
Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

COMPONENT-BASED SIMULATION ON THE WEB?

Michael Pidd
Noelia Oses

Roger J. Brooks

Department of Management Science
Lancaster University,

Lancaster LA1 4YX, U.K.

e
s
 o
te
b-
rre
x

ut
a
ity
rd

 o
n

Th
te
o
en
ie

as
on
es
o
ed
is
 In
la
ra
jo
d

en
rs

ng.
to
may
 an
nd

o
ed
rst
ct-
lies
he
es,
 as
ugh
the
84,

ed
so
.S.

ter
em
ed
ther

ly
ider
 of
ad

ork
ith
ore
 the
 that
oc

5).
ABSTRACT

Various forms of distributed simulation are possible ov
the world-wide web, including simple multiple replication
of the same model, client-server architectures for one
more simultaneously running models and the distribu
operation of one or more linked models. Like all we
based operations, these simulations are slow due to cu
bandwidth limitations, but that could change in the ne
few years. Languages such as Java make this distrib
work possible within standard web-browsers such
Internet Explorer and Netscape, though secur
considerations mean that this is not always straightforwa
Component-based simulation stems from the ideas
object-orientation, which enable libraries of simulatio
based components to be developed for re-use.
development of the world-wide-web means that distribu
component, discrete simulation libraries in Java are n
feasible. This paper reviews some of these developm
and considers requirements for such distributed librar
drawing on our experience at Lancaster.

1 INTRODUCTION

1.1 Distributed Computing

It is a commonplace that the world of computing h
changed from one in which most work was done
isolated computers to one in which individual machin
can be seen as processing nodes on a world-wide netw
Of course, no one knows where this shift to network
computing will lead in the longer term, but its impact
already obvious in the explosive growth of the Internet.
parallel with this, the massive growth in the use of cellu
phones and the increasing sophistication of periphe
devices, suggests that global networking will have a ma
impact on all of our lives. The combination of networke
computing and mobile devices suggests that intellig
mobile devices, some of them recognisable as compute
1438
r

r
d

nt
t
ed
s

.
f

e
d
w
ts

s,

rk.

r
l
r

t
 in

today’s terms, may become commonplace before too lo
It also means that the ability of computer programs
communicate and co-operate across space and time
become a fundamental requirement in future, rather than
esoteric domain of expertise that requires enormous a
specialised computing power.

As well as the growth of networked computing, tw
other threads lie behind the development of distribut
component-based libraries for discrete simulation. The fi
is that component-based work, primarily based on obje
oriented approaches is known to be feasible and under
many current commercial software products outside t
domain of discrete simulation. Object-oriented approach
properly applied, enable components to be represented
classes that communicate by message passing thro
defined interfaces. Thus, in theory at least, some of
ideas suggested by people such as Zeigler (1976, 19
1990) for modelling in the large can now be implement
using commonly available programming software. It is al
possible, as is evident in approaches such as the HLA (U
DoD, 1998a, 1998b, 1998c) to take existing compu
programs that are not object-oriented and to wrap th
inside an object-oriented shell that provides a defin
interface across which messages may be passed to o
such wrapped programs.

1.2 Increased Complexity

The successful use of discrete simulation for relative
small applications has emboldened developers to cons
much larger and more complex applications. This is true
many application sectors such as air transportation, ro
traffic systems management, telecommunications netw
design and, perhaps especially, the military sphere. W
such large scale applications it would be perverse to ign
some of the lessons learned in software engineering for
development of large scale systems. One such lesson is
well-tested and re-usable code is preferable to ad-h
programs that will be used just once (Sommerville 199

Pidd, Oses, and Brooks

(

n
h

a
l
e

a

s

n

a
r
n

c

”

I
d

t
b
e
te

t

d
.

.
n
a

s
is

ue
ject

ct
ent,
t be
s a
.
ul
s
 be

pers
ents
 a
tion
ich
can
no
ogy,
fine
hat
rm
ed
 of

ual
n
els
ng
to
ities
red

is
 a
ilt
mic
nd
ow
g it
In
to

 the
ian,
an
sed
n

that
That is, an approach in which programs are developed
part at least) from well-tested and re-usable componen
provides a sensible way to develop large scale applicatio
Using components in this way should greatly decrease t
time needed for program development and ought to lead
simulation programs that are rather more robust.

