Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

AUTOMATED DISTRIBUTED SYSTEM TESTING: DESIGNING AN RTI VERIFICATION SYSTEM

John Tufarolo James lvers Timothy C. Hyon
Jeff Nielsen
Susan Symington
Richard Weatherly
Annette Wilson

The MITRE Corporation Software Engineering Institute TRW International Defense
1820 Dolley Madison Boulevard Carnegie Mellon University Simulation Systems
McLean, VA 22102-3481, U.S.A. Pittsburgh, PA 15213, U.S.A. 12902 Federal Systems Park Drive

Fairfax, VA 22033, U.S.A.

ABSTRACT « rules describing policy with the HLA (Defense
Modeling and Simulation Office 1998c).
A project is currently underway which involves testing a
distributed system- the Run Time Infrastructure (RTI) The second component, known as tieA Interface
component of the High Level Architecture (HLA). As part Specification describes the functional interface between
of this effort, a test suite has been designed and implementedsimulation federates(simulation or simulation surrogate
to provide a coordinated and automated approach to testingparticipating in a federation) and the runtime environment.
this distributed system. This suite includes the creation and The specification also defines a minimal acceptable level
application of a Script Definition Language (SDL) to specify of behavior for the runtime environment. The extent of
test sequences, and a test executive to control execution ofpecified behavior is critical since in writing test
the tests, coordinate the test environment, and record testequirements, only the minimum required behaviors
results. This paper describes the design and implementationnecessitate validation. Behavior beyond the specification

of this test environment. permits an RTI developer flexibility and variability with
implementation. An implementation complying with the
1 INTRODUCTION HLA Interface Specification is known as &bA Runtime

Infrastructure(RTI). A recent HLA update can be found in
In a memorandum from the U.S. Department of Defense (Dahmann et. al. 1998). The interested reader is also
(DoD) in 1996, The High Level Architecture (HLA) was referred to (Dahmann et. al. 1997) for additional details on
established as the standard technical architecture for allthe HLA.
DoD simulations (U.S. Department of Defense 1996). The As in many development projects, considerable
fundamental nature of HLA has been culled from existing verification effort is required to ensure faithfulness to a
technologies and experiences, particularly those found in system specification. Such efforts are further complicated
Distributed Interaction Simulation (DIS) protocols (Voss when attempting verification of a complex, distributed
1993) and the Aggregate Level Simulation Protocol system (Page et. al. 1997). The RTI exemplifies such a
(ALSP) (Weatherly et. al. 1996). These existing efforts, complex system. In many ways, an RTI is similar to a
while serving separate domains, share a common thread ofdistributed operating system and as such, makes for a
providing a means by which simulations and simulation challenging verification problem.

surrogates can operate together. This paper describes the design and implementation of
Key components of the HLA include: an RTI verification system The Verifier) and the
experiences therein. Section 2 provides background on the
* a common mechanism for defining and requirements and limitations for testing an RTI, and
specifying object models (Defense Modeling presents alternatives for the test approach. Section 3
and Simulation Office 1998b); describes the system as it was designed and implemented.
« services describing an HLA runtime Conclusions are included as section 4.
environment (Defense Modeling and A companion paper (Tufarolo et. al. 1999) describes
Simulation Office 1998a); and the application of this system by examining the process of

1094

Tufarolo, Nielsen, Symington, Weatherly, Wilson, Ivers, and Hyon

transforming the HLA interface specification into each service in isolation. Individual services must be
requirements, test scripts, and presents conclusions andconsidered in relation to other services with which a

observations. relationship exists. Meeting this condition requires that any
given test requirement address not only an individual
2 RTITESTING service, but also other inter-related services.

