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ABSTRACT

A project is currently underway which involves testing 
distributed system − the Run Time Infrastructure (RTI)
component of the High Level Architecture (HLA). As par
of this effort, a test suite has been designed and implemen
to provide a coordinated and automated approach to tes
this distributed system. This suite includes the creation a
application of a Script Definition Language (SDL) to specif
test sequences, and a test executive to control executio
the tests, coordinate the test environment, and record 
results. This paper describes the design and implementa
of this test environment.

1 INTRODUCTION

In a memorandum from the U.S. Department of Defen
(DoD) in 1996, The High Level Architecture (HLA) was
established as the standard technical architecture for 
DoD simulations (U.S. Department of Defense 1996). Th
fundamental nature of HLA has been culled from existin
technologies and experiences, particularly those found
Distributed Interaction Simulation (DIS) protocols (Vos
1993) and the Aggregate Level Simulation Protoc
(ALSP) (Weatherly et. al. 1996). These existing effort
while serving separate domains, share a common thread
providing a means by which simulations and simulatio
surrogates can operate together.

Key components of the HLA include:

• a common mechanism for defining and
specifying object models (Defense Modeling
and Simulation Office 1998b);

• services describing an HLA runtime
environment (Defense Modeling and
Simulation Office 1998a); and
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• rules describing policy with the HLA (Defense
Modeling and Simulation Office 1998c).

The second component, known as the HLA Interface
Specification, describes the functional interface betwee
simulation federates (simulation or simulation surrogate
participating in a federation) and the runtime environme
The specification also defines a minimal acceptable le
of behavior for the runtime environment. The extent 
specified behavior is critical since in writing tes
requirements, only the minimum required behavio
necessitate validation. Behavior beyond the specificat
permits an RTI developer flexibility and variability with
implementation. An implementation complying with th
HLA Interface Specification is known as an HLA Runtime
Infrastructure (RTI). A recent HLA update can be found in
(Dahmann et. al. 1998). The interested reader is a
referred to (Dahmann et. al. 1997) for additional details 
the HLA.

As in many development projects, considerab
verification effort is required to ensure faithfulness to 
system specification. Such efforts are further complicat
when attempting verification of a complex, distribute
system (Page et. al. 1997). The RTI exemplifies such
complex system. In many ways, an RTI is similar to 
distributed operating system and as such, makes fo
challenging verification problem.

This paper describes the design and implementation
an RTI verification system (The Verifier) and the
experiences therein. Section 2 provides background on
requirements and limitations for testing an RTI, an
presents alternatives for the test approach. Section
describes the system as it was designed and implemen
Conclusions are included as section 4.

A companion paper (Tufarolo et. al. 1999) describ
the application of this system by examining the process
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transforming the HLA interface specification int
requirements, test scripts, and presents conclusions 
observations.

2 RTI TESTING

The Defense Modeling and Simulation Office (DMSO
sponsored early development of an RTI, both as a proof
principle and as a means to evolve the interfa
specification. Details concerning this initial developme
of an RTI are described in (Carothers et. al. 1997).

The services in the specification are documented pu
from a functional perspective. The standard is very cl
about what each service means, what must first be true,
what the results will be. No attempt is made, however,
specify the performance, reliability, or scalability goals (
pick a few examples) of the architecture. By only describ
the requisite functionality, the standard has left room 
different environments to support the needs of differe
communities. One RTI implementation for example may r
incredibly fast, but won’t scale very well to large numbers
federates or object instances. Another RTI implementat
may scale to large numbers of federates and object insta
at the expense of performance. Regardless, each RTI 
conform to the same interface and provide identi
functionality.

Because of these specification characteristics, a
testing effort must be strictly limited to the functiona
behavior of an RTI. In designing a verification system
additional scoping was done to help bound the capabili
of the system. Some conclusions were:

• No stress testing will be done; the verifier
will not check the limits of how many
federates can participate, how many object
instances can be created, etc.