Putting these aspects together suggests that softw
developers should be working on components with wel
defined interfaces that can be assembled, with oth
special-purpose code, for particular applications. Furthe
these components can be distributed across the Internet
accessed as required. This implies that there will b
directory services which will enable application developer
to find the components that they may need. In som
instances these components will be assembled and run o
single computer, in others they will be run as
communicating applications across a network.

2 SOFTWARE COMPONENTS – LEGO BRICKS

2.1 Software Components in Software Engineering

It is important to be clear about what is meant by
software component and by component-based softwa
development. The idea of software components has bee
major theme of software engineering for some time an
general definitions can be found in this literature. One su
is, “a unit of composition with contractually specified
interfaces and explicit context dependencies only
(Szyperski 1998). That is, components are independent
one another and communicate only by defined means.
one sense, of course, simple components have been use
computer programming for many years in all language
that permit the definition of functions with their own local
variables. A well defined function for, say, generating
random numbers entirely meets Syzperski’s definition a
quoted above.

In a similar vein, Kara (1996) discusses componen
based development as “the process of building systems
combining and integrating pre-tested and pre-engineer
software objects… Components are thus encapsula
software objects, providing some type of known service
that can be used in combination with other components
build systems”. This adds the notion that, to be usefu
software components must have clearly define
functionality that has been properly and thoroughly tested

Batory and O’Malley (1992) discuss software
components in the light of other concepts in compute
programming. They write that, “A type is a set of values
An Abstract Data Type (ADT) is a type plus operations o
the values of the type. A class is an ADT that belongs to
inheritance lattice. A component is a closely-knit cluster o
classes that act as a unit”. This implies that a compone
can consist of a set of classes which, with Kara’s view
above, have a well defined function. If object orientation
1439
in
ts
s.
e

to

re
-
r

r,
nd
e

e
 a

e
 a

d
h

of
n
 in

s

s

-
y
d
d

,
o
l,

r

n
f
nt

a step beyond the use of ADTs, Miller et al. (1998) arg
that, for simulation, components are a step beyond ob
orientation.

Taylor (1998) points out the close link between obje
orientation and the idea of component-based developm
though he argues that software components need no
based upon models of inheritance. Malak (1998) make
similar observation when writing about the HLA
However, it is hard to reconcile this view with the caref
definition of Batory & O’Malley (op cit) since, if any clas
stems from an abstract data type, then this can only
achieved via inheritance.

2.2 Software Components in Computer Simulation

This conference and others have seen a number of pa
in recent years that discuss the role of software compon
in discrete simulation. Fukunari et al. (1998) introduce
Java-based methodology to ease web-based simula
development: component-based development, wh
permits use of drag and drop development, and so
reduce development time significantly since it requires
coding. They use Java and Java’s component technol
JavaBeans, which enhance reusability, and they de
‘component’ as “a self-contained element of software t
can be controlled dynamically and assembled to fo
applications.” They point out that component-bas
simulation has many advantages, such as reusability
components and simplicity of development due to vis
programming. Writing about continuous simulatio
models, Küçük and Zobel (1998) argue that “…submod
can help in the simulation of complex models by providi
a natural basis for splitting the computation in
manageable pieces. Each of these software ent
corresponds to a subsystem simulator and will be refer
to as a component.”

Zeigler’s work on DEVS (Zeigler 1976, 1984, 1990)
well-known and has been successfully implemented in
number of applications. In DEVS, a large model is bu
from a series of independent components known as ato
models that communicate only via defined set of input a
output ports. Pidd and Bayer Castro (1998) discuss h
DEVS can be made more object oriented so as to brin
more into line with current software developments.
DEVS, to “componentise” a coupled model means
encapsulate it in a form that enables it to be treated in
same way as an atomic model (Zeigler and Sarjough
1999). It should be noted, however, that in DEVS
atomic model and any composite models that are clo
under coupling really are simulation models, in their ow
right, and are not just general purpose components
may become part of another model.

