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ABSTRACT

DuPont has many products that use rail cars in var
portions of their supply chains.  Often these cars are u
to deliver final products to a variety of customers 
different geographical locations.  In many cases it
difficult to optimally size these fleets, since the underlyi
system is complex, dynamic, and involves rand
variables.

This paper describes how DuPont has used discr
event simulation (“DES”) to optimally size an industri
rail car fleet used to deliver final products to customers
explains why it is important to DuPont to optimize the s
of our rail car fleets; how such fleets are sized with
DES; the value of DES in modeling one particular rail c
system; and some of the lessons from building such D
models.

1 RAIL CARS IN DUPONT

DuPont owns or leases about 7,000 rail cars, which wo
cost about $700 million if bought new.  Corporate direct
is to own rather than lease these cars.  The financial m
called “RONA” (Return on Net Assets) is important 
DuPont and causes businesses to want to minimize 
investment that does not directly produce revenues 
therefore earnings.  Hence, the businesses wan
minimize capital expenditures such as those required
purchase rail cars.

The Nature of the Problem: The problem being
addressed here is: How do we optimize the size of the f
given various input parameters such as plant produc
rates, customer demand rates, hold times at customer 
and rail car transit times between the production a
consumption sites?  This is a planning problem rather t
a scheduling problem.  That is, the question is “How 
should our fleet be next year?”; not “How do we sched
our fleet next week?” or “What are the optimal routes 
our rail cars?”.  We have other tools available for 
scheduling and route optimization problems.
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As part of optimizing the size of the fleet, we als
want to specify the best “policies” for managing the fle
Policy decisions concern issues such as when to use tr
to supplement the rail fleet, how and when to sched
planned production facility shutdowns, willingness 
allow customers to hold cars at their sites as part of th
raw material inventory, and sharing of fleets betwe
compatible products.

The Nature of the Solution: The models we have
built in DuPont to address these problems allow ma
“what if?” questions to be answered.  They are descript
models that are not inherently optimizing.  Optimizing t
size of the fleet requires running a series of “what if
cases, involving the judgment of a modeler and of a “us
who is well familiar with the various issues involving th
fleet.

2 SIZING OF RAIL FLEETS
WITHOUT SIMULATION

The typical planner who must size a rail car fleet witho
DES does so using a spreadsheet or possibly 
optimization tool such as Linear Programming (LP
While these tools are extremely useful for many problem
they are almost always unsuitable for sizing a rail car fl
since they cannot adequately address several esse
features of the system, namely:

Complexity: Typically there will be various “rules” or
“logic” that must be followed.  An example could be
“Start using trucks to supplement rail cars for delivery 
product to customer A when the days supply for th
customer drops below some specified level”.  Such ru
can be easily included in a DES model, but are impract
to include in a spreadsheet or LP model.

Dynamics:  DES by its nature includes dynami
features of the system, which are very difficult to inclu
in a spreadsheet or LP model.  For sizing a fleet, 
dynamics of the system are often the whole sto
Knowing how many rail cars are full “on average” over t
course of a year is of little value, and in fact is likely to 
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misleading.  If you are trying to size a fleet, you a
probably very interested in predicting minimum o
maximum values (e.g., “Did we ever ‘starve’ a particul
customer?”, or “Did we ever run out of empty cars to fill 
our production site, thereby threatening the ability of t
plant to continue to run?”).  A specific example illustratin
the importance of understanding the system dynamics 
be given below.

Randomness:  Real-world rail systems include man
random variables.  Some examples are: transit times, b
on-site and between sites; rail car maintenance tim
production and consumption rate changes due to rand
failures; and production quality problems that may requ
rail cars to be used for intermediate storage while proble
are corrected or product is reworked.

Pressures on the Planner: While the planner
responsible for sizing a fleet faces pressure to minimize 
size of the fleet to avoid capital and related expenditur
there is often a greater driving force:  namely, don’t let
lack of empty rail cars ever cause the production facility
have to curtail production, and don’t let a lack of full ra
cars ever cause a customer to have to curtail consump
The penalties associated with curtailing production a
consumption are often large, and when such a curtailm
is due to a shortage of rail cars the cause is quite obvio
As a result, a planner who does not have DES available
size a fleet is very likely to size it conservatively, based 
“worst case” assumptions.  In practice, we have found s
conservatism  in a number of fleets in DuPont.

3 VALUE OF DES FOR SIZING A PARTICULAR
“SIMPLE” RAIL CAR SYSTEM

Many DES modeling tools are available and many wou
be applicable for the type of model described in this pap
In DuPont we have found ProModel to be a cost-effecti
tool, and we have used it for many such applicatio
including the one described below.

