Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

SIMULATION TO SUPPORT OPERATIONAL TESTING: A PRACTICAL APPLICATION

Bradford S. Canova
Peter H. Christensen
Michael D. Lee
Bruce R. Tripp
Michael H. Pack
David L. Pack

The MITRE Corporation
234 South Fraley Boulevard
Dumfries, VA 22026, U.S.A.

ABSTRACT (DEM/VAL) began with contract award to Loral
Aeroneutronic. Risk reduction was initiated in 1992, to
This paper describes a combined effort between The refine the missile tactical design. DEM/VAL completed in
Marine Corps Systems Command (MARCORSYSCOM), 1993 with multiple test firings. Engineering and
the Marine Corps Operational Test and Evaluation Activity Manufacturing Development (EMD) began in 1994. EMD
(MCOTEA) and the MITRE Corporation to exploit M&S will produce 125 missile systems to support Technical
to support Operational Test (OT) of the Predator Short Evaluation (TECHEVAL) and 103 missiles to support
Range Assault Weapon (SRAW). When applied Operatimal Test (OT).
appropriately, the cost benefits of using simulation assisted The Predator SRAW missile weighs approximately 20
testing can be substantial. The March 23, 1998 edition of pounds and is about 35 inches long. As seen in Figure 1,
Aviation Week and Space Technolamntains an article the airframe holds three modular components: a Target
entitled ‘Better Modeling Will Alter the Culture of Flight Detection Device (TDD), warhead and Flight Module.
Testing” The first sentence reads:

“Over the next decade, budget pressures and a TARGET

. ! A 3 DETECTION WARHEAD FLIGHT
growing dependence on modeling and simulation DEVICE
will alter the philosophy and methods of flight

testing military aircraft and weapons.”

The Predator simulation system provides an example
of how simulation can be applied to the system
development process to help reduce cost and ensure a WARHERD
higher quality product. The success of the Predator
simulation system shows that with a complete, coherent
VV&A process in place, a simulation system can be
developed to provide valuable input to the design,) i i
development, testing and training phases of the system The TDD is a dual mode device that combines a laser

INERTIAL SENSOR
GUIDANCE PROCESSOR

SOLENOID VALVES

Figure 1: Predator SRAW Missile Components

development process. ranger and magnetic detector. The laser ranger is
depressed at a 60 degree angle and measures the missile’s
1 PREDATOR SRAW OVERVIEW height above the terrain. The laser ranger locates a target

by identifying changes in range associated with leading
The Predator SRAW was conceived in 1987 as a low-cost, @10 trailing edges of a target. The magnetic detector
short-range anti-armor missile with a top down attack (Magnetometer) senses changes in the magnetic field

warhead. The program began concept exploration in 1989 around the missile as it appr(_)aches and flies over a target.
with selection of five contractors each tasked to refine '€ TDD commands detonation of the warhead when both

missile design. In 1990, Demonstration/Validation laser ranger and magngtic detector have confi.rmed target
overflight. The Explosively Formed Penetrating (EFP)

1071

Canova, Christensen, Lee, Tripp, Pack, and Pack

warhead is contained within the missile’s airframe support
structure. The support structure also houses a Fire-
Through Cover, Surveillance/Test Connector, Manifold,
Safe and Arm Assembly and Flex Cable. The EFP
explodes downward through the Fire-Through Cover and
into the target.

The Flight Module consists of an Inertial Measuring
Unit (IMU), Guidance and Control Unit (GCU), Jet
Reaction and Control Assembly (JRCA) and a rocket
motor. The IMU provides rate sensing and acceleration
data to the GCU. The IMU Rate Sensors translate tracking
motion of the operator into a trajectory bias for the missile
GCU. The trajectory bias compensates for target
movement when the missile is fired. At launch, the GCU
commands the missile to climb and corrects for
environmental factors in flight. The GCU provides flight
path correction commands to the JRCA. The JRCA
provides yaw, pitch and roll control for the missile. The

JRCA opens and closes eight solenoid valves that port gas

laterally about the airframe. The missile intercept solution
is designed to overfly the target. Predator SRAW employs
a dual phase solid propellant rocket motor that permits
employment in an enclosed area, such as a building or
bunker. The rocket motor’s first phase generates minimal
back blast; the rocket motor's flight phase propels the
missile to the target.