Component-Based Simulation on the Web?

 a
,

m
he
n
a
o
in
v

ng

as
ee
 o

and
SP-
0).
an
ms

put
l

ed
nts)

ges
 its
be
nal
out

the
and
 a

ic
 of
ls.
d
ans
 its
g
eir
ing
om

nd
en
y
mic
is
nts
ng
ing
s,
ld
ne
ual
A
t a

o
nd
2.3 A Definition of a Software Component
for Discrete Simulation

The preceding discussion suggests that, to be regarded
software component to be used in a discrete simulation
program should meet the following criteria.

• Its functionality should be entirely defined:
that is, its stated function should be fully
implemented and there should be no
possibility of unintended side effects. This
implies encapsulation in which all variables
of the components are defined as local or
private.

• All communication with any other program
fragments or components should be through a
fully defined interface. This implies that
computation will be organised via message
passing as in conventional object orientation.

• The interface should be wholly unambiguous:
that is, it should be entirely clear what inputs
are required and what outputs are produced
by the component and this must include error
handling should incorrect inputs be provided
in use. The interface definition will include
the messages to which the component can
respond and that it may itself produce.

• Its functionality and interface should be
defined in a ’directory service’ to which other
components have access and from which
components may be selected and used.

• Such components will, in general, need to
abide by whatever rules are defined in an
overall architecture that defines in detail how
components will be linked and used.

3 SOME EXISTING COMPONENT-BASED
ARCHITECTURES FOR DISCRETE
SIMULATION

This section discusses three approaches to the develop
of discrete simulation models from componentware. T
examples are chosen to illustrate approaches that ra
from systems in which any language is used (DEVS),
architecture intended to enhance the interoperability
models written in almost any language (the HLA), one
which a general purpose language is used (Silk, using Ja
and a dedicated simulation environment and scripti
language (VSE).

3.1 DEVS

The Discrete Event Systems Specification (DEVS) w
proposed by Zeigler (1976, 1984) and has since b
implemented in a number of systems using a range
1440
s a
a

ent

ge
n
f

a)

n
f

languages; for example in C++ (Praehofer 1996; Cho
Cho 1997a), Java (Cho and Cho 1997b) and in the LI
based framework of DEVS-Scheme (Zeigler 1987, 199
The fundamental component of DEVS is known as
atomic model, which can be defined in set-theoretic ter
as follows.

AM =<S;X; Y; δext; δnt; λ; ta>

where S, X, Y are sets containing the sequential states, in
and output events; δext and δint are the external and interna
transition functions; λ is the output function and ta is the
time advance function of the model.

Zeigler insists that a modular model must be regard
as a 'black box' which receives messages (external eve
through its input port(s) and which sends messa
(information about changes in its internal state) through
output port(s). The description of the 'black box' must
such that it is contextually independent. That is, its inter
description must make no assumptions whatsoever ab
the origin of messages on its input port(s) nor about
destination of messages from its output port(s). (Pidd
Bayer Castro 1998). Thus a DEVS atomic model is
wholly self-contained simulation model in its own right.

In DEVS, larger models are built by coupling atom
models in a coupling scheme that links the input ports
atomic models to the output ports of other atomic mode
If this coupling is done correctly, the resulting couple
model is regarded as closed under coupling, which me
that it can be treated as if it were an atomic model with
own DEVS specification. Thus, to build a model usin
DEVS, the modeller must define atomic models and th
associated simulators and then link these in coupl
schemes, such that the resulting overall model, built fr
the components, is itself a DEVS model.