The Defense Modeling and Simulation Office (DMSO) 2.2 Test Environment Requirements

sponsored early development of an RTI, both as a proof-of-

principle and as a means to evolve the interface In addition to the requirements for testing an RTI,

specification. Details concerning this initial development designing an RTI verification system required developing

of an RTI are described in (Carothers et. al. 1997). the requirements for the test system itself. These
The services in the specification are documented purely requirements include:

from a functional perspective. The standard is very clear

about what each service means, what must first be true, and « Automation of the test execution

what the results will be. No attempt is made, however, to

specify the performance, reliability, or scalability goals (to The sheer magnitude of the RTI test requirements

pick a few examples) of the architecture. By only describing established the need for a system that would allow

the requisite functionality, the standard has left room for automated test execution with limited intervention.

different environments to support the needs of different

communities. One RTI implementation for example may run « Support for repeated multiple executions

incredibly fast, but won't scale very well to large numbers of

federates or object instances. Another RTI implementation Because of the anticipated iterative need of the testing,

may scale to large numbers of federates and object instanceshe verification system must easily support repeated
at the expense of performance. Regardless, each RTI will (regression) testing.

conform to the same interface and provide identical

functionality. o o + Connectivity to remote processes
Because of these specification characteristics, any
testing effort must be strictly limited to the functional The RTI specifications necessitate the ability for

behavior of an RTI. In designing a verification system, (istributed federates to connect to an RTI. As such, the
additional scoping was done to help bound the capabilities verification system must test this remote connectivity

of the system. Some conclusions were: capability.
» No stress testing will be done; the verifier « A coordinated view across all distributed
will not check the limits of how many processes
federates can participate, how many object
instances can be created, etc. Testing RTI services requires stimulating (by making
+ No race conditions will be checked; these are service calls) separate processes (on one or more
subtle areas that are notoriously hard (and machines), and then observing the behavior of each process
expensive) to reproduce. for the proper responses (or lack thereof). The implication
is that the verification system must support a single view of
2.1 RTI Test Requirements the state of the test execution occurring across the

_ _ distributed processes. Alternatively the system could
Testing of an RTI focuses on the requirements and interact with the distributed processes individually, then
behavior directly evident in the HLA Interface collect the results afterwards.

Specification. The pertinent specification (Defense
Modeling and Simulation Office 1998a) includes over 200 « Provide a configurable environment
pages and contains 129 distinct services.

The documentation for each service includes pre- and The verification system must be able to be tailored to
post-conditions for the service, as well as a prose handle a variety of tests, as influenced by the variety of
introduction deSCfibing the service and its use. This HLA services. For examp|e’ one set of tests required
information allows a reader to determine which sequences jnteracting with the RTI strictly through a single point of
of services are permissible, and conditions that should access, while others require interacting with multiple

result in exceptions. . . points of access across separate machines concurrently.
Because many of the services are highly correlated,

most of test requirements cannot be written by examining

1095

Automated Distribution System Testing: Designing an RTI Verification System

» Allow for evolution of the specification available to test the RTI. The desire for openness is not
served because the verification process must also include
The verification system must support update of the test visibility into all federates involved in RTI testing.
requirements and test specifications to allow continued
support for an evolving HLA specification. Tests should be 2.3.3 New Approaches
traceable back to a specific item in the specification. The
system must also support identifying tests that must be Having decided that the Verifier would be a custom-built

changed in response to specification changes. system rather than formed with real federates, the designers
next considered the choice between a distributed or
« No special hooks into RTI needed centralized approach. This choice does not refer as much to

the disposition of the software components as to how the
The verification should interact with an RTI via the individual tests are managed.
published, code-level, HLA interface without modification. A distributed Verifier would contain a number of
Adhering to this condition allows any RTI to be tested, independent service invocation scenarios or scripts. A
regardless of whether it's a distributed implementation or a Script is used to control which services are invoked for a

centralized/monolithic implementation. given federate. To perform a test, the Verifier selects a set
of scripts, creates an instance of a special script
2.3 Test Approach Alternatives interpretation federate for each script, and attaches those

federates to the RTI being tested. The exchange of
The task of testing an RTI involves 1) invoking a sequence information between each federate and the RTI is recorded
of federate-initiated services, and 2) observing the RTI's and compared to the expected result. If the expected result
response in the form of RTl-initiated services (federate is obtained, the test is considered successful.
callbacks). Several techniques to accomplish this were A centralized Verifier would also contain a number
explored when designing the Verifier. For the results of the of scripts but it would use only a single script for a given
system to be credible, the correctness of the verification test. This script would control all federates involved in
process needed to be as open, reproducible, and simple athe test by selectively reaching out to each federate and
possible. This consideration drove the selection of the specifying which service to invoke. When action is
Verifier approach. Some of the alternative approaches expected from the RTI, the script will listen at one or

