

t

o
n
e

t

b
r

i
e

-

e

b
e

m

ed

l
s
e
ts.
s

he

tor
e

 in
or
s

at
r
s

e
to
o
he
he
n

e
d
d

3.3.3 GCU Component

The heart of the GCU compoment is the re-hosted Preda
SRAW GCU. For faithful replication of Predator SRAW
performance, the code was modified as little as possib
Only those modifications absolutely necessary to re-hos
to the SGI were implemented. In the Predator SRAW CP
the GC_INTERRUPT_ SERVICE is an interrupt handle
i.e. it is never called explicitly but rather control is
transferred to it via a hardware action - in this case, t
firing of a 1 millisecond timed interrupt. Since the 6DO
is controlling the call to the GCU software, the timing i
managed by the 6DOF Real-time Sequencer. Th
essentially causes the 6DOF Real-time Sequencer to ac
the interrupt handler when in the SWIL mode.

3.4 Target Detection Device

The TDD component consists of the software required
execute the Predator SRAW onboard Target Detecti
software in the SGI in a real-time environment. I
addition, the target magnetic signature model is integrat
into the TDD component.

3.4.1 TDD Architecture

Because the TDD software updates at variable rates,
use of a Slave Real-time Sequencer was not sufficient
control the target detection algorithms. Instead the TD
component uses software interrupt functions controlled
the 6DOF’s MRS to control the TDD code, and to insu
that it executes in real time.

The core functionality of the TDD component is
contained in the TDD code itself, which is written in Ada
This code was re-hosted from the Predator SRAW miss
onboard computer with minimal modifications. For th
Predator SRAW Simulations (HWIL & SWIL), the TDD
code is executed at variable rates up to once every 2
microseconds.

In addition to the re-hosted TDD, the TDD componen
also contains a model of the magnetic field associated w
the simulation targets. The magnetic signature model w
written in C and is called from the TDD via an Ada C
language binding.

3.4.2 TDD States and Modes

The TDD component has three modes: Initialization, Pr
Flight, and Flight. In the Initialization mode the TDD
component reads the initialization parameters supplied
the 6DOF component from shared memory and then ent
the real-time loop (See Figure 7). In the Pre-Flight mod
the software waits for the TRIGGER_PULL message fro
the 6DOF code via shared memory indicating that th
trigger was pulled.
107
tor

le.
 it
U
,

e

is
 as

to
n

d

he
to
D
y

e

.
le

00

t
ith
as

-

y
rs

e,

e

TDD Real-Time Process

TDD Initialization

Pre-Flight Loop

Update Shared Memory

Cleanup / Reset

Call Execute Preflight

Call Execute Flight

Initialization Mode

Pre-Flight Mode

In Flight Mode

- rehosted, reused, or COTS code

}

Read Shared Memory

TRIGGER_PULLTRIGGER_PULL

TRUE

FALSE }

Flight Loop

FIRE_WARHEADFIRE_WARHEAD

TRUE

FALSE

Figure 7: TDD Modes & Control Flow

Once this occurs the software interrupts are enabl
and the TDD component enters the Flight mode.

In the Flight mode, the software interrupts contro
code execution. A single interrupt initiates one pas
through the TDD code. When the TDD completes on
pass, it sets up the next software interrupt time and wai
This real-time loop continues until the detection algorithm
initiate a FIRE_WARHEAD message or the 6DOF
component sets a Boolean flag that indicates that t
simulation run is complete.

3.4.3 TDD Component

The heart of the TDD component is the re-hosted Preda
SRAW on-board target detection code. The original cod
uses hardware interrupts to call the three main routines
the Predator SRAW TDD. The remainder of the Predat
SRAW TDD code is designed to perform system service
in the Predator SRAW TDD CPU. Because either UNIX
or the MRS provides those services in the simulation, th
code is not required. To faithfully replicate Predato
SRAW performance, the code was modified as little a
possible.