We have sometimes been surprised at how valua
DES can be even for what appears to be a simple rail 
system.  In one case, a single production facility with on
two customers was found to have a fleet that w
considerably over-sized.  The combination of compl
rules, dynamics, and randomness made the analysis of
fleet impossible without DES.

Value of Time Series Plots: This model provides a
good example of the value of time series plots for su
applications, and of how misleading the use of avera
values can be.  Figure 1 shows a time series plot from 
model for empty cars at the production site, over a per
of 730 days (2 years).  While the average number of c
over this 2-year period is about 80, that provides very lit
useful information to a planner who is trying to size th
fleet.  Instead, what is important is what happens at 
peaks and valleys.  When we hit a maximum for emp
1259
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cars, the number of full cars is at a minimum, which m
cause problems at the consuming sites.  Hitting a minim
number of empty cars (especially at or near zero) at 
producing site was especially important and will b
covered in more detail below.  One of the advantages
DES is that we not only know how the level of empty ca
varies over time, but we can focus on the behavior of 
system at the critical points in time to greatly increase o
understanding of how the system really works.  Th
animation feature included in most DES modeling tools
very useful for this purpose.

Supply of Empty Cars: In this case, the production
site was very sensitive to running low on empty ca
needed to deliver the finished product, since that carr
with it the potential for having to offload the product int
SuperSacks that must later be loaded back into rail c
This of course costs more and takes longer than load
directly into rail cars.  Furthermore, running low o
empties at the producing site was seen as a harbinge
later starving the consuming sites.  As a result, when 
number of empty cars at the consuming site was reduce
a specified level, the site would begin using trucks 
deliver product to one of the consuming sites.  T
reasoning was that this scheme would reduce the need
rail cars in that loop and thus, in time, help improve th
supply of empty cars at the producing site.

A Surprise About Trucking:  This policy of using
trucks to supplement the rail cars in certain circumstan
had been in place for some time.  Once the DES model 
available, we were able to run cases to see how well 
specific policy worked with different parameters (e.g., “A
what level of empty cars should we begin trucking?”).  W
were surprised when the summary numbers from our c
runs showed that system operation worsened when we u
the trucking policy, and our first thought was that the
must be an error in the model logic.

Using the animation feature built into ProModel, w
were able to observe the system in operation and learn w
our trucking policy did not have the desired effect.   Whi
taking cars out of a delivery loop seemed like a good id
an unintended effect of that policy is that fewer empty ca
were then being returned from that customer site, wh
was now getting part of its feed via trucks.  Our analys

Figure 1: Number of Empty Cars at Production Site
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led to the discovery that the implementation of th
particular trucking policy was in fact counterproductive.

Importance of Vantage Point: Another insight that
came from watching the animation is that running low o
empties at the producing site is not a problem as long
there is a steady supply of empties on the way back to 
producing site.  If your vantage point is simply looking at 
staging area for empty cars and you see that there are v
few cars at a given point in time, you may take action 
solve what you think is a looming problem.  However, 
your vantage point is expanded so you can see more of
system – namely, the complete loops of empty cars be
returned to the producing site, you may find that the futu
supply of empties is in fact assured, since they will arriv
before they are actually needed.  To put it another wa
even a staging area that is completely empty is n
necessarily a problem – if empty cars are being return
just as fast as they are needed.

Sizing the Fleet: After gaining insights into various
aspects of the system behavior through observi
animations and analyzing time series plots and mod
output reports, we came to the exciting work of runnin
cases to size the fleet.  This involved gradually lowerin
the number of rail cars in the fleet to see how small w
could make the fleet while still obtaining acceptabl
results.  This number of rail cars turned out to b
considerably lower than what was originally expected.

Significant changes were made to the actual fle
based on the results of this model, including the removal
$2.3 million of rail car purchases from a previousl
authorized production expansion project.  Subseque
experience proved that the model predictions we
accurate.

4 THE HARD PART OF SIMULATION
MODELING

While the value of DES is apparent for this type o
application, there are many difficulties in building a mode
for a real-world fleet.

What to model and at what level:  Two extremes
must be avoided.  At one extreme, it is possible to inclu
too much detail in a model.  The results can be that t
model takes too long and costs too much to develop, a
that case runs may require inordinate amounts of compu
time.  At the other extreme, if the model does not includ
sufficient detail, the results will not be valid.  As a
generalization, models are not right or wrong; rather, th
are more or less useful in answering real-world questio
The level of detail included in the model is an importan
factor in how useful it will be.