• No race conditions will be checked; these are
subtle areas that are notoriously hard (and
expensive) to reproduce.

2.1 RTI Test Requirements

Testing of an RTI focuses on the requirements a
behavior directly evident in the HLA Interface
Specification. The pertinent specification (Defen
Modeling and Simulation Office 1998a) includes over 2
pages and contains 129 distinct services.

The documentation for each service includes pre- a
post-conditions for the service, as well as a pro
introduction describing the service and its use. T
information allows a reader to determine which sequen
of services are permissible, and conditions that sho
result in exceptions.

Because many of the services are highly correlat
most of test requirements cannot be written by examin
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each service in isolation. Individual services must b
considered in relation to other services with which 
relationship exists. Meeting this condition requires that an
given test requirement address not only an individu
service, but also other inter-related services.

2.2 Test Environment Requirements

In addition to the requirements for testing an RTI
designing an RTI verification system required developin
the requirements for the test system itself. Thes
requirements include:

• Automation of the test execution

The sheer magnitude of the RTI test requiremen
established the need for a system that would allo
automated test execution with limited intervention.

• Support for repeated multiple executions

Because of the anticipated iterative need of the testin
the verification system must easily support repeate
(regression) testing.

• Connectivity to remote processes

The RTI specifications necessitate the ability fo
distributed federates to connect to an RTI. As such, t
verification system must test this remote connectivit
capability.

• A coordinated view across all distributed
processes

Testing RTI services requires stimulating (by makin
service calls) separate processes (on one or mo
machines), and then observing the behavior of each proc
for the proper responses (or lack thereof). The implicatio
is that the verification system must support a single view 
the state of the test execution occurring across t
distributed processes. Alternatively the system cou
interact with the distributed processes individually, the
collect the results afterwards.

• Provide a configurable environment

The verification system must be able to be tailored 
handle a variety of tests, as influenced by the variety 
HLA services.  For example, one set of tests require
interacting with the RTI strictly through a single point o
access, while others require interacting with multipl
points of access across separate machines concurrently.
5
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• Allow for evolution of the specification

The verification system must support update of the te
requirements and test specifications to allow continue
support for an evolving HLA specification. Tests should b
traceable back to a specific item in the specification. Th
system must also support identifying tests that must 
changed in response to specification changes.

• No special hooks into RTI needed

The verification should interact with an RTI via the
published, code-level, HLA interface without modification
Adhering to this condition allows any RTI to be tested
regardless of whether it's a distributed implementation or
centralized/monolithic implementation.

2.3 Test Approach Alternatives

The task of testing an RTI involves 1) invoking a sequenc
of federate-initiated services, and 2) observing the RT
response in the form of RTI-initiated services (federat
callbacks). Several techniques to accomplish this we
explored when designing the Verifier. For the results of th
system to be credible, the correctness of the verificatio
process needed to be as open, reproducible, and simple
possible. This consideration drove the selection of th
Verifier approach. Some of the alternative approache
considered are discussed in this section.

 2.3.1  Manual Testing

RTI tests could be performed manually. The only softwar
needed to do such testing is the Test Federate. This simple
program offers a GUI where an operator can invok
federate-initiated services and display the results of RT
initiated service invocations. The Test Federate software
available at the HLA Software Distribution Center on
http://hla.dmso.mil. Manual testing using software like th
Test Federate is useful for debugging both RTIs an
federations, but the reproducibility required by the
verification system would be difficult to achieve.

2.3.2  Use Existing Federations

During the early development of the HLA requirements, a
effort was made to create federations that represent 
anticipated applications of the HLA. It has been suggest
that those same federations could be used to test RTIs. T
suggestion is better applied to issues of RTI performan
given that each federation represents an interesting patt
of service invocation from which different performance
values can be measured. It is not a practical suggestion 
the systematic testing of RTI functionality. The constraint
of each federate limit the sequences of service invocatio
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available to test the RTI. The desire for openness is 
served because the verification process must also inclu
visibility into all federates involved in RTI testing.

