
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

WEB-BASED SIMULATION VISUALIZATION USING JAVA3D

Chad F. Salisbury
Steven D. Farr
Jason A. Moore

Air Force Research Laboratory / IFSB
525 Brooks Rd

Rome, NY 13441-4505, U.S.A.

th
n
nd
at
se
ce
e
n's
e

f a
o

m
 th
es

hil
on
ed

ing

e
le

ng
the
e
e

his
ive
be
a
 is
of
ar
to

he

g
he
s
al
st
te
e

ive
n
ld

to

to
as
tion
un
ne
 a

 the
ons
lly

ers
ns.
un
 In
 of
te
w.

ects
le
ps,
ther

 is
ABSTRACT

The coupling of Java3D and applet technologies has
potential to revolutionize web-based simulatio
visualization. Applets can enable the dynamic a
distributed instantiation and elimination of viewers th
until now was not possible. A visualizer based on the
technologies is under development at the Air For
Research Laboratory's Information Directorate. Unlik
existing visualizers that must be running at the simulatio
start time, this tool allows users to come and go as th
please - effectively allowing one to peer into the state o
simulation at a place, perspective, and time that is
specific interest to them.

Intense 3D graphics have been difficult to progra
and distribute among heterogeneous environments until
inception of Java3D. Sun Microsystems' Java3D provid
users the best acceleration their platform can support w
the WWW provides the transmission and communicati
infrastructure. This paper discusses a government own
browser-based simulation visualizer capable of display
simulated entities to any number of distributed sites.

1 MOTIVATION

Historically, simulation visualizers were stand-alon
applications running on a single workstation. Peop
interested in monitoring a simulation using most existi
visualization tools must be present at the inception of
simulation so that the visualizer can initialize itself with th
simulation. If the starting time is missed, the real-tim
progress of the simulation can not be observed. T
scenario was the case with the Distributed Interact
Simulation (DIS) paradigm. Preferably one should
allowed to ‘peer’ in and out of the execution of
simulation as desired.[1] It is often the case that one
only interested in observing a relatively small time slice
the simulation. If this time period of interest occurs ne
the end of the overall simulation the observer will have
1425
e

y

f

e

e

,

join the simulation at its very onset, tying up both t
machine and the user for the duration of the simulation.

A second motivation is the desire to easily brin
visualization to those who only wish to observe t
simulation execution. Participation in HLA exercise
requires extensive off-line involvement prior to the actu
running of the simulation. Visualization packages mu
first be made HLA compliant (i.e., be able to communica
with the HLA runtime infrastructure) and then must b
folded into the interface specification. Distributed pass
observation of a simulation without the burde
participating in the HLA exercise ‘set-up’ process shou
significantly increase the number of users willing
analyze simulation results.

Lastly, legacy visualizers were constrained
execution on the machine for which the application w
written. When systems were updated, often the simula
viewer had to be at least partially modified to get it to r
on the new configuration. Inherent to the machi
dependent problem was the requirement to maintain
separate implementation for each of the architectures
visualizer supports. The number of source code variati
expands rapidly, and the application gets exponentia
difficult to support.

2 BACKGROUND

JView is a modular program designed to assist engine
and analysts with visualization of models and simulatio
The core segment of the program relies on S
Microsystems’ Java 3D architecture to render an image.
order to support the simulation community’s diverse set
visualization requirements, JView allows one to crea
Java Beans that interface with the main viewing windo
These small pieces of code enable JView to display obj
from any data source (i.e., simulation). A list of viewab
objects would include not only aircraft, tanks, and shi
but also radar coverage, sound, thermal coverage, and o
non-visible phenomena. The basic JView package

Salisbury, Farr, and Moore

n
is
,

an

u
-
a
in

d

e
 o

ow
on

t
n
e

iv
to
 o
 b
te

n

t
-
-

let
m
ch
to
.
n

er
er
ed

er
n
e
 as
ted
se
d
and
an
ce
he
e
e
n

t to
of

e

e

ard
eb
st-
e,

 a
tor
as
ing
y of
ry,
ne

s
d a
uct
uilt
eb-
the
lso
provided with a core set of beans that allow reading a
replaying of simulation input data. Whether this data
real-time through DIS or HLA or recorded to an input file
JView can display the forces and energies depicted in
given simulation.