To help decide whether or not to include som
particular level of detail in a model, the most importan
question to ask is: “Will it significantly affect the answe
we are looking for?”.  In other words, always keep you
1260
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objective in mind.  We have also found that previou
experience with DES modeling can lead to good intuitio
about the appropriate level of modeling to be done.  The
is some element of “art” here, along with the science.

Clearly we must model more than the rail car
themselves to be able to size the fleet, and here 
question of what to model and at what level becom
crucial.  We must model some portions of the variou
interfaces of the fleet.  Especially important are decisio
about how to model the production facilities, th
consumption facilities, and various auxiliary operation
such as trucks, barges, etc., which may interface with 
rail car fleet.  The decisions about how far to take th
modeling must always come back to the fact that our go
is to size the rail car fleet.  If, for example, our goal was 
determine how to optimize the production capability of th
plant that feeds the fleet, the production facilitie
themselves would likely be modeled very differently.  I
some cases, the scope may include optimizing the pl
production capability along with the size of the fleet.  Th
can be done, but it significantly increases the modeli
degree of difficulty.  Decomposition of this problem ma
be helpful, but will not always be appropriate.

Testing:  Testing the validity of the model is vital.
The first step is to run a “base case” that can duplicate 
results from some recent period of operation of the act
system.  Then, when “what if?” cases are run, it 
important to examine the summary results, the animatio
and the time series plots to ensure that the model
operating as intended.  It is very easy to assume, onc
base case has been validated, that future case runs wil
be valid.  But changes in input parameters can cau
different model logic to be executed and the modeler m
ensure that the model is still valid.  This work can b
tedious, but it is also essential.

“Mass Balance”:  This type of DES model must have
some “driving force”, and the modeler must be careful 
understand what the force is and how it will operate.  T
consequence of failing to do this is that the model may n
have a “mass balance”, meaning that material can build
without bound somewhere in the system, or that some p
of the system may starve for material.  While this is on
one of many kinds of errors that must be rooted out duri
model validation, it is so fundamental and common that
is singled out here.

As an example, if the input to a model includes bo
production rates and consumption rates, there must b
mechanism to balance these as the simulation progres
One way to do this is to adjust production rates based 
the dynamic inventory level of finished product, throttlin
back when it is high, and increasing rates when it is lo
In other cases the production facility may be such that 
rate is not readily or economically changed, and there m
be some outlet available for production that exceeds 
demands of the normal consumption sites.
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The data:  A great deal of input data is required fo
this type of DES model and the model results can be
better than the quality of the data used to drive it  On
again, however, judgment is needed as to the level of de
that should be included.  It would be easy to spend 
inordinate amount of timing refining certain data, whe
such refinement may have little noticeable impact on t
quality of the ultimate recommendations resulting from t
model runs.

Usually, collaboration with others will be needed t
collect and analyze this data.  For example, in DuPont 
have a corporate logistics organization that has acces
historical data on the transit times between sites for all
our rail fleets.  Help from this organization to sort throug
the data to find the information needed for the model
essential.  Without this data source, it would be ve
difficult to adequately model the rail transit times, whic
are often a source of substantial variation.  In fact, it is n
uncommon that this actual data shows much more varia
than what the rail fleet planners thought it did.

5 THE PAYOFF

The payoff from the study of the rail car system describ
above was considerable:

Avoided capital:  Before the model was built, the
fleet was believed to be fully utilized, and even requir
the occasional use of trucks to supplement the rail car fle
When a project was authorized to increase pla
production, $2.3 million of capital funds were included 
expand the rail car fleet to handle the higher productio
However, as a direct result of the DES model, this $2
million for expansion of the fleet was removed from th
project.

Reduced operating costs:  As explained above, the
DES model gave us new insights into the effect of trucki
on how the system really operates.  As a result, trucking
used less frequently, which results in reduced operat
costs.  Furthermore, the operating costs (e.g., maintena
associated with increasing the number of cars in the fl
were avoided.

Improved customer service: Because we now have a
much better understanding of how the rail car syste
actually operates, we are better able to ensure that 
supply of full cars to our customers is not interrupted, 
spite of various disturbances to the system and in spite
having fewer cars than originally planned.

6 SUMMARY

DuPont has a very large investment in rail cars.  Witho
discrete-event simulation, we have found that rail car fle
are often sized conservatively, since the underlying syst
is complex, dynamic, and involves random variables.  W
discrete-event simulation, we can address all of the
1261
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issues and have profitably applied such models 
optimally size rail car fleets.  Some of the factors that mu
considered to make such models successful have b
described.
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