2 PREDATOR M&S SYSTEM

The Predator SRAW Modeling and Simulation (M&S)
System is a duel mode system that executes in both
hardware-in-the-loop (HWIL) and software-in-the-loop
(SWIL) modes. It supports the evaluation of production
representative missile hardware and software in a
simulated environment that replicates the missile’s
operational environment. The simulation system runs on a
Silicon Graphics ONYX Reality Engine 2 (SGI ONYX)
Workstation. The simulation environment was built using
the Force Level Analysis and Mission Effectiveness
System (FLAMES). The missile’s flight dynamics are
simulated by a physics based Six Degree of Freedom
(6DOF) model currently used to support Developmental
Testing.

3 SYSTEM DESIGN

There are four major software components of the Predator
SRAW M&S system. These include the simulation
environment, the 6DOF missile flyout model, the GCU,

and the TDD. Figure 2 provides a graphical depiction of
how the major components interact.

crPul CPU2 CPU3 CPU4
RIT :
Opical b Master Interrupt
Models SIS, Timer
Environment
TDD
UNIX FLAMES | | iogsam, |
e Magnetic
Sys{em - v!\rmde\
Gunner
Model
Master
Utility

Data

[Shared Memory

Predator Software Configuration

Figure 2: Predator M&S System Configuration

3.1 FLAMES Simulation Environment

FLAMES
e

is a commercially available simulation
nvironment that provides the infrastructure to support the
representation of the natural environment, target
representations, gunner behavior representations, and data
collection functions. The FLAMES component consists of
the software required to initialize and control the Predator
SRAW real-time simulation, to interface to the simulation
users and to record the results of simulation runs for later
display, review and analysis.

3.1.1 FLAMES Architecture

FLAMES is an object-oriented simulation environment
that provides the mechanisms to represent vehicles,
weapons systems, sensor systems, munitions, and terrain.
Typically scripts completely control behavior of all
objects throughout the duration of the scenario.
However, it is possible to build vehicle or weapon system
object models that exercise varying degrees of
autonomous control.

For the Predator missile, FLAMES does not compute
missile behavior internally but rather reads the current
missile state vector (position, velocity, mode, status, etc.)
from the other components through shared memory
interfaces. FLAMES controls the initial state of the
Predator SRAW model by reading the parameter tables and
the initial state vector from configuration files. FLAMES
then relays that information to the other components via
the same shared memory interfaces. FLAMES controls the
position, movement, and actions of several other models,
such as the target models and the gunner model used to
sense targets and initiate missile firing.

In addition, FLAMES records the flight data (time,
position, attitude, mode, & status) during the engagements

The following {or |ater playback. In playback mode, FLAMES displays

sections describe the architecture associated with eachme engagement, showing the terrain, the target, the gunner

component, including their states, modes, and software.

1072

the Predator SRAW missile and also displays the location
of the impact of the EFP warhead.

Simulation to Support Operational Testing: A Practical Application

3.1.2 FLAMES States and Modes ONYX RE2 4 CPU Set

During a simulation run FLAMES executes in three

modes: Initialization, Track, and Flight (see Figure 3). In CPUO CPU1 CPU2 CPU3

the Initialization mode FLAMES reads the scenarios, the RTS

target and gunner models, the parameter files that establish | unix E;i‘r:ieme DD

the initial position of the target and the gunner and all of fi)(;ifenl](eepinc FLAMES ™ Sequencer Target

the data files required to initialize the other components Master GUI | 6DOF Detection

from disk storage. Data Monitor Predator Device
GCU SwiL

FLAMES™ Executive

o After completing initialization, FLAMES enters the
| Spawn Reat-ime Procefs Initialization Mode Track mode. In Track mode FLAMES invokes the
— subroutine that reads the current missile state from the
6DOF component and records that data via data logging.
In Track mode FLAMES also invokes the gunner model.
The gunner model scans the simulated environment for
targets. Once a target is acquired, the gunner model aims
the simulated Predator SRAW. The gunner model
in All Modes
Data Logging