2.3.3  New Approaches

Having decided that the Verifier would be a custom-bu
system rather than formed with real federates, the design
next considered the choice between a distributed 
centralized approach. This choice does not refer as muc
the disposition of the software components as to how t
individual tests are managed.

A distributed Verifier would contain a number o
independent service invocation scenarios or scripts. 
script is used to control which services are invoked for
given federate. To perform a test, the Verifier selects a 
of scripts, creates an instance of a special scr
interpretation federate for each script, and attaches th
federates to the RTI being tested. The exchange 
information between each federate and the RTI is record
and compared to the expected result. If the expected re
is obtained, the test is considered successful.

A centralized Verifier would also contain a numbe
of scripts but it would use only a single script for a give
test. This script would control all federates involved i
the test by selectively reaching out to each federate a
specifying which service to invoke. When action i
expected from the RTI, the script will listen at one o
more federates for the expected RTI initiated servi
invocation to occur.

Two advantages of the distributed approach are th
scripts can be written in any of the programmin
languages supported by the RTI being tested and
operations can be performed on the RTI in parallel. 
disadvantage of this approach is the complexity 
understanding a given test. To have confidence in t
correctness of a test, the behavior of a set of para
script executions and the result analysis mechanism m
be considered as a whole.

An advantage of the centralized approach is that t
entire content of a test can be expressed in a single sc
Because that script has access to the state of all feder
involved with the test, it can react to the RTI an
dynamically change the course of the test. This 
particularly important given that there is often a larg
number of correct and incorrect responses to any giv
test stimulus. A disadvantage to centralized testing is t
complexity of the infrastructure needed to connect 
single script interpreter to the distributed set of federat
at which it will invoke services and receive servic
invocations. Nevertheless, the cost of constructing t
central script interpreter and distributed infrastructu
was deemed well worth the clarity and simplicity of th
single, centralized script approach and was chosen for 
Verifier design.
6
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2.4 Existing Capabilities

William G. Saxon and James F. Leathrum Jr. of the Virgi
Modeling, Analysis and Simulation Center (VMASC) at O
Dominion University performed a survey of existin
software testing tools (Saxon and Leathrum 1998). T
identified tools were divided into two categories: cod
dependent and code-independent systems. The c
dependent systems were eliminated as candidates s
source code for an RTI under test would not be available.

The code-independent tools included systems such
Ballista, Deploy, ADL (Chang, Richardson, and Sak
1995), and CATS. None of these tools fully supported 
requirement to provide stimulus at multiple distribute
points and observe the response at all points. This led to
development of The Verifier to support this requirement.

Systems such as Ballista have been used to perf
robustness testing on earlier RTI implementation (Fernsler
and Koopman 1999; DeVale, Koopman, and Guttend
1999).

3 DESIGN

The RTI Verifier system architecture consists of a Scr
Definition Language (SDL) created to specify test scripts;
application executive, controller, and SDL interpreter to pa
and execute scripts; test federates to connect and interact
an RTI under test; and a database to maintain requirem
tests, and test results. Figure 1 presents a functional over
of this architecture.

Using this system begins with the HLA Interfac
Specification. A person must read and understand 
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specification and distill a set of test requirements for e
into the system. These test requirements form the basi
generating test scripts. Using the v1.3 Interface Specifica
(Defense Modeling and Simulation Office 1998a), t
activity yielded over 1,600 individual test requirements.

Based upon an individual test requirement, one
more scripts are created using the SDL. These scripts
stored in the database and associated with a correspo
test requirement. A Microsoft Access database applica
was written to provide a convenient method for enter
and maintaining test requirements as well as test scripts

At execution time, a test executive is initiated th
manages access to the test scripts, and provides up t
separate attachment points (APs) to the RTI under test. Th
APs connect to test federates which in turn, are connecte
to the RTI under test. A test controller GUI allows a
human tester to select, initiate, and monitor ongoing 
activities. It also permits tests to be hierarchically grou
to allow large or small sets of test cases to be exec
Scripts stored in the database are retrieved via JDBC (Patel
and Moss 1997). Results from script execution are 
stored in the database, again using JDBC as the a
mechanism.