JView-lite leverages the same display technology b
relies on the Web for distribution. Unlike JView, JView
lite will be a holistic applet that provides a window into
simulation (i.e., one cannot develop beans to work
conjunction with the JView-lite applet). The only
simulation feed available to JView-lite will be provide
from an HLA simulation. JView-lite won’t have the plug
and play capabilities of JView. However, it will utilize th
same graphics engine as JView. It will also support all
the same viewing and scene manipulation features as
big brother.

3 SYSTEM ARCHITECTURE

The client server architecture depicted in Figure 1 bel
has two principal software components: the Simulati
Monitor and the Simulation Viewer (a.k.a. JView-lite).

The Simulation Monitor is an HLA-compliant module
(i.e., a federate in HLA-speak) which has registered
receive position data from all the objects in the federatio
The monitor is initialized upon startup of the HLA exercis
and participates in the simulation as an unobtrus
observer for the duration of the exercise. The moni
passes object information to each client. The number
supportable clients is still under consideration and may
a function of the total number of viewed objects reques
by the set of clients.

Figure 1: Web-Based Simulation Visualizatio
Architecture

The JVIEW-lite simulation viewer is an apple
executing within the client’s web browser. Three
dimensional rendering is enabled using the Java Plug
1426
d

y

t

f
its

o
.

e
r
f
e
d

in

and the Java3D API (more on these later). The app
allows the user to view the objects in the simulation fro
any desired perspective. It is also possible to laun
multiple browser windows, each with their own applet,
allow for multiple views into the same simulation
Currently, the clients are provided all the informatio
necessary to display all of the objects in the simulation.

The viewing process starts when the client brows
requests, via HTTP, to view a simulation. The web serv
hosting the link will send the web page and the embedd
viewer applet. The browser then initializes the view
applet, effectively making the browser a 3D-simulatio
viewer. The viewer, in turn, makes contact with th
simulation monitor that is residing on the same machine
the web server. Although not necessary, we have elec
to have this component run off the web server to ea
communication with the clients. Housing the monitor an
the web-server on separate machines requires signing
validating the viewer classes so the applet c
communicate with a system other than its originator. On
the connection is made, the simulation monitor brings t
viewer up to speed by informing the viewer about th
number, locations, and vector information of all th
simulation participants. The simulation viewer can the
render the simulation based on this information.

When a viewer is closed down, a message is sen
the simulation monitor to stop the transmission
information to that particular client. If the simulation
should end while viewers are still connected, th
simulation monitor will inform those clients that the
simulation has ended and no further information will b
sent. The simulation monitor will then shut down.

4 WEB-BASED 3D GRAPHICS

Our approach was to use an existing 3-D graphics stand
as the means to visualize simulations within a w
browser. This venue was deemed more efficient and co
effective than implementing a proprietary or, in our cas
government-owned, 3D renderer. It also allowed for
shorter development cycle. Support from the API’s crea
in terms of bug fixes and incremental improvements w
also a strong incentive. An API that has corporate back
and a large user base often sees much more in the wa
enhancements and innovations than a proprieta
government owned product that is only used within o
system.

The API of choice was Java3D. This API wa
attractive because it has strong corporate backing an
large user base, providing strong indicators that the prod
should have a long and prosperous lifecycle. It is also b
upon Java, a language that focuses on portability and w
based architectures. None of this should discount
API’s power and relative ease of use, which were a
factors in the decision.