Figure 4: Process Locations

1 millisecond
Loop

continues to point the missile at the target for a predefined
tracking interval and then initiates firing. After the missile
is fired FLAMES enters the Flight mode. In Flight mode
the missile movement, the target movement and the data
Gunner Model Laser Ranging logging continue but the gunner model is terminated. In its
| e |OR| {0 gl Mode) | plaglge gFLAMES invokesga function that computes the
distance from the missile to the terrain along the line of
sight of the laser ranging sensor housed in the Predator
SRAW nose-cone. FLAMES remains in this mode,
continuing to read missile position, compute target position
[- rehosted, reused, or COTS cat and laser ranging until the 6DOF component signals that
Figure 3: FLAMES Component Modes & Control Flow the run _has ended due.to either warhead detonation, fuel
exhaustion, or time or distance overrun. At the end of the
Flight mode FLAMES captures the data from that run and
then re-enters the Initialization mode for the next run.

The FLAMES component is capable of performing
single runs or of performing multiple runs that cover the
entire range of environments in which the Predator SRAW
is to be tested. 3.1.3 FLAMES Component

In addition to initializing its own data structures, .
FLAMES allocates and initializes all of the shared memory Theé FLAMES component is not executed under the real-
structures required for inter-process communication and time simulation executative for two reasons:
starts the Master Real-time process and the TDD process

on separate CPUs. The CPU layout is shown in Figure 4. 1) The FLAMES component must perform

Each process is given its own CPU to ensure real-time limited 1/O functions, which would cause
performance. CPU 0 contains all the system processing frame overruns under the real-time executive.
and the operating system housekeeping. Because the 2) A hon real-time processes Is needed to
Master Graphical User Interface (GUI) Utility is not a Real initiate and manage the execution of the real-
Time process, it is also put on CPU 0 along with any other time executive during the execution of the
non-Real Time utilities. simulation.

In order to collect telemetry data from the simulation, a
telemetry shared memory segment is created and the 6DOF However, it is essential that the main FLAMES
and TDD populate the shared memory segment during the Programming loop complete a cycle in under 1 millisecond
simulation. The data is stored in a large array until the end in both Track and Flight modes. This is required because

of a run when this data is written to an output file. the target, gunner, and laser ranging models within the
FLAMES component are updating critical data items (i.e.

1073

Canova, Christensen, Lee, Tripp, Pack, and Pack

target position, gunner tracking technique and accuracy, freedom flight characteristics for the simulated Predator

and the laser range) used by the 6DOF, GCU and TDD missile. The 6DOF contains the models of all the internal

components. The other components are executing underfunctions and components of the Predator SRAW Missile.

strict real-time constraints, which requrires that the data The 6DOF was originally hosted on a Pentium-based PC

being shared with FLAMES must be updated in a timely written in Ada. Relatively few code changes were required

manner. If it is not, a lag will be introduced in the to re-host the 6DOF on the SGI host. Some additional

simulation that would degrade its overall fidelity. changes to the 6DOF were required to allow it to run in
The only way to resolve this discrepancy is to ensure strict real-time. All communication in and out of the

that the FLAMES component completes execution well 6DOF component is via shared memory.

ahead of the required interval. To achieve this, most

normal housekeeping subroutines were removed from the 3.2.2 6DOF States and Modes

FLAMES “calendar’. The FLAMES calendar is an

internal list (discrete event list) that determines what events The 6DOF component has two operational modes:

are to be processed in the main loop. Synchronization |nitialization and Real-time. In the Initialization mode the

between FLAMES and the real-time executive is 6DOF component reads the initialization parameters

accomplished through the shared memory interface. Any supplied by the FLAMES component from shared memory.

inability of FLAMES to maintain the real-time frame rate The Master Sequencer then calls the 6DOF internal
of the real-time executive will cause the current simulation initialization routines, locks the 6DOF component
run to be terminated. process into memory and enters the real-time mode.
Once in real-time, the MRS reads the current state from
3.2 Six Degree of Freedom Model shared memory and calls the 6DOF model. When the

6DOF completes one pass through its code it returns
The Six Degree of Freedom (6DOF) component consists of control to the Master Sequencer. The real-time operating
the software required to model the Predator SRAW system keeps control until the millisecond tick is issued at
airframe, aerodynamics, external environment, and all of which time the next simulation cycle is executed (See
the missile internal electrical and mechanical components Figure 5).
excluding the GCU and the TDD. The 6DOF also uses an
input parameter file which initializes 6DOF parameters so [Master Real-time Sequenceér

the results of each run vary similarly to what would be
T

expected in the real world.