The other major piece of the TDD component is th
target Magnetic Model. In order to feed sensor data
the Predator SRAW TDD software, the simulator has t
contain a model of the appearance or signature of t
target(s) as they would appear to the TDD sensors. T
model of the target magnetic signature is based o
several reports provided by Naval Surface Warfar
Center (NSWC), Dahlgren, VA. These studies indicate
that a second order model would provide the require
accuracy.
6

Simulation to Support Operational Testing: A Practical Application

m

h
n,
m
th
&S
d

 o
a
ut
st

”

.
he
e
d
s
ac
ifi
ch
de

d
f

ts
a

th
th
g
D
s
.
th
 a
S

.
ng
te
 t
e
n
a

e
is

S
try
is

on
tual
on
 of
DD
to

l
be
he
es
to
is
ach

rs
ile
ags
ome
 a
4 VERIFICATION AND VALIDATION

The Verification and Validation (V&V) process applied
rigor to the development of the Predator M&S Syste
Verification and Validation were conducted
concurrently with M&S system development, whic
reduced overall risk to the program. In additio
periodic scrutiny of key components of the M&S syste
ensured that the developer was building exactly what
customer needed and thus held cost in check. M
System verification was accomplished by discipline
review of the products produced during each phase
the development process. M&S System validation w
accomplished by comparison of M&S System outp
with telemetry data from real world developmental te
firings.

4.1 V&V Process

The “DMSO VV&A Recommended Practices Guide
includes finely crafted definitions of verification and
validation as it refers to modeling and simulation
Simply stated, the verification process answers t
question “did you build what you said you would?” Th
validation process answers the question “does the mo
work right?” The Predator M&S System wa
developed using a waterfall development process. E
stage of the development process required spec
deliverables. Deliverables produced during ea
development phase were used to support mo
verification.

The IV&V Team reviewed the Preliminary Design
Document, Critical Hardware Design Document an
Critical Software Design Documents in support o
verification. The previously mentioned documen
largely supported verification, however some addition
documents were required. For example, one of
unique aspects of the Predator M&S System was
requirement to verify that the M&S System was usin
production representative GCU Software and TD
Software. In addition, the rehosted software mu
function exactly as it would in the actual missile
Identical software function was a concern, because
Predator GCU and TDD Software were targeted for
Motorola 68332 Processor, while the Predator M&
System runs on an SGI Onyx Quad R10000 Processor
order to verify that the rehosted software was functioni
properly static and dynamic analyses were conduc
using McCabe Tools. The McCabe Tools were used
statically inventory and dynamically trace run tim
execution of the rehosted software. The static a
dynamic analysis verified that the rehosted software w
functioning as advertised.
ger,
st.

1077
.

e

f
s

el

h
c

l

l
e
e

t

e

In

d
o

d
s

4.2 Analysis Methodology

For the purpose of supporting the VV&A process for th
Predator simulation system, the following analys
methodology was employed:

1. An analysis was performed to determine the
appropriate sample size needed to provide the
desired level of confidence that the
simulation is accurately representing the
behavior of the real system.

2. Telemetry data is captured from fifteen
identical live fire tests. Identical implies that
the firing conditions (e.g. target range, target
aspect, missile temperature, …) for the live
fire tests were matched as closely as possible.

3. An equal number of simulated Monte Carlo
runs are executed using the same initial
conditions present at the live fire tests.

4. Data from the simulated runs is compared to
data from the live fire tests. This comparison
determines if the simulation is replicating the
flight characteristics of the real missile within
some tolerance specified by the USMC and
the VV&A team.

4.3 Data Comparison

The validity of data provided by the Predator SRAW M&
System may be determined by comparing live teleme
data with the output of the simulation. To conduct th
comparison, a common set of variables was selected.

The Predator SRAW GCU and TDD function
independently and two aspects of missile vs. simulati
performance must be contrasted. The first aspect is ac
missile position as compared to simulated missile positi
throughout the flight of the missile. The second aspect
missile performance that must be considered is actual T
target detection during real firings as compared
simulated TDD target detection.

Consider missile position first. During an actua
flight, missile position and state at any given point may
fixed and measured in three dimensions X, Y and Z. T
X-axis refers to the location of the missile as it mov
down range towards the target. The Y-axis refers
missile position as it translates right or left. The Z-ax
refers to missile elevation. Parameters of interest in e
dimension include position, velocity and acceleration.