As is made clear in Pidd and Bayer Castro (op cit) a
Kim and Kim (1998) an important issue to be faced wh
using DEVS is the complexity of the coupling that ma
result since it may be necessary to couple each ato
model with every other such model. If the coupling
direct, which it should be to satisfy the strict requireme
of DEVS, then this results in very messy conceptual wiri
between the input and output ports and a result
simulation that may run very slowly. To improve thing
Kim and Kim (op cit) suggest that atomic models cou
communicate via a bus rather than directly with o
another, which should result is much simpler concept
wiring and could enable DEVS to be used within the HL
(see below). Pidd and Bayer Castro (op cit) sugges
similar concept, known as selective external modularity.

3.2 HLA

The High Level Architecture (HLA) was developed t
enable the inter-operability and re-use of simulations a

Pidd, Oses, and Brooks

n
to
I

a
no

tu
c
 to
e
li
g

ic
nd
e
at
s
l
a
e
m
a

as

at
an
it.
d
in
at

t
or
nt
ve
s
a

 in
d in

.
ent
s
ng,
ed
ch
sed
ic
at
n
E
s in
e

he
rt
e

o
nts
n a
or
ly

to

he
ic
ur
ed
el
low
er
p
b-
ep.
real-time activity. A definition of its main requirements ca
be found at http://hla.dmso.mil/ and it is not restricted
simulation models, whether discrete or continuous.
specifies how dynamic models and real-time activities m
communicate with one another even though they may
have originally been designed to do so. It may be used
provide a language and computer independent architec
for developing discrete simulation models. In the parlan
of the HLA, component models or activities are referred
as federates and the job of the HLA is to ensure that th
federates interact safely and without breaching causa
conditions. A collection of federates linked together durin
a run is referred to as a federation.

Each federate must provide an interface through wh
messages will be passed and received. Thus, to run u
the HLA, a new model must have an interface that me
the HLA interface specification. Models and activities th
were not originally developed to run under the HLA mu
be wrapped inside an interface specially written to comp
with the same specification. Federates do not communic
directly with one another but do so via the Run-Tim
Infrastructure (RTI) which acts like an operating syste
and communication bus. Thus federates communic
through their interfaces via the RTI.

There are three main parts to the HLA definition,
follows.

1. The HLA rules: these specify the
responsibilities that are devolved to the
federates and which must be implemented if
the federate is to be HLA compliant.

2. The HLA interface specification: this defines
the standard services and interfaces to be used
by the federates in order to support efficient
information exchange when participating in a
distributed federation execution. It includes 6
classes of service offered by the RTI to
federates and vice versa. These cover aspects
such as time management, data distribution
management and object management.

3. The HLA object model template (OMT):
which defines how each federate and each
federation must document its object model.
The OMT prescribes the format and syntax
for recording the information in HLA object
models, to include objects, attributes,
interactions, and parameters, but it does not
define the specific data (e.g., vehicles, unit
types) that will appear in the object models.
The HLA requires that federations and
individual federates be described by an object
model which identifies the data exchanged at
runtime in order to achieve federation
objectives.
1441
t
y
t

to
re
e

se
ty

h
er

ts

t
y
te

te

HLA federates can either be purpose written so th
they comply with the federate interface specification or c
be produced by taking an existing model and wrapping
In effect, the wrapping takes an existing model an
restricts input and output from that model to that defined
a purpose written interface that does comply with th
required by the HLA.

It is important to realise that any HLA federates tha
are simulation models are wholly self-contained except f
the communication permitted across their HLA complia
interfaces. Thus, each such simulation federate will ha
its own simulation clock and the simulation federate
proceed asynchronously. Time management within
simulation federate may be optimistic or pessimistic, and
the latter case a message retraction system is employe
the time management provided by the RTI.

3.3 VSE

The Visual Simulation Environment (VSE) (Balci et al
1997, 1998a, 1998b) is an architecture for discrete-ev
model simulation. It is fully object-oriented and thu
supports inheritance, instantiation, message passi
encapsulation and polymorphism. VSE models are divid
in static and dynamic parts. The static architecture, whi
generally represents the structure of a model, is compo
of hierarchically decomposed components. The dynam
parts consists of dynamic objects, which are entities th
move from one point to another of the model. VSE’s ow
components are made available via the VSLibrary, all VS
models are developed by subclassing (extending) classe
VSLibrary, which has VSObject as its root class. Anyon
wishing to add new components to a library must do in t
VSE scripting language, which is designed to suppo
discrete simulation. A VSE Editor is provided to ease th
process of component production.