considered are discussed in this section. more federates for the expected RTI initiated service
invocation to occur.
2.3.1 Manual Testing Two advantages of the distributed approach are that

scripts can be written in any of the programming
RTI tests could be performed manually. The only software languages swported by the RTI being tested and
needed to do such testing is thest FederateThis simple operations can be performed on the RTI in parallel. A
program offers a GUI where an operator can invoke disadvantage of this approach is the complexity in
federate-initiated services and display the results of RTI- understanding a given test. To have confidence in the
initiated service invocations. The Test Federate software is correctness of a test, the behavior of a set of parallel
available at the HLA Software Distribution Center on Script executions and the result analysis mechanism must
http://hla.dmso.mil. Manual testing using software like the be considered as a whole.

Test Federate is useful for debugging both RTIs and An advantage of the centralized approach is that the
federations, but the reproducibility required by the entire content of a test can be expressed in a single script.
verification system would be difficult to achieve. Because that script has access to the state of all federates
involved with the test, it can react to the RTI and
2.3.2 Use Existing Federations dynamically change the course of the test. This is

particularly important given that there is often a large
During the early development of the HLA requirements, an number of correct and incorrect responses to any given
effort was made to create federations that represent alltest stimulus. A disadvantage to centralized testing is the
anticipated applications of the HLA. It has been suggested complexity of the infrastructure needed to connect a
that those same federations could be used to test RTIs. Thissingle script interpreter to the distributed set of federates
suggestion is better applied to issues of RTI performance at which it will invoke services and receive service
given that each federation represents an interesting patternnvocations. Nevertheless, the cost of constructing the
of service invocation from which different performance central script interpreter and distributed infrastructure
values can be measured. It is not a practical suggestion forwas deemed well worth the clarity and simplicity of the
the systematic testing of RTI functionality. The constraints single, centralized script approach and was chosen for the
of each federate limit the sequences of service invocations Verifier design.

1096

Tufarolo, Nielsen, Symington, Weatherly, Wilson, Ivers, and Hyon

2.4 Existing Capabilities specification and distill a set of test requirements for entry
into the system. These test requirements form the basis for
William G. Saxon and James F. Leathrum Jr. of the Virginia generating test scripts. Using the v1.3 Interface Specification
Modeling, Analysis and Simulation Center (VMASC) at Old (Defense Modeling and Simulation Office 1998a), this
Dominion University performed a survey of existing activity yielded over 1,600 individual test requirements.
software testing tools (Saxon and Leathrum 1998). The Based upon an individual test requirement, one or
identified tools were divided into two categories: code- more scripts are created using the SDL. These scripts are
dependent and code-independent systems. The codestored in the database and associated with a corresponding
dependent systems were eliminated as candidates sincdest requirement. A Microsoft Access database application
source code for an RTI under test would not be available. was written to provide a convenient method for entering
The code-independent tools included systems such asand maintaining test requirements as well as test scripts.
Ballista, Deploy, ADL (Chang, Richardson, and Sakar, At execution time, a test executive is initiated that
1995), and CATS. None of these tools fully supported the manages access to the test scripts, and provides up to five
requirement to provide stimulus at multiple distributed separat@attachment point§APSs) to the RTI under test. The
points and observe the response at all points. This led to theAPs connect tdest federatesvhich in turn, are connected

development of The Verifier to support this requirement. to the RTI under test. Aest controller GUI allows a
Systems such as Ballista have been used to performhuman tester to select, initiate, and monitor ongoing test
robustness testing on earlier RTI implementatiéarnsler activities. It also permits tests to be hierarchically grouped
and Koopman 1999; DeVale, Koopman, and Guttendorf to allow large or small sets of test cases to be executed.
1999). Scripts stored in the database are retrieved via JPBE&|
and Moss 1997). Results from script execution are also
3 DESIGN stored in the database, again using JDBC as the access
mechanism.
The RTI Verifier system architecture consists of a Script Within the Access DB application, test results can be