Within the Access DB application, test results can
reviewed on-line or in a test report detailing the te
executed, and in the case of an unsuccessful executio
failure status and the trace of events leading to the fai
Script failures are examined to determine if the failure 
result of behavior contrary to the specification as oppo
to an error in statement of the test requiremen
implementation of the script testing the requirement, or
possible alternative interpretation of the specification.
RTI Under TestRTI Under Test

Test
Federate

Test
Federate

Test
Federate

Test
Federate

Test
Federate

Executive Interpreter

Java RMIJava RMI

AP AP AP AP AP

RTI Interface

Database

Test Controller
(Java/Swing GUI)

Script
DevelopmentRequirements Entry

HLA Spec

JDBC

Test Reports

MS Access Application

Figure 1: Verifier System Architecture
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The following subsections provide more detai
concerning components of the verification system
architecture.

3.1 Script Definition Language

SDL provides the cornerstone for the verification system
Because the HLA specification includes a unique set 
services to test, a convenient mechanism was needed
facilitate generating test cases. A new language − SDL −
was devised to address the unique nature of interacti
with an RTI.

The following capabilities are fundamental to the SDL:

• Allow invocation of all Federate-initiated
services

• Allow acceptance of all RTI-initiated services
("callbacks")

• Allow interaction with the RTI via separate
attachment points

• Maintain a consolidated view across all
attachment points

• Support HLA data types
• Provide flow of control
• Provide exit status (success or failure)

The basic flow of a SDL script is to:

1. Initiate one or more RTI service calls
2. Look for actions
3. Look for lack of actions
4. Trap unexpected actions
5. Decide what to do next

Figure 2 offers a sample of the SDL.

invoke ap1 RTI_SERVICE (arguments)
return  (arguments)
  federateNotExecutionMember (theException) ;
  exception (theException) {
   exitFailure ("Service call exception");
  }
accept all
  FEDERATE_SERVICE_1 ap2 (arguments) ;
  FEDERATE_SERVICE_2 ap3 (arguments) ;
  other theService theAP {
   exitFailure ("Unexpected callback");
  }
  unsatisfied {
   println ("Callback not received");
   exitFailure ("Unsatisfied callback");
  }
exitSuccess ("Test completed");

Figure 2: SDL Sample
1098
.
f
to

g

RTI services are initiated by using the invoke
statement, with "AP" identifying the attachment point from
which the service call will be initiated. Within the contex
of a single script, RTI calls can be sent to multipl
attachment points concurrently. Based on the particul
RTI service used, the arguments will contain the necessa
data for the service. Likewise, the optional return
statement will capture any return values that are associa
with the service call.

Federate services (callbacks from the RTI) are
captured via the accept statement. In these services, the
"AP" identifies the attachment point at which the federa
service callback is expected. More than one federa
service callback can be specified in the context of a sing
accept statement. The all keyword requires receipt of every
federate service listed for the accept statement to 
considered satisfied. Alternatively, the keyword any can be
used to indicate that only one of the federate services list
is needed to satisfy the statement. Unexpected callba
are captured via the other keyword. The unsatisfied
keyword allows the script to stop waiting for unfulfilled
callbacks from the RTI after a fixed waiting period
Because the test suite is not intended to test performance
race conditions, this waiting time is usually large (th
default value is 5 seconds) and can be specified at the 
controller GUI.

Failures during script execution can emerge as a res
of RTI exceptions, script language exceptions, an
behavioral errors. If an exception occurs while using th
invoke statement, it can be captured by including th
exception keyword. A decision to continue or abort the
script can be contained in the exception handling code. F
some test cases, specific exceptions are expected. Th
exceptions can be included by name in addition to th
general exception case.