In its execution, VSE employs a TCP/IP stack t
enable communication between its simulation compone
as the model runs. This means that it can execute o
single computer, on a multi-processor compute-box
across a network of individual machines. It was original
written for the NextStepTM environment and requires
appropriate emulation software to be pre-installed if it is
run under Windows NT4.

Balci et al. (1997) define a component as “a part of t
model architecture or a part of the structure of a dynam
object”. Thus components may be models of the behavio
of an entity class (a dynamic object) or may be concern
with the interaction of those classes (the mod
architecture). Components may also be viewed as shal
or deep. A shallow component cannot be furth
decomposed into underlying components. A dee
component may be decomposed into other su
components, which themselves may be shallow or de

Component-Based Simulation on the Web?

n

in
d
h
th

h

ir
h
t
e
r

o

t

ye
s
e

e
e
i
d

il

h

t
v

r
te
s
e
r

. A
nd

are,

d
 in
es

Each
nd
 it

 A

 the
to

ains,
asic
ws
s

le
s

 as
uch
on
(as
and
e
gle-

nd
),
ed
sed
idd

uch
ed
ach

ava
eral
e
a
em
to
ns
ing
Deep components may have graphical attributes a
layouts amongst their own constituent components.

At least four approaches to model development
VSE can be envisaged. The first is by the reuse of mo
components from a library with no programming, whic
VSE supports by a drag and drop approach. Of course,
will often be impossible since the library may be
incomplete for the task at hand, and the second approac
build on this by some programming, to extend, modify o
add new methods to a component by subclassing). A th
way is to re-use model components created during t
model development process (components created in
Templates window). Finally a user may build a VSE mod
with no reuse where each model component is enginee
from scratch.

VSE is designed to support the development
reusable components and regards a library (a set
reusable model components) as a form of component
itself. Reusable components are created in the Templa
window, and can be created, manipulated, and destro
during model execution. Thus, a modeller could make u
of VSE components developed by others to build a mod
for a particular application.

3.4 Silk

SilkTM (Healy and Kilgore 1998) is a general purpos
discrete simulation system, written in Java, and bas
around a process-interaction approach. Being written
Java, it is wholly object oriented, and therefore well-place
for component-based development. There is no S
simulation language as such, programs are written in Ja
and make use of software components written in Java t
meet the standards expected of Java beans. The java.beans
package was first defined in the API of Java 1.1 and
provides a framework for re-usable software componen
Its classes and interfaces can be used at three le
(Flanagan 1998).

1. To create application builder tools (for
example Silk) that can be used by
programmers and non-programmers to
develop applications out of individual Java
beans.

2. To develop more Java beans for use in such
application builders.

3. In the development of Java applications,
using Java beans, but without using an
application builder tool.

The JavaBeans specification defines a bean as “a
usable software components that can be manipula
visually in a builder tool”, which could cover simple use
of the Java AWT package or complex uses of embedd
components such as a graphics editor. The interface fo
1442
d

el

is

es
r
d
e

he
l
ed

f
of
in
es
d

e
l

d
n

k
va
at

it
s.
els

e-
d

d
 a

Java bean declares properties, events and methods
property is usually a private state variable of some ki
whose value can be queried or modified through get and
set methods. A bean may also generate events much as can
other Java components. The methods are public and
therefore, usable by other components.

Since Java provides support for multi-threade
execution, Silk is able to manage its process interaction
this way. Simulation entities in an application are instanc
of entity classes that descend from the Entity base class and
each such instance can run as a separate thread.
application entity class must have its own private data a
methods to implement the unique behaviour of the entity
represents. In addition, each entity class needs a process
method to start the process thread in the simulation.
simulation executive thread, which must include a run
method, acts as a time manager and also co-ordinates
resumption of suspended threads – which is crucial
avoid deadlock between suspended threads. There rem
however, as in all process interaction approaches, the b
issue of process/thread management which gro
increasingly important and increasingly difficult a
interaction between threads increases.