‘ Read Shared Memory‘
[

3.2.1 6DOF Architecture

The main module of the 6DOF component is the Master
Real-time Sequencer (MRS). The MRS uses the React Pro

. . . 1 Millisecond | Call 6DOE* *Calls GCU SWII__ or
real-time extensions to the SGI operating system to call all Loop ‘ HWIL as appropriate
of the other functions in this component. React Pro is a | Update Shared Memory
commercial software package written by Silicon Graphics.

It adds real-time capability to the standard SGI operating
system (IRIX) by providing high-precision time [Cleanup /Exit

management functions, microsecond-resolution process
dispatching, and the capability to override normal IRIX
processor and interrupt control. The MRS uses React Pro to
ensure that the 6DOF software executes under strict real-
time control. In the Predator SRAW HWIL Simulation
mode, the 6DOF code is executed 1000 times per second
When in SWIL mode both the GCU code and the 6DOF
code must execute 1000 times a second. As a consequenc
the software must complete its computations in under 1
millisecond. If the code requires less than 1 millisecond the
MRS executes a wait until the next millisecond tick occurs.
If the software does not complete in 1 millisecond then a
fatal error occurs and the simulation is aborted.

The core functionality of the 6DOF component is
contained in the code that provides the six degree of

Figure 5: 6DOF Component Modes & Control Flow

The real-time loop continues until the 6DOF model
sets a flag indicating that the firing scenario has completed.
After completion of the scenario, the 6DOF component
exits.

%‘.2.3 6DOF Component

The 6DOF component is comprised of Master Real-time
Sequencer (MRS) and a 6DOF model that models the flight
dynamics and characteristics of the Predator missile. The
MRS is responsible for controlling the constrained, real-
time execution of the simulation system. The steps required

1074

Simulation to Support Operational Testing: A Practical Application

to establish a set of real-time processors with deterministic
response to interrupts are outlined below:

3.3 Guidance and Control Unit

The GCU component provides the software infrastructure

1. Direct interrupts not related to real-time that allows the GCU software to be executed in both the
processes away from real-time processors. HWIL and SWIL modes. In the HWIL mode the 6DOF
Direct real-time interrupts to the real-time component provides input and receives output from an
processors. actual GCU hardware component through a custom

2. Restrict each real-time processor so that all hardware interface. While in the SWIL mode the GCU
processes not explicitly assigned to it will be software is executed on the SGI ONYX under the control
run on a non-real-time processor. of the real-time executive.

3. Lock real-time processes onto real-time
processors. 3.3.1 GCU Architecture

4. Allocate and lock physical memory to all
virtual addresses used by real-time processes. The core functionality of the GCU component is contained

5. Isolate the real-time processors from in the GCU code itself. For the SWIL mode this code was
interprocessor interrupts used in a re-hosted to the SGI Onyx from the Predator SRAW
multiprocessor system. missile onboard computer with minimal modifications. In

6. Exempt real-time processors from system the SWIL mode the GCU is essentially a function call to

clock interrupts and UNIX timesharing
scheduler activity.

the main function in the GCU code that executes flight
control software used to control the flight dynamics of the
missile. The execution of the GCU code is controlled by
Once these steps are performed the system is ready tathe 6DOF component, which executes once every
begin scheduling and executing events. The frame milisecond. When the Predator SRAW simulation is
scheduler is a kernel module that cyclically schedules integrated with the real-world Predator SRAW GCU
processes at intervals defined by a regularly occurring hardware, the SWIL code is not executed. Instead an
interrupt. When enabled on a processor, the frame interface routine is called that communicates with the
scheduler replaces all other IRIX scheduling policies on Predator SRAW hardware, through a custom hardware
that processor, and configures the processor for real-timeinterface, and relays all the signals to the rest of the
operation. Frame schedulers can be enabled on all but on&imulation.
processor in a multiprocessor system; i.e. all but the system
processor. Each frame scheduler manages execution 0f3 3 2 GCU States and Modes
processes only on its own processor, but multiple frame

schedulers can be synchronized to enable frames onas shown in Figure 6, the GCU component has two modes:

separate processors in a system to be synchronized. SWIL and HWIL. In the SWIL mode the 6DOF calls the
The 6DOF model consists of an initialization phase Gcu embedded code directly.