Definition Language (SDL) created to specify test scripts; an reviewed on-line or in a test report detailing the tests
application executive, controller, and SDL interpreter to parse executed, and in the case of an unsuccessful execution, the
and execute scripts; test federates to connect and interact withailure status and the trace of events leading to the failure.
an RTI under test; and a database to maintain requirementsScript failures are examined to determine if the failure is a
tests, and test results. Figure 1 presents a functional overviewresult of behavior contrary to the specification as opposed
of this architecture. to an error in statement of the test requirement,
Using this system begins with the HLA Interface implementationof the script testing the requirement, or a
Specification. A person must read and understand this possible alternative interpretation of the specification.

HLA Spec Test Controller
(Java/Swing GUI)

\i/MS Access Application l

i . Script
t Requirements Entry Development

! JDB -
i | Executiv Interpret

Java RMI

A A A A A

Test Test Test Test Test
Federat Federat Federat Federat Federat
VN y N A

Test Reports - o s _ RTl Interface —
v v v

| RTI Under Test

Figure 1: Verifier System Architecture

1097

Automated Distribution System Testing: Designing an RTI Verification System

The following subsections provide more detalil
concerning components of the verification
architecture.

RTI services are initiated by using thenvoke
system statement, with "AP" identifying the attachment point from
which the service call will be initiated. Within the context
of a single script, RTI calls can be sent to multiple
attachment points concurrently. Based on the particular
RTI service used, the arguments will contain the necessary
SDL provides the cornerstone for the verification system. data for the service. Likewise, the optionatturn
Because the HLA specification includes a unique set of statement will capture any return values that are associated
services to test, a convenient mechanism was needed towith the service call.
facilitate generating test cases. A new languageDL - Federate services(callbacks from the RTI) are
was devised to address the unique nature of interactingcaptured via theacceptstatement. In these services, the
with an RTI. "AP" identifies the attachment point at which the federate

3.1 Script Definition Language

The following capabilities are fundamental to the SDL.:

* Allow invocation of all Federate-initiated
services

» Allow acceptance of all RTl-initiated services
("callbacks")

* Allow interaction with the RTI via separate
attachment points

 Maintain a consolidated view across all
attachment points

e Support HLA data types

* Provide flow of control

» Provide exit status (success or failure)

The basic flow of a SDL script is to:

Initiate one or more RTI service calls
Look for actions

Look for lack of actions

Trap unexpected actions

Decide what to do next

agrwNRE

Figure 2 offers a sample of the SDL.

invoke apl RTI_SERVICE (arguments)
return (arguments)
federateNotExecutionMember(theException) ;
exception(theException) {
exitFailure ("Service call exception");
}
accept all
FEDERATE_SERVICE_1 ap2 (arguments) ;
FEDERATE_SERVICE_2 ap3 (arguments) ;
other theService theAP {
exitFailure ("Unexpected callback");

unsatisfied {
println ("Callback not received");
exitFailure ("Unsatisfied callback™);

exitSuccesg"Test completed");

Figure 2: SDL Sample

1098

service callback is expected. More than one federate
service callback can be specified in the context of a single
accept statement. Tladl keyword requires receipt of every
federate service listed for the accept statement to be
considered satisfied. Alternatively, the keywairdy can be
used to indicate that only one of the federate services listed
is needed to satisfy the statement. Unexpected callbacks
are captured via theother keyword. The unsatisfied
keyword allows the script to stop waiting for unfulfilled
callbacks from the RTI after a fixed waiting period.
Because the test suite is not intended to test performance or
race conditions, this waiting time is usually large (the
default value is 5 seconds) and can be specified at the test
controller GUI.

Failures during script execution can emerge as a result
of RTI exceptions, script language exceptions, and
behavioral errors. If an exception occurs while using the
invoke statement, it can be captured by including the
exception keyword. A decision to continue or abort the
script can be contained in the exception handling code. For
some test cases, specific exceptions are expected. These
exceptions can be included by name in addition to the
general exception case.