Given the basic Silk architecture, it should be possib
for third party developers to write entity and utility classe
that conform to its requirements in simulation terms and
Java beans. Thus, it should be possible for a library of s
beans to be developed for a range of simulati
applications. There remains, however, the need
identified above) to ensure that thread management
prioritisation are carefully implemented, otherwis
causation errors and deadlock are possible, even in sin
processor simulations.

4 COMPONENT-BASED SIMULATION
ON THE WEB?

Like others, for example, Joines et al. (1992), Buss a
Stork (1996), Fukunari et al. (1998), Unger (1986
Bezvizin (1987) and Fishwick (1992), we have develop
at Lancaster a number of discrete simulation systems ba
on object oriented languages such as C++ and Java (P
1995; Pidd and Cassel 1998, 1999). Our most recent s
work has been with Java in which we have develop
discrete simulation systems, using the three phase appro
of Tocher (1963) and this has been extended into J
Beans.. The systems permit simulations to be run in sev
ways. Options include: a single computer (rather lik
Silk),; as multiple replications of the same model on
number of networked computers; as a client/server syst
in which the server provides simulation services
multiple three phase clients running different applicatio
on other computers, and as a fully distributed system us
conservative protocols.

Pidd, Oses, and Brooks

se
s
t

d
fo
i

th
e
a
s

th
ts
r-
m
r
n
g
h

d
e

.
l

r

y

.

n
n,
d

A
l

.
s

d
h

d

nt
In
n
.
nd

ce

_v

ce

_ja

h
n
n

in,

k

n-
In
n

S.
al
ey.
o

.S.
s

ct-
n
n

in,

s
the

 of
y,

ed
n
e

None of our systems is intended for commercial u
and all could be much improved to make them easier to u
and faster in execution. However, they do demonstra
proof of concept by showing that object oriente
approaches to discrete simulation form a useful basis
component-based development and that Java (or someth
like it) enables the components to be distributed across
world-wide-web. For such distributed components to b
successfully implemented requires an architecture th
defines how the components will interact as well a
defining the components themselves. It is possible that
HLA may form the basis for such distributed componen
when there is a need for fully-fledged models to inte
operate. However, its requirements are rather cumberso
for simulations in which the need is to link smalle
components from across the web into a single applicatio
Thus, the main challenge to be faced in achievin
distributed component-based simulation on the web is t
development of an architecture that will enable this.

ACKNOWLEDGEMENTS

Noelia Oses is supported by the Departamento
Educacion, Universidades e Investigacion, of th
Government of the Basque Country, Spain.

REFERENCES

Balci O., Bertelrud A.I., Esterbrook C.M. and Nance R.E
(1997) Developing a library of reusable mode
components by using the Visual Simulation
Environment. In Proceedings of the 1997 Summe
Computer Simulation Conference Institute of
Electrical and Elecltronics Engineering, Piscatawa
New Jersey.

Balci O., Bertelrud A.I., Esterbrook C.M. and Nance R.E
(1998a) Visual Simulation Environment. In
Proceedings of the 1998 Winter Simulatio
Conference. ed D.J. Medeiros, E. Watson, J. Carso
and M.S. Manivannan. Institute of Electrical an
Elecltronics Engineering, Piscataway, New Jersey.

Balci O., Ulusaraç C., Shah P. and Fox E.A. (1998b).
library of reusable model components for visua
simulation of the NCSTRL system. In Proceedings of
the 1998 Winter Simulation Conference. ed. D.J.
Medeiros, E. Watson, J. Carson, and M.S
Manivannan. Institute of Electrical and Elecltronic
Engineering, Piscataway, New Jersey.

Batory D.and O'Malley S. (1992) The design an
implementation of hierarchical software systems wit
reusable components. ACM Transactions on Software
Engineering and Methodology. Vol. 1, No. 4, October
1992, Pages 355-398.