| In SWIL Mode

| Update Shared Memepr |

[
Return to 6DOF
RT Master

and a state integration phase. The Iinitialization is In the HWIL mode the 6DOF component calls the
accomplished by calling the modules that have states hargware interface routine instead of the GCU embedded
requiring initialization. The state integration routine code. That interface routine sends the current state to the
employs a Runge Kutta _integrator with a sele_ctable number predator SRAW GCU hardware through the analog and
of cycles. The model is commonly run using a 2-cycle gjgital VME boards, then reads the current commands and
integration. During the execution of each cycle, calls are gapys flags back from the Predator SRAW GCU hardware.
made to the main modules of the 6DOF model. At the end
of each time step (1 millisecond), the state integration
routine increments time if the flight has not ended and calls
the other modules again.

The 6DOF can be executed in a Monte Carlo mode | call Gcu
that provides random variations to specified variables on

. ST OR

successive runs. The 6DOF has missile linear and angular
accelerations, rates and position, event times, and line of | calecunwiF | In HITL Mode
sight rates and accelerations as input data. In addition,
there is a large input data file including aerodynamic
coefficients, misalignments, wind data, inertial sensor
compensation coefficients, inertial sensor errors, jet
reaction control errors and delay times, propulsion data and
target data.

Figure 6: GCU Component Modes & Control Flow

1075

Canova, Christensen, Lee, Tripp, Pack, and Pack

3.3.3 GCU Component

The heart of the GCU compoment is the re-hosted Predator
SRAW GCU. For faithful replication of Predator SRAW
performance, the code was modified as little as possible.
Only those modifications absolutely necessary to re-host it
to the SGI were implemented. In the Predator SRAW CPU
the GC_INTERRUPT_ SERVICE is an interrupt handler,
i.e. it is never called explicitly but rather control is
transferred to it via a hardware action - in this case, the
firing of a 1 millisecond timed interrupt. Since the 6DOF
is controlling the call to the GCU software, the timing is
managed by the 6DOF Real-time Sequencer. This

essentially causes the 6DOF Real-time Sequencer to act as

the interrupt handler when in the SWIL mode.

3.4 Target Detection Device

The TDD component consists of the software required to
execute the Predator SRAW onboard Target Detection
software in the SGI in a real-time environment. In
addition, the target magnetic signature model is integrated
into the TDD component.

3.4.1 TDD Architecture

Because the TDD software updates at variable rates, the
use of a Slave Real-time Sequencer was not sufficient to
control the target detection algorithms. Instead the TDD
component uses software interrupt functions controlled by
the 6DOF's MRS to control the TDD code, and to insure
that it executes in real time.

The core functionality of the TDD component is
contained in the TDD code itself, which is written in Ada.
This code was re-hosted from the Predator SRAW missile
onboard computer with minimal modifications. For the
Predator SRAW Simulations (HWIL & SWIL), the TDD
code is executed at variable rates up to once every 200
microseconds.

In addition to the re-hosted TDD, the TDD component
also contains a model of the magnetic field associated with
the simulation targets. The magnetic signature model was
written in C and is called from the TDD via an Ada C-
language binding.

3.4.2 TDD States and Modes

The TDD component has three modes: Initialization, Pre-
Flight, and Flight. In the Initialization mode the TDD
component reads the initialization parameters supplied by
the 6DOF component from shared memory and then enters
the real-time loop (See Figure 7). In the Pre-Flight mode,
the software waits for the TRIGGER_PULL message from
the 6DOF code via shared memory indicating that the
trigger was pulled.

1076

TDD Real-Time Proces$
TDD Initialization

Pre-Flight Loop
Read Shared Memon

Initialization Mode

Pre-Flight Mode
FALSE

Call Execute Preflight]

Flight Loop
Call Execute Flight

FIRE_WARHEAD

TRUE

Update Shared Memorly
Cleanup / Reset

FALSE

} In Flight Mode
[ehostd. eused, o COTS codo

Figure 7: TDD Modes & Control Flow

Once this occurs the software interrupts are enabled
and the TDD component enters the Flight mode.