The exit condition from a script is specified via the
exitFailure or exitSuccess keywords. Based on the
requirements of the test, these exit statements are placed in
the appropriate locations. It is incumbent upon a script
designer to use these statements properly to signal the
ultimate success or failure of the script. An exception to this
is the case of a failure in the script. A script can "fail" when
a callback is received and not captured, an exception is
thrown and not caught, or because of a semantic script error.
All of these occurrences will automatically result in the
script terminating as if thexitFailure mechanism was used.

Other details of the language include variable type
definitions, print statements, comments, program logic
flow control, etc. These are typical of other programming
languages and the details are not included here.

3.2 SDL Interpreter

To implement the use of the SDL in this system, a parser
was designed and created to read and interpret test

Tufarolo, Nielsen, Symington, Weatherly, Wilson, Ivers, and Hyon

statements written in SDL and in turn to interact with an used as the beginning of any number of different tests.)

RTI via the distributed test points. In order to minimize Likewise, aseriesis a group of one or more tests to be run

development efforts, existing products were sought to together, and acenariois a group of series.

support building this parser and integrating into the other The test executive supports execution at any one of

Java-based components of the system. JJTree and JavaC@ese four levels of execution and ensures that scripts are

were selected to meet these criteria. executed and/or aborted as appropriate. As it executes a
JavaCC is a Java language preprocessor that generatescript, test, series, or scenario, it records the results in the

top-down (recursive descent) parsers based upon a detailediatabase.

grammar (Sun Microsystems 1999a). By default, JavaCC

generates an LL(1) parser. However, there may be portions3.4 Test Controller GUI

of the grammar that are not LL(1). JavaCC offers the

capabilities of syntactic and semantic look-ahead to resolve The test controller GUI is a graphical front end to the test

shift-shift ambiguities locally at these points (i.e., the executive that serves as the point of access for an RTI

parser is LL(k) only at such points, but remains LL(1) tester. From the GUI, a tester can observe and control the

everywhere else for better performance). Shift-reduce and behavior of up to five different federates connected to the

reduce-reduce conflicts are not an issue for top-down RTI under test. Each of the test executive's five attachment

parsers (Barrett et. al. 1986). Top-down parsers have otherpoints can be linked by the user to a remote test federate

advantages (as opposed to more general grammars) such gzrocess. The GUI allows the tester to view the contents of

being easier to debug, having the ability to parse to any the database and to select scripts, tests, series, or scenarios

non-terminal in the grammar, and having the ability to pass for execution. The user can then monitor the progress of an

values (attributes) both up and down the parse tree duringexecution by watching the display.

parsing. The GUI also permits the user to manually invoke any
JJTree is an add-on to JavaCC, allowing the generatedof the federate-initiated services and respond to RTI-

parser to produce syntax trees, i.e., it inserts tree-building initiated services at any of the attachment points. This can

actions at various places in the JavaCC source (Sunbe done at any time, whether or not an execution is in

Microsystems 1999b). By default, JJTree generates code toprogress.

construct parse tree nodes for each non-terminal in the The test controller, test executive, and SDL interpreter

language. This behavior can be modified so that some non-are all written in Java. These can thus be run on any

terminals do not have nodes generated, or so that a node iplatform for which there is a Java virtual machine. The

generated for a part of a production's expansion. JJTreeGUI elements were written using the Java "Swing" classes,

defines a Java interface node that all parse tree nodes musivhich are now part of the standard Java 1.2 class libraries.

implement. The interface provides methods for operations These are a set of graphical components that provides a

such as setting the parent of the node, and for addingconsistent and platform-independent look and feel, so that

children and retrieving them. the GUI appears and behaves the same way no matter what
The SDL parser was built by creating cantext- it is run on.