Bezvizin J. (1987) Some experiments in object-oriente
simulation. OOPSLA.
1443
e
e

r
ng
e

t

e

e

.

e

e

,

Buss A. H. and, Stork K.A. (1996) Discrete eve
simulation on the world wide web using Java.
Proceedings of the 1996 Winter Simulatio
Conference. Ed. J.M. Charnes, D.J. Morrice, D.T
Brunner, and J.J. Swain. Institute of Electrical a
Elecltronics Engineering, Piscataway, New Jersey.

Cho H.J. and Cho Y.K. (1997a) DEVS - C++ Referen
Guide,
URL:http://cactus.ece.arizona.edu/~ykcho/doc/devs
41.doc

Cho H.J. and Cho Y.K. (1997b) DEVS - Java Referen
Guide,
URL:http://cactus.ece.arizona.edu/~ykcho/doc/devs
va.doc

Fishwick P.A. (1992) SIMPACK: Getting started wit
simulation programming in C and C++. I
Proceedings of the 1992 Winter Simulatio
Conference, ed. J.J. Swain, D. Goldsman, R.C. Cra
and J.R. Wilson. Institute of Electrical and Elecltronics
Engineering, Piscataway, New Jersey.

Flanagan D. (1998) Java in a nutshell: a desktop quic
reference. O’Reilly & Associates, Sebastopol, CA.

Fukunari M., Chi Y. and Wolfe P.M. (1998) JavaBea
based simulation with a decision making bean.
Proceedings of the 1998 Winter Simulatio
Conference. ed D.J. Medeiros, E.F. Watson, J.
Carson and M.S. Manivannan. Institute of Electric
and Elecltronics Engineering, Piscataway, New Jers

Healy K.J. and, Kilgore R.A. (1998). Introduction t
Silk™ and Java-based simulation. In Proceedings of
the 1998 Winter Simulation Conference. ed D.J.
Medeiros, E.F. Watson, J.S. Carson and M
Manivannan Institute of Electrical and Elecltronic
Engineering, Piscataway, New Jersey.

Joines J.A., Powell K.A. and Roberts S.D. (1992) Obje
oriented modelling and simulation in C++. I
Proceedings of the 1992 Winter Simulatio
Conference, ed. J.J. Swain, D. Goldsman, R.C. Cra
and J.R. Wilson. Institute of Electrical and Elecltronics
Engineering, Piscataway, New Jersey.

Kara D. (1996) Components defined. Application
Development Trends, June 1996.

Kim Y.K. and Kim T.G. (1998) A heterogeneou
simulation framework based on the DEVS bus and
high level architecture. In Proceedings of the 1998
Winter Simulation Conference, ed D.J. Medeiros, E.
Watson, J. Carson, and M.S. Manivannan. Institute
Electrical and Elecltronics Engineering, Piscatawa
New Jersey

Kucuk B. and Zobel R.N. (1998). Component-orient
continuous-time simulation. In the 12th Europea
Simulation Multi-conference. Manchester, UK. Jun
16-19, 1998.

Component-Based Simulation on the Web?

r

–
d

t
y

d

 i
n
.
l
y

op
in

r

n
,

d

I
s

-

l

/

l
,
-

l
.

,
n
.

nd

nt
t.

d

el
n

nt
aster
s,

s
to

t to
 in

of
he
he
er
s to

f
he
els

the
m
f

Malak M. (1998) A software component framework fo
HLA tools. 1998 Fall Simulation Interoperability
Workshop. Sept 14-18.

Miller J.A., Yogfe G. and Junxiu T. (1998) Component
based simulation environments: JSIM as a case stu
using Java Beans. In Proceedings of the 1998 Winter
Simulation Conference, ed. D.J. Medeiros, E.F.
Watson, J.S. Carson and M.S. Manivannan. Institu
of Electrical and Elecltronics Engineering, Piscatawa
New Jersey

Pidd M. (1995) Object orientation, discrete simulation an
the three-phase approach. Jnl Opl Res Soc., 46, pp362-
374

Pidd M. and Cassel R.A. (1998) Three phase simulation
Java. In Proceedings of the 1998 Winter Simulatio
Conference, ed D.J. Medeiros, E.F. Watson, J.S
Carson and M.S. Manivannan. Institute of Electrica
and Elecltronics Engineering, Piscataway, New Jerse

Pidd M. and Cassel R.A. (1999) Using Java to devel
discrete event simulations. Accepted for publication
Jnl Opl Res Soc.