Next consider TDD performance. TDD paramete
are important in determining where the simulated miss
detected and detonated over the target. Several TDD fl
are used to assess simulation performance and make s
comparison with telemetry runs. Because the TDD is
dual mode device, flags associated with the Laser Ran
Magnetic Detector and Warhead detonation are of intere

Canova, Christensen, Lee, Tripp, Pack, and Pack

tu

th
ta
fo
at

 o
en
al
te
in
id
 li

n
n

ilit
so

s
ow
 n
er
ut
k o

or
n,
e
in

es
the
ted
ager
nd
n
ity.

e
ff

ited
as
re
d
e

nd

l,
st
w
as
r

in
t

r
r
e

e
s
p

.
n

8.

r

These flags are related to optical and magnetic signa
detection and detonation commands.

Subsequent analysis is based upon a comparison
missile position and TDD performance as observed in
missile and as set in the simulation during flyout. Da
generated by the Monte Carlo runs of the simulation,
both the GCU and TDD, is compared to the telemetry d
from the test flights.

5 CONCLUSION

The Predator simulation system is an excellent example
how simulation can be applied to the system developm
process to help reduce cost and ensure a higher qu
product. The success of the Predator simulation sys
shows that with a complete, coherent VV&A process
place, a simulation system can be developed to prov
valuable support across the entire system development
cycle.

One of the significant concerns raised whe
developing a hard real-time system, with compone
executing at frame rates in excess of 1000Hz, is the ab
to model physical factors, environmental factors and sen
inputs that precisely represent the dynamics and input
the system. The Predator simulation system has sh
that this can be done. This is not to say that one should
carefully choose the applications to be simulated. Th
are many examples of failed simulation efforts, b
judicious analysis and design can greatly reduce the ris
failure.

With companies such as Boeing and Ford relying m
and more on simulation to support their desig
development, and manufacturing processes, many n
areas of simulation research and application are open
up.

AUTHOR BIOGRAPHIES

BRADFORD S. CANOVA is a Principal Software
Systems Engineer at the MITRE Corporation. He provid
technical guidance to numerous programs at MITRE in
areas of simulation, real-time systems, and distribu
systems. In addition, he acts as the program area man
for Naval Programs within the Information Systems a
Technology Division at MITRE. He holds a B.S. i
Computer Science from the Pennsylvania State Univers

PETER H. CHRISTENSEN has been employed by th
MITRE Corporation as a Lead Member Technical Sta
since January 1995. Prior to that he served with the Un
States Navy as a Naval Flight Officer. At MITRE Pete w
assigned to the Software & Information Architectu
Technology Area, to support both Modeling an
Simulation and C4I Programs. In the Navy h
accumulated over 2200 hours in the EA-6B Aircraft a
1078
re

of
e

r
a

f
t

ity
m

e
fe

t
y
r

to
n
ot
e

f

e

w
g

has extensive experience in Command and Contro
Electronic Warfare and Computer Science. He was the fir
recipient of the Prowler Systems Excellence Award. Fle
35 Combat Missions during Desert Storm. He served
Suppression of Enemy Air Defense (SEAD) Lead fo
several key Air Wing Five night strikes into Iraq
throughout Desert Storm. He retired as a Commander
1995 from his final billet as a Deputy Program Manager a
the Naval Air Systems Command.

BRUCE R. TRIPP is a Senior Software Systems Enginee
at the MITRE Corporation. He is the Technical Lead fo
the Predator/SRAW Modeling and Simulation System. H
holds a B.S. in Physics from the University of South
Florida and an M.S. in Studies of the Future from th
University of Houston at Clear Lake. In addition, he ha
20+ years experience in real-time hardware-in-the-loo
simulation.

MICHAEL D. LEE is a Senior Software Systems
Engineer at the MITRE Corporation. Mr. Lee provides
modeling, simulation and visualization support for MITRE
He received his B.S. in Physics from Mary Washingto
College in 1994.

MICHAEL PACK is a Software Systems Engineer for the
MITRE Corporation, where he was hired in January 199
He graduated from West Virginia University Institute of
Technology in December 1997 with a B.S. in Compute
Science.

DAVID L. PACK is a Software Systems Engineer at The
MITRE Corporation. Mr. Pack provides modeling and
simulation support for MITRE. He received his B.S. in
Computer Science from West Virginia University Institute
of Technology in 1997.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