Web-Based Simulation Visualization Using Java3D

av
ar
at
 o
da
a
”.
as
b
s
h
m
vi
eta
at
eo
st

ly
ha
nd
av
 o

ft’s
ing
s a
ser
is is

Kit
-in

 It
.2
oth
s

ntly

es
va

the
the
the
the
 the
 an
4.1 Showing 3D Content on the Web

Java3D is fairly new and is not part of the standard J
language distribution. It is an extension, an additional p
of Java whose classes have to be downloaded separ
from the standard Java distribution. There are a couple
reasons for these extensions. One is to keep the stan
Java distribution from growing exponentially large with
multitude of options, avoiding “kitchen sink syndrome
Incorporating every new idea into the language would f
make Java a bloated, unwieldy beast that would
impossible to download and use. Extensions allow user
utilize only those extra parts of Java they need. T
second reason is that the Java3D API utilizes so
hardware level graphics facilities for speed. Access is
OpenGL support built into the video card (There is a b
release of Java3D utilizing DirectX for video cards th
support DirectX). These calls aren’t supported by all vid
cards, making Java3D somewhat less portable than mo
Java.

Creating 3D applications using Java3D is fair
straightforward matter; but the creation of 3D applets t
run within a web page is not. Java3D is a new a
changing technology that is ahead of most of the J
interpreters incorporated in today’s web browsers. As
1427
a
t
ely
f
rd

t
e
to
e
e
a

of

t

a
f

this date, Netscape’s Communicator and Microso
Internet Explorer can’t support all the new features be
added to Java. Fortunately, Sun Microsystems provide
mechanism for running Java code through the brow
using the latest and greatest in Java interpreters. Th
done with the Java Plug-in.

4.2 The Java Plug-in

The Java Plug-in comes with the Java Development
(JDK 1.2) and now with the JRE1.2.1. The Java Plug
works with Netscape Navigator version 3.0 or greater.
also works with Microsoft Internet Explorer version 3.0
or higher [see Java Plug-in web site reference]. B
utilize the plug-in in a slightly different manner; our focu
is restricted to the Netscape browser since it is curre
the browser used at the Air Force Research Laboratory.

The Java Plug-in (Sun Microsystems 1999a) utiliz
Netscape’s Plug-in technology to run the JRE (Ja
Runtime Environment) within the browser, bypassing
browser’s native Java interpreter. It doesn’t replace
native interpreter, the JRE is just called in place of
native interpreter. This is accomplished by changing
HTML in which the applet is contained. Netscape uses
<EMBED> tag to indicate that the browser should use
Figure 2: JView-lite Screen Capture

Salisbury, Farr, and Moore

u
L
if
ha

 a
ge
n
es
RE
 o
he
v
ny
a

T
m
1

un
te

va
 b
w
he
,
u
ha
 a
 t

nt
rt

ee
e

er
us
pl
 i
le
pl

e of
l,
e:

e

ge.

L
ts/

er
w
ns
on a
alternate JRE. (Sun Microsystems 1999b) In addition, S
provides an HTML Converter that handles the HTM
conversion automatically. This is particularly useful
there is a significant number of existing web pages t
need conversion.

Installing the Java Plug-in in Netscape is simply
matter of pointing the browser at a converted web pa
The plug-in will download and install automatically (upo
user authorization). From this point on, any pag
requesting use of the Java Plug-in will run whatever J
the Plug-in is configured to use. An alternate method
installing the Java Plug-in is to download and install t
JDK or JRE manually, since both now come with the Ja
Plug-in. The browser now has the capability to run a
Java classes corresponding to the Java 2.0 langu
specification.

4.3 Additional System Requirements

Currently the Java Plug-in requires Windows95/98/N
4.0 or Solaris operating systems. A 90 MHz Pentiu
processor, 25 megabytes of disk space, and
megabytes of RAM are also necessary. S
recommends at least 24 megabytes of RAM for bet
performance.

4.4 The Java3D Classes

At this point, the browser is capable of supporting Ja
2.0. However, the JRE that the plug-in is using has to
able to handle the Java3D API calls made by the JVie
lite applet. This requires installing the Java3D API on t
machine which the browser, and subsequently the JRE
executed. The API can be downloaded from the S
Microsystems website and installed under the JRE t
the Java Plug-in is using. Once the Java3D classes
within reach of the JRE, any calls an applet makes
them will be completed.