In the Flight mode, the software interrupts control
code execution. A single interrupt initiates one pass
through the TDD code. When the TDD completes one
pass, it sets up the next software interrupt time and waits.
This real-time loop continues until the detection algorithms
initiate a FIRE_WARHEAD message or the 6DOF
component sets a Boolean flag that indicates that the
simulation run is complete.

3.4.3 TDD Component

The heart of the TDD component is the re-hosted Predator
SRAW on-board target detection code. The original code
uses hardware interrupts to call the three main routines in
the Predator SRAW TDD. The remainder of the Predator
SRAW TDD code is designed to perform system services
in the Predator SRAW TDD CPU. Because either UNIX
or the MRS provides those services in the simulation, that
code is not required. To faithfully replicate Predator
SRAW performance, the code was modified as little as
possible.

The other major piece of the TDD component is the
target Magnetic Model. In order to feed sensor data to
the Predator SRAW TDD software, the simulator has to
contain a model of the appearance or signature of the
target(s) as they would appear to the TDD sensors. The
model of the target magnetic signature is based on
several reports provided by Naval Surface Warfare
Center (NSWC), Dahlgren, VA. These studies indicated
that a second order model would provide the required
accuracy.

Simulation to Support Operational Testing: A Practical Application

4 VERIFICATION AND VALIDATION

The Verification and Validation (V&V) process applied
rigor to the development of the Predator M&S System.
Verification and Validation were conducted
concurrently with M&S system development, which
reduced overall risk to the program. In addition,
periodic scrutiny of key components of the M&S system
ensured that the developer was building exactly what the
customer needed and thus held cost in check. M&S
System verification was accomplished by disciplined
review of the products produced during each phase of
the development process. M&S System validation was
accomplished by comparison of M&S System output
with telemetry data from real world developmental test
firings.

4.1 V&V Process

The “DMSO VV&A Recommended Practices Guide”
includes finely crafted definitions of verification and
validation as it refers to modeling and simulation.
Simply stated, the verification process answers the
guestion “did you build what you said you would?” The
validation process answers the question “does the model
work right?” The Predator M&S System was
developed using a waterfall development process. Each
stage of the development process required specific

deliverables. Deliverables produced during each
development phase were used to support model
verification.

The IV&V Team reviewed the Preliminary Design
Document, Critical Hardware Design Document and
Critical Software Design Documents in support of
verification. The previously mentioned documents
largely supported verification, however some additional
documents were required. For example, one of the

4.2 Analysis Methodology

For the purpose of supporting the VV&A process for the
Predator simulation system, the following analysis
methodology was employed:

1. An analysis was performed to determine the
appropriate sample size needed to provide the
desired level of confidence that the
simulation is accurately representing the
behavior of the real system.

Telemetry data is captured from fifteen
identical live fire tests. ldentical implies that
the firing conditions (e.g. target range, target
aspect, missile temperature, ...) for the live
fire tests were matched as closely as possible.
An equal number of simulated Monte Carlo
runs are executed using the same initial
conditions present at the live fire tests.

Data from the simulated runs is compared to
data from the live fire tests. This comparison
determines if the simulation is replicating the
flight characteristics of the real missile within
some tolerance specified by the USMC and
the VV&A team.

4.3 Data Comparison

The validity of data provided by the Predator SRAW M&S

System may be determined by comparing live telemetry
data with the output of the simulation. To conduct this
comparison, a common set of variables was selected.

The Predator SRAW GCU and TDD function
independently and two aspects of missile vs. simulation
performance must be contrasted. The first aspect is actual
missile position as compared to simulated missile position
throughout the flight of the missile. The second aspect of

unique aspects of the Predator M&S System was the missile performance that must be considered is actual TDD
requirement to verify that the M&S System was using target detection during real firings as compared to
production representative GCU Software and TDD simulated TDD target detection.
Software. In addition, the rehosted software must Consider missile position first. During an actual
function exactly as it would in the actual missile. flight, missile position and state at any given point may be
Identical software function was a concern, because the fixed and measured in three dimensions X, Y and Z. The
Predator GCU and TDD Software were targeted for a X-axis refers to the location of the missile as it moves
Motorola 68332 Processor, while the Predator M&S down range towards the target. The Y-axis refers to
System runs on an SGI Onyx Quad R10000 Processor. Inmissile position as it translates right or left. The Z-axis
order to verify that the rehosted software was functioning refers to missile elevation. Parameters of interest in each
properly static and dynamic analyses were conducted dimension include position, velocity and acceleration.
using McCabe Tools. The McCabe Tools were used to Next consider TDD performance. TDD parameters
statically inventory and dynamically trace run time are important in determining where the simulated missile
execution of the rehosted software. The static and detected and detonated over the target. Several TDD flags
dynamic analysis verified that the rehosted software was are used to assess simulation performance and make some
functioning as advertised. comparison with telemetry runs. Because the TDD is a
dual mode device, flags associated with the Laser Ranger,
Magnetic Detector and Warhead detonation are of interest.