sensitivegrammar. This grammar specification was used

by JJTree to produce inputs for JavaCC. The result was 3.5 Test Federates

Java code, which implemented the specifications of the

grammar for use by the test executive. An RTI can not be tested unless there are federates joined
to it that are using its services. This is the role of the test
3.3 Test Executive federate processes that are at the heart of the testing

system. A test federate is a completely user-driven federate
To execute the scripts, the SDL interpreter works together that has the capability to exercise the full set of federate-
with the test executive. This process serves as the centralnitiated services and accept the full set of RTl-initiated
point of control during RTI testing. It is responsible for services ("callbacks”). An example is the test federate
both accessing the scripts and managing their execution.provided with the DMSO RTI, which allows the user to
Scripts can be either read from a file or (more commonly) call any RTI service by selecting it from a menu and

retrieved from the database. supplying the appropriate parameters in a dialog box.
In the database, scripts are organized into a hierarchy The test federate program written for the RTI
that supports four different levels of execution.séript verification system is different in that it provides no direct

can be executed either by itself or as part of a sequence ofuser interface. Instead, all of the running test federate
scripts that comprisetast In the latter use, scripts serve as processes are controlled completely by the test executive.
components, which are combined in different ways to form The executive tells the test federate which RTI services to
a coherent test. (For example, a script that creates acall, and any callbacks that arrive must be processed and
federation execution and joins three federates can be re-"cleared" by the executive before the federate proceeds.

1099

Automated Distribution System Testing: Designing an RTI Verification System

Again, this is so that the executive can maintain centralized performance, stress-testing, and race conditions. Particular

control over the system at all times. test environment requirements, including a need to
The test federates are also written in Java, and use thestimulate and observe the response of an RTI at multiple

Java Native Interface to call the pre-compiled C++ RTI distributed points, drove the development of a new system,

libraries. The Verifier to test an RTIl. The Verifier consists of a
Script Definition Language to specify test scripts; an
3.6 Remote Connectivity application executive controller and SDL interpreter to

parse and execute scripts; test federates to connect and
Connectivity between the executive/interpreter and the testinteract with an RTI under test; and a database to maintain
federate processes is achieved through the Java Remoteequirements, tests, and test results.
Method Invocation (RMI) protocol. The RMI architecture Application of this system to date has proved to be
provides a way for objects in one Java process to invoke very useful to meet the unique needs of RTI testing. A
methods on objects from other Java processes—either localcompanion paper (Tufarolo et. al. 1999) provides more
or remote (Sun Microsystems 1999c). (This is in the same details into the process of using The Verifier. Future efforts
spirit as the OMG CORBA architecture, but is specific to include enhancing the script definition language and test
Java programs.) An RMI registry running on each machine environment as needed to address the next version of the
provides a simple naming service, and the marshalling and HLA standard (IEEE Standard "P1516.1 Draft Standard for
unmarshalling of parameters and return values is handledModeling and Simulation (M&S) High Level Architecture
transparently (via object serialization) from the (HLA) - Federate Interface Specification").
programmer's point of view. Clients simply obtain a
reference to a remote object and then call its methods in ACKNOWLEDGEMENTS
exactly the same way as with local objects.

Thus, from the point of view of the test executive, The authors would like to acknowledge the efforts of Reed
each remote test federate is simply a "test ambassador'Little of the Software Engineering Institute (SEI) at
object that provides methods mirroring all of the RTI Carnegie Mellon University and Dave Seidel of the
service calls. To invoke a federate-initiated service on the MITRE Corporation for their assistance in creating and
RTI under test, the test executive simply calls the reviewing this paper. The U.S. Department of Defense
appropriate method on the test ambassador. Everything(DoD) Defense Modeling and Simulation Office (DMSO)
else, connecting to the remote test federate process,supports the work on the Verifier Project.
sending data over the network, etc.,, is handled The Software Engineering Institute is a federally
automatically. funded research and development center sponsored by the

In a similar fashion, each test federate has a referenceU.S. Department of Defense.
to a single "controller" object, to which it passes all RTI
callbacks. The test federate does not concern itself with the REFERENCES
fact that the controller is actually on a remote machine. It
simply calls the appropriate method and waits for it to Barrett, W., Bates, R., Gustafson, D., and Couch, J. 1986.

return. Compiler Construction Theory and Practjc8econd
Edition, Chicago, IL: Science Research Associates,
3.7 Database Application and Connectivity Inc.