4.5 Providing 3D Content

Now the browser is capable of displaying 3D conte
Providing that content however, requires a bit more effo
First, the code has to be written to create the thr
dimensional world that the browser will be viewing. Th
resultant classes must then be accessible from a web s
and called from an HTML document. The document m
specify that the Java Plug-in is to be used to run the ap
(see above for details on how to do this). Once this
complete, it should be possible to point the Java3D-enab
browser at the appropriate URL and have a Java3D ap
appear within the browser.
er

1428
n

t

.

f

a

ge

6

r

e
-

is
n
t
re
o

.
.
-

ver
t
et
s
d
et

5 FUTURE WORK

Figure 2 on the previous page shows a screen captur
the current version of simulation viewer. While functiona
the applet is slated for several enhancements that includ

(1) Client selectable object sets – In order to
better facilitate user-specific needs, the
application will be improved to allow each
client to select the objects or classes of
objects (e.g., fix-winged aircraft) that they
would like to visualize.

(2) Geographically constrained views – Large-
scale HLA exercises, especially at the
campaign or theatre level, may play out of a
geographically large area. We propose to
modify the current viewer to allow user
selectable geographic boundaries of interest.

(3) Object constrained views - Similar to the
modification above, this would constrain the
view to a region around a certain object. For
example, the user may only wish to view
aircraft within 200 nautical miles of a
ground-based radar site.

(4) Object view – This option will allow user’s to
view from the perspective of the object (e.g.,
a pilot’s eye view). Views such as this will
allow for the incorporation of heads-up-
displays or other object specific
characteristics.

(5) Object characteristics – Currently only object
position data is passed to the clients. Future
versions will allow for the display altimeters,
fuel gages, speedometers, etc.

REFERENCES

Fishwick, P.A. , 1996. “Web-based Simulation: Som
Personal Observations”, Proceedings of the 1996
Winter Simulation Conference, Dec 96: 772-779.

Sun Microsystems, 1999a. Java Plug-in Product web pa
http://java.sun.com/products/plugin/index.html

Sun Microsystems, 1999a. Java plug-in HTM
specification web page, http://java.sun.com/produc
plugin/1.2/docs/tags.html

AUTHOR BIOGRAPHIES

CHAD SALISBURY has a Bachelors degree in Comput
Science from SUNY Institute of Technology in Utica, Ne
York. Past experience includes Web-based applicatio
using Perl, Java, and C. He has also been a developer
Network Management SBIR and has a network analyz
utilizing neural networks. He’s currently working on

Web-Based Simulation Visualization Using Java3D

d

d
e
te
ity
ar
se
s
to
as
n

ince

te
is
ce
is

ime
ed
e
he
ith
he
ng
e

projects involving 3D visualization and distribute
collaboration.

STEVE FARR is the Chief of the C4ISR Modeling an
Simulation Branch, Information Systems Division, in th
Air Force Research Laboratory’s Information Directora
at Rome NY. Steve received his B.S. from the Univers
of Connecticut in 1983, and M.B.A. from Rensaele
Polytechnic Institute in 1986 and an M.S. from Syracu
University in 1993. His professional responsibilitie
include the application of emerging technologies
specific modeling and simulation requirements. He h
been actively applying his modeling and simulatio
research interests to numerous Air Force programs s
1984.

JASON MOORE, a recent graduate of the Sta
University of New York at Binghamton, began h
professional career with the United States Air For
Research Laboratory in 1998. Prior to receiving h
Masters degree in Computer Science, he worked part t
at the same research institution working on advanc
displays and intelligent interfaces. While his full tim
appointment is with a different group of engineers,
carries his Human Computer Interface background w
him. Most recently, Jason is working on increasing t
amount of visual tools that are available to the Modeli
and Simulation community utilizing inexpensiv
commercial off the shelf hardware.
1429

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