The exit condition from a script is specified via the
exitFailure or exitSuccess keywords. Based on the
requirements of the test, these exit statements are place
the appropriate locations. It is incumbent upon a scri
designer to use these statements properly to signal 
ultimate success or failure of the script. An exception to th
is the case of a failure in the script. A script can "fail" whe
a callback is received and not captured, an exception
thrown and not caught, or because of a semantic script er
All of these occurrences will automatically result in the
script terminating as if the exitFailure mechanism was used.

Other details of the language include variable typ
definitions, print statements, comments, program log
flow control, etc. These are typical of other programmin
languages and the details are not included here.

3.2 SDL Interpreter

To implement the use of the SDL in this system, a pars
was designed and created to read and interpret t
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statements written in SDL and in turn to interact with a
RTI via the distributed test points. In order to minimiz
development efforts, existing products were sought 
support building this parser and integrating into the oth
Java-based components of the system. JJTree and Jav
were selected to meet these criteria.

JavaCC is a Java language preprocessor that gene
top-down (recursive descent) parsers based upon a det
grammar (Sun Microsystems 1999a). By default, Java
generates an LL(1) parser. However, there may be porti
of the grammar that are not LL(1). JavaCC offers t
capabilities of syntactic and semantic look-ahead to reso
shift-shift ambiguities locally at these points (i.e., th
parser is LL(k) only at such points, but remains LL(1
everywhere else for better performance). Shift-reduce a
reduce-reduce conflicts are not an issue for top-do
parsers (Barrett et. al. 1986). Top-down parsers have o
advantages (as opposed to more general grammars) su
being easier to debug, having the ability to parse to a
non-terminal in the grammar, and having the ability to pa
values (attributes) both up and down the parse tree du
parsing.

JJTree is an add-on to JavaCC, allowing the genera
parser to produce syntax trees, i.e., it inserts tree-build
actions at various places in the JavaCC source (S
Microsystems 1999b). By default, JJTree generates cod
construct parse tree nodes for each non-terminal in 
language. This behavior can be modified so that some n
terminals do not have nodes generated, or so that a nod
generated for a part of a production's expansion. JJT
defines a Java interface node that all parse tree nodes 
implement. The interface provides methods for operatio
such as setting the parent of the node, and for add
children and retrieving them.

The SDL parser was built by creating a context-
sensitive grammar. This grammar specification was us
by JJTree to produce inputs for JavaCC. The result w
Java code, which implemented the specifications of 
grammar for use by the test executive.

3.3 Test Executive

To execute the scripts, the SDL interpreter works toget
with the test executive. This process serves as the cen
point of control during RTI testing. It is responsible fo
both accessing the scripts and managing their execut
Scripts can be either read from a file or (more common
retrieved from the database.

In the database, scripts are organized into a hierar
that supports four different levels of execution. A script
can be executed either by itself or as part of a sequenc
scripts that comprise a test. In the latter use, scripts serve a
components, which are combined in different ways to fo
a coherent test. (For example, a script that create
federation execution and joins three federates can be
1099
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used as the beginning of any number of different tests
Likewise, a series is a group of one or more tests to be run
together, and a scenario is a group of series.

The test executive supports execution at any one o
these four levels of execution and ensures that scripts a
executed and/or aborted as appropriate. As it executes
script, test, series, or scenario, it records the results in t
database.

3.4 Test Controller GUI

The test controller GUI is a graphical front end to the tes
executive that serves as the point of access for an R
tester. From the GUI, a tester can observe and control t
behavior of up to five different federates connected to th
RTI under test. Each of the test executive's five attachme
points can be linked by the user to a remote test federa
process. The GUI allows the tester to view the contents o
the database and to select scripts, tests, series, or scena
for execution. The user can then monitor the progress of a
execution by watching the display.

The GUI also permits the user to manually invoke an
of the federate-initiated services and respond to RT
initiated services at any of the attachment points. This ca
be done at any time, whether or not an execution is i
progress.