1077

Canova, Christensen, Lee, Tripp, Pack, and Pack

These flags are related to optical and magnetic signaturehas extensive experience in Command and Control,
detection and detonation commands. Electronic Warfare and Computer Science. He was the first
Subsequent analysis is based upon a comparison ofrecipient of the Prowler Systems Excellence Award. Flew

missile position and TDD performance as observed in the 35 Combat Missions during Desert Storm. He served as
missile and as set in the simulation during flyout. Data Suppression of Enemy Air Defense (SEAD) Lead for
generated by the Monte Carlo runs of the simulation, for several key Air Wing Five night strikes into Iraq
both the GCU and TDD, is compared to the telemetry data throughout Desert Storm. He retired as a Commander in
from the test flights. 1995 from his final billet as a Deputy Program Manager at

the Naval Air Systems Command.
5 CONCLUSION

BRUCE R. TRIPP is a Senior Software Systems Engineer
The Predator simulation system is an excellent example of at the MITRE Corporation. He is the Technical Lead for
how simulation can be applied to the system development the Predator/SRAW Modeling and Simulation System. He
process to help reduce cost and ensure a higher qualityholds a B.S. in Physics from the University of South
product. The success of the Predator simulation systemFlorida and an M.S. in Studies of the Future from the
shows that with a complete, coherent VV&A process in University of Houston at Clear Lake. In addition, he has

place, a simulation system can be developed to provide 20+ years experience in real-time hardware-in-the-loop
valuable support across the entire system development life gjmulation.

cycle.

One of the significant concerns raised when \icHAEL D. LEE is a Senior Software Systems

developing a hard real-time system, with component gngineer at the MITRE Corporation. Mr. Lee provides
executing at frame rates in excess of 1000Hz, is the ability modeling, simulation and visualization support for MITRE.

Fo model phys""’?" factors, environmental fa_ctors anq SENSON e received his B.S. in Physics from Mary Washington
inputs that precisely represent the dynamics and inputs to ,

. X College in 1994.
the system. The Predator simulation system has shown

that this can be done. This is not to say that one should not . .
carefully choose the applications to be simulated. There MICHAEL PACK " is a Software Systems Engineer for the

are many examples of failed simulation efforts, but MITRE Corporation, where he was hired in January 1998.

judicious analysis and design can greatly reduce the risk of 1€ graduated from West Virginia University Institute of

failure. Technology in December 1997 with a B.S. in Computer
With companies such as Boeing and Ford relying more Science.

and more on simulation to support their design,

development, and manufacturing processes, many newDAVID L. PACK is a Software Systems Engineer at The

areas of simulation research and application are openingMITRE Corporation. Mr. Pack provides modeling and

up. simulation support for MITRE. He received his B.S. in
Computer Science from West Virginia University Institute
AUTHOR BIOGRAPHIES of Technology in 1997.

BRADFORD S. CANOVA is a Principal Software
Systems Engineer at the MITRE Corporation. He provides
technical guidance to numerous programs at MITRE in the
areas of simulation, real-time systems, and distributed
systems. In addition, he acts as the program area manager
for Naval Programs within the Information Systems and
Technology Division at MITRE. He holds a B.S. in
Computer Science from the Pennsylvania State University.

PETER H. CHRISTENSEN has been employed by the
MITRE Corporation as a Lead Member Technical Staff
since January 1995. Prior to that he served with the United
States Navy as a Naval Flight Officer. At MITRE Pete was
assigned to the Software & Information Architecture
Technology Area, to support both Modeling and
Simulation and C4l Programs. In the Navy he
accumulated over 2200 hours in the EA-6B Aircraft and

1078

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