Carothers, C.D., Fujimoto, R.M., Weatherly, R.M., and
Connectivity between the test executive and the database is Wilson, A.L. 1997. Design and Implementation of
achieved with the Java Database Connectivity (JDBC) API. HLA Time Management in the RTI Version F.0, In
JDBC allows Java programs to execute SQL statements on Proceedings of the 1997 Winter Simulation
any relational database using a single, standard Java Conference ed. S. Androdottir, K.J. Healy, D.H.
interface (Patel and Moss 1997). SQL statements are used Withers, and B.L. Nelson, 373-380. Institute of
both to query the database (retrieving scripts, tests, etc.) and Electrical and Electronics Engineers, Piscataway, New
to update it (when recording execution data). The particular Jersey.
implementation of the JDBC used in the verifier software Chang, J., Richardson, D.J., and Sankar S. 1995.

also takes advantage of Java RMI. Automated Test Selection from ADL Specificatigms
First California Software Symposium (CSS'95),
4 CONCLUSIONS March.

Dahmann, J.S., Fujimoto, R.M., and Weatherly, R.M.
The complexities in testing a distributed system such as an 1997. The Department of Defense High Level
RTI pose a considerable challenge, even after limiting the Architecture, In Proceedings of the 1997 Winter
testing to functional capabilities and disregarding Simulation Conferenced. S. Androdottir, K.J. Healy,

1100

Tufarolo, Nielsen, Symington, Weatherly, Wilson, Ivers, and Hyon

D.H. Withers, and B.L. Nelsorl42-149. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Dahmann, J.S., Fujimoto, R.M., and Weatherly, R.M.
1998. The DoD High Level Architecture: An Update,
In Proceedings of the 1998 Winter Simulation
Conference ed. D.J. Medeiros, E.F. Watson, J.S.
Carson, and M.S. Manivannan, 797-804. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Defense Modeling and Simulation Office. 1998a.
Level Architecture Interface Specification, v1.3.

Defense Modeling and Simulation Office. 1998b.
Level Architecture Object Model Template, v1.3.

Defense Modeling and Simulation Office. 1998c.
Level Architecture Rules, v1.3.

DeVale, J., Koopman, P., and Guttendorf, D. 1999. The
Ballista Software Robustness Testing Service. To
appear infesting Computer Software '‘Qune.

High
High

High

Fernsler, K., and Koopman, P. 1999. Ballista Robustness systems development,

Testing of the HLA RTI v.1.0.3 Preliminary Report.
Carnegie Mellon University Report, at
http://www.ices.cmu.edu/ballista/reports/

hla_rti_1 0_3.pdf

Page, E., J. Tufarolo and B. Canova. 1997. A Case StudyTIMOTHY C. HYON

of Verfication, Validation and Accreditation for
Advanced Distributed SimulatiodACM Transactions
on Modeling and Computer Simulatiof(3):393-424.

Patel, Pratik, and Moss, Karl. 1997ava Database
Programming with JDBC, " Edition, Coriolis Group
Books, NY.

Voss, L.D. 1993A Revolution in Simulation: Distributed
Interaction in the 90's and Beyandrlington, VA:
Pasha Publications, Inc.

Weatherly, R.M., Wilson, A.L., Canova, B.S., Page, E.H.,
Zabek, A.A., and Fischer, M.996. Proceedings of
the 29" Havaii International Conference on Systems
SciencesVolume 1 (Wailea, HI, Jan. 3-6), 407-415.

AUTHOR BIOGRAPHIES

JOHN A. TUFAROLO is a Lead Simulation Systems
Engineer for the MITRE Corporation in Reston, Virginia,
where he is currently involved in High Level Architecture
(HLA) testing and HLA federation development activities.
Mr. Tufarolo is the Information Director for the
Association of Computing Machinery (ACM) Special
Interest Group on Simulation (SIGSIM), and a member of
the ACM, IEEE CS, and SIGSIM. His professional
interests include discrete event simulation, simulation
and military modeling and
simulation. Mr. Tufarolo has a BS degree in Electrical
Engineering from Drexel University and an MS in Systems
Engineering from George Mason University.