The test controller, test executive, and SDL interprete
are all written in Java. These can thus be run on an
platform for which there is a Java virtual machine. The
GUI elements were written using the Java "Swing" classe
which are now part of the standard Java 1.2 class librarie
These are a set of graphical components that provides
consistent and platform-independent look and feel, so th
the GUI appears and behaves the same way no matter w
it is run on.

3.5 Test Federates

An RTI can not be tested unless there are federates join
to it that are using its services. This is the role of the te
federate processes that are at the heart of the testi
system. A test federate is a completely user-driven federa
that has the capability to exercise the full set of federate
initiated services and accept the full set of RTI-initiated
services ("callbacks"). An example is the test federat
provided with the DMSO RTI, which allows the user to
call any RTI service by selecting it from a menu and
supplying the appropriate parameters in a dialog box.

The test federate program written for the RTI
verification system is different in that it provides no direct
user interface. Instead, all of the running test federat
processes are controlled completely by the test executiv
The executive tells the test federate which RTI services t
call, and any callbacks that arrive must be processed a
"cleared" by the executive before the federate proceed
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Again, this is so that the executive can maintain centrali
control over the system at all times.

The test federates are also written in Java, and use
Java Native Interface to call the pre-compiled C++ R
libraries.

3.6 Remote Connectivity

Connectivity between the executive/interpreter and the 
federate processes is achieved through the Java Re
Method Invocation (RMI) protocol. The RMI architectur
provides a way for objects in one Java process to inv
methods on objects from other Java processes—either l
or remote (Sun Microsystems 1999c). (This is in the sa
spirit as the OMG CORBA architecture, but is specific 
Java programs.) An RMI registry running on each mach
provides a simple naming service, and the marshalling 
unmarshalling of parameters and return values is hand
transparently (via object serialization) from th
programmer's point of view. Clients simply obtain 
reference to a remote object and then call its method
exactly the same way as with local objects.

Thus, from the point of view of the test executiv
each remote test federate is simply a "test ambassa
object that provides methods mirroring all of the RT
service calls. To invoke a federate-initiated service on 
RTI under test, the test executive simply calls t
appropriate method on the test ambassador. Everyth
else, connecting to the remote test federate proc
sending data over the network, etc., is hand
automatically.

In a similar fashion, each test federate has a refere
to a single "controller" object, to which it passes all R
callbacks. The test federate does not concern itself with
fact that the controller is actually on a remote machine
simply calls the appropriate method and waits for it 
return.

3.7 Database Application and Connectivity

Connectivity between the test executive and the databas
achieved with the Java Database Connectivity (JDBC) A
JDBC allows Java programs to execute SQL statement
any relational database using a single, standard J
interface (Patel and Moss 1997). SQL statements are u
both to query the database (retrieving scripts, tests, etc.)
to update it (when recording execution data). The particu
implementation of the JDBC used in the verifier softwa
also takes advantage of Java RMI.

4 CONCLUSIONS

The complexities in testing a distributed system such as
RTI pose a considerable challenge, even after limiting 
testing to functional capabilities and disregardin
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performance, stress-testing, and race conditions. Particu
test environment requirements, including a need 
stimulate and observe the response of an RTI at multi
distributed points, drove the development of a new syste
The Verifier, to test an RTI. The Verifier consists of a
Script Definition Language to specify test scripts; a
application executive controller and SDL interpreter t
parse and execute scripts; test federates to connect 
interact with an RTI under test; and a database to maint
requirements, tests, and test results.

Application of this system to date has proved to b
very useful to meet the unique needs of RTI testing. 
companion paper (Tufarolo et. al. 1999) provides mo
details into the process of using The Verifier. Future effor
include enhancing the script definition language and te
environment as needed to address the next version of 
HLA standard (IEEE Standard "P1516.1 Draft Standard f
Modeling and Simulation (M&S) High Level Architecture
(HLA) – Federate Interface Specification").
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