Pidd M. and Bayer Castro (1998) Hierarchical modula
modelling in discrete simulation. In Proceedings of the
1998 Winter Simulation Conference, ed D.J. Medeiros,
E.F. Watson, J.S. Carson and M.S. Manivanna
Institute of Electrical and Elecltronics Engineering
Piscataway, New Jersey.

Praehofer H. (1996) An environment for DEVS-base
multi-formalism modeling and simulation in C++. In
Proceedings of the Sixth Annual Conference on A
Simulation and Planning in High Autonomy System,
La Jolla, CA, March 25-27.

Sommerville I. (1995) Software Engineering (5th Ed).
Addison-Wesley, Reading, Mass.

Szyperski C (1998) Component software – Beyond Object
Oriented programming. Addison-Wesley, Reading,
Mass.

Taylor D. (1998) Are objects obsolete? Component
Strategies. July, 1998.

Tocher K.D. (1963) The Art of Simulation. English Univ
Press, London

U.S. Department of Defense (1998a) High Leve
Architecture Interface Specification, Version 1.3
(Draft 9) February. http://hla.dmso.mil/hla/tech
ifspec/if1-3d9b.doc

U.S. Department of Defense (1998b) High Leve
Architecture Object Model Template, Version 1.3
February. http://hla.dmso.mil/hla/tech/omtspec/omt1
3d4.doc

U.S. Department of Defense (1998c) High Leve
Architecture Rules, Version 1.3 (Draft 2) February
http://hla.dmso.mil/hla/tech/rules/rules1-3d2b.doc

Unger B.W. (1986) Object-oriented simulation - Ada, C++
Simula. In Proceedings of the 1986 Winter Simulatio
Conference, ed James O. Henriksen, Stephen D
1444
y

e
,

n

.

.

,

Roberts, James R. Wilson. Institute of Electrical a
Elecltronics Engineering, Piscataway, New Jersey.

Zeigler B.P. (1976) Theory of Modelling and Simulation.
John Wiley & Sons Inc, NY.

Zeigler B.P. (1984) Multi-facetted Modelling and Discrete
Event Simulation. Academic Press, NY.

Zeigler B.P. (1987) Hierarchical, Modular Discrete-Eve
Modelling in an Object-Oriented Environmen
Simulation, 50, pp 219-230.

Zeigler B.P. (1990) Object Oriented Simulation with
Hierarchical, Modular Models - Intelligent Agents an
Endomorphic Systems, Academic Press, Boston.

Zeigler B.P., and Sarjoughian H. (1999) Support for
Hierarchical Modular Component-based Mod
Construction in DEVS/HLA. 1999 Spring Simulatio
Interoperability Workshop. March 14-19, 1999.

AUTHOR BIOGRAPHIES

MIKE PIDD is Head of the Department of Manageme
Science and Professor of Management Science at Lanc
University in the UK. He is best known for two book
Computer Simulation in Management Science (now in its
fourth edition) and Tools for Thinking: Modelling in
Management Science; both published by John Wiley. He i
active in researching simulation methods related
modularity and object orientation. He acts as consultan
a number of private and public sector organisations
Europe.

NOELIA OSES is a PhD student in the Department
Management Science at Lancaster University. S
completed her first degree in mathematics from t
University of the Basque Country, Bilbao, Spain. H
research focuses on component-based approache
discrete simulation.

ROGER BROOKS is a lecturer in the Department o
Management Science at Lancaster University, which
joined about a year ago after developing simulation mod
of crop yields in large-scale climate change, working at
University of Bristol. He has a mathematics degree fro
the University of Oxford, a PhD from the University o
Birmingham and is also a chartered accountant.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