is a Software Developer for the
TRW Systems & Information Technology Group in
Fairfax, Virginia, where he is currently developing an
advanced simulation system known as the Planning
Support Function (PSF). PSF will provide a software tool
to help Japan's new system of centralized government
better prepare itself to handle natural disasters,

Saxon, W.G., and Leathrum, J.F. 1998. Survery of testing humanitarian assistance, and national defense. Prior to

tools, Informal Briefing.

joining TRW, he was a Senior Simulation and Modeling

Sun Microsystems Incorporated. 1999a. Java Compiler engineer for the MITRE Corporation in Reston, Virginia,

Compiler - The Java Parser Generator, at
http://www.suntest.com/JavaCC

Sun Microsystems Incorporated. 1999b. JJTree
Introduction, at

http://www.suntest.com/JavaCC/DOC/JJTree.html

where he was a lead engineer for the HLA Runtime
Infrastructure (RTI) and RTI Verifier system development
projects. Mr. Hyon received a BS degree in Electrical
Engineering from the University of Delaware and an MS in
Electrical Engineering from Georgia Institute of

Sun Microsystems Incoporated. 1999c. Java Remote Technology.

Method Invocation (RMI),
products/jdk/rmi

Tufarolo, J., Nielsen J., Symington, S., Weatherly, R.,
Wilson, A., lvers, J., and Hyon, T. 1999. Automated
Distributed System Testing: Application of an RTI
Verification System, 1999 Winter Simulation
Conferenceed. P.A. Farrington, H.B. Nembhard, D.T.
Sturrock, and G.W. Evans. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

U.S. Department of Defense. 1996. DoD High Level
Architecture (HLA) for Simulations. U.S.
Departement of Defense. Memorandum signed by
USD(A&T).

at http://java.sun.com/

1101

JAMES IVERS is a member of the technical staff at the
Software Engineering Institute where he works in the
Architecture Trade-off Analysis initiative. He is interested
in formal methods and analysis, particularly as applied to
software architectures. He received a BA in Computer
Science and Mathematics from Transylvania University
and an MSE in Software Engineering from Carnegie
Mellon University.

JEFF NIELSEN is a Senior Software Systems Engineer at
the MITRE Corporation. His current HLA-related activities

include providing technical and management support to
DMSO-sponsored federation efforts, participating in the
HLA IEEE specification development, and developing the

Automated Distribution System Testing: Designing an RTI Verification System

RTI Verifier test suite. Mr. Nielsen holds an MS in
Computer Science and a M.A.Ed. in Instructional
Technology, and is currently pursuing a Ph.D. in Computer
Science. He is a member of IEEE.

SUSAN SYMINGTON is a Lead Scientist at the MITRE
Corporation where she is involved in HLA testing
activities using the Verifier. She is also the chair of the
IEEE High Level Architecture Working Group that drafted
the three HLA draft standards: P1516, P1516.1, and
P1516.2. She holds a BA in Mathematics and Philosophy
from Yale University and an MS in Computer Science
from the University of Maryland at College Park.

RICHARD WEATHERLY is the Chief Engineer of the
MITRE Corporation’s Information Systems and
Technology division where he leads their DoD High Level
Architecture (HLA) Runtime Infrastructure (RTI) software
development team. He is a core member of the Defense
Modeling and Simulation Office (DMSQO) Technical
Support Team and contributor to their HLA Interface
Specification, Time Management, and Data Distribution
Management working groups. He received his Ph.D. in
Electrical Engineering from Clemson University. Please
see http://ms.ie.org/weatherly for recent work.

ANNETTE L. WILSON is a Lead Modeling and
Simulation Engineer in the Information Systems and
Technology Division at the MITRE Corporation, McLean,
VA. She is currently project engineer for the RTI Verifier,
is a member of the RTI 1.3 development team, and
supports the CADRE program by providing RTI expertise
for participating federations. Ms. Wilson was one of the
developers of the ALSP Infrastructure software (AIS) and
chaired the AIS subgroup of the ALSP Interface Working
Group. Ms. Wilson has a BS in Computer Science from
Texas A&M University and is pursuing an MS in
Computer Science at George Mason University.

1102

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

