Proceedings of the 1999 Winter Simulation Conference

P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

A GLOBAL SYNCHRONIZATION NETWORK FOR A NON-DETERMINISTIC
SIMULATION ARCHITECTURE

Marc Bumble
Lee Coraor

Computer Science

and Engineering

The Pennsylvania State University
University Park, PA 16801, U.S.A.

ABSTRACT

Our previous work presented methods of accelerating non-
deterministic discrete event simulation at the processing

through every time increment whether or not an event oc-
curs. This model is simple and easy to implement. However,
processing empty simulation cycles detracts from an op-
timum simulation speed. Event-driven simulation models

element level. Here, two algorithms are proposed for syn- jump from simulation event to event, skipping the empty

chronizing a network of processing elements according to
the next network minimum event timestamp. One method
has an expected running time @f(k) while the second
has an expected running time of(k log(k)). A network
architecture is developed and simulation results of the time
expected to locate and broadcast the next network minimum
timestamp are reported.
1 INTRODUCTION
Methods of speeding up the runtime of Non-Deterministic
Discrete Event Simulation are presented with the intent of
developing an architecture capable of running a simulation
fast enough to be practical for dealing with emergencies.
One scenario which could utilize our results would be a
traffic model of a city, such as Atlanta, during a large event,
like the Olympic games. Assuming thatthe traffic model was
already in place, if an emergency situation, for example, a
terrorist bomb, required the re-routing of traffic, an operator
should be able to add detour adjustments to the model, and
quickly rerun the simulation to test proposed detours before
their implementation. The intent here is to present parts of
a machine architecture which are accelerated beyond the
simulation speed possible with a normal general purpose
computer. The result is a simulator capable of providing
detailed accurate traffic simulations fast enough to be useful
to traffic engineers and police during emergencies. Many
deterministic simulation machines have been built as logic
simulators. Yet there may be an even wider audience for
non-deterministic machines.

In a simulation network, generalized by Figure 1, nodes
are synchronized using either a time-driven or event-driven
simulation approach. Time-driven simulation models step

1460

cycles; however, the cost of determining the next event time
in a network of nodes and synchronizing the nodes to jump

Processing Processing Processing

Element Element Element
Event Event
Generator Generator Generator
Event Event Event
Queue Queue Queue
[ scheduter] |- [scheduler]| = |[scheduler]| parallel
\ T Avne
us
Zlyﬁer Dane ¢ ‘
nc
Start
Processing Processing Processing
Element Element Element
Event H Event
Generator | | | Generator
Event Event | [ |
Queue Queue
[ scheduler] [ scheduler]

Figure 1: A Network of Processing Elements. A
simulation network consists of event sources, sinks,
and way-points. Each must be synchronized to the
global system time clock. Two common methods of
synchronization are time-driven and event-driven syn-
chronization. Arrival statistics of the various sources
and sinks can be used to gauge which method is
faster. The time-driven simulator illustrated uses a
master/slave approach similar to Levendel (Levendel
1982). The Master Synchronizer asserts the Start line
at the beginning of each time cycle. Each network
processor signals it is ready for the next time cycle
by asserting its Done line. The Start and Done lines
are configured as reduction network lines illustrated
in Figure 4.



Bumble and Coraor

simultaneously may be higher than simply stepping through
all the empty intermediate time intervals.

A single architecture can be constructed which allows
a simulation to run as either a time or event-driven model.
For the non-deterministic simulation architecture proposed,
the decision between the two models is made at the begin-
ning of the simulation and the selected model is used for
the simulation duration. Hence, this paper also examines
criteria that can be used to select the best alternative. Time-
driven synchronization is relatively trivial, so the paper
concentrates on event-driven systems.

A simulator is composed of individual nodes joined
in a network. Each node consists of an event generator,
local event queues, and a scheduler as depicted in Fig-
ure 2. To prevent causality errors, individual nodes are
synchronized so that all process the same simulation cycle
simultaneously. In conservative event-driven simulation,
individual nodes all jump to the simulation cycle which
coincides with the smallest timestamped event held within
the network. Logistical difficulties occur in both the com-
munication and sorting of the timestamps. Each node’s
local minimum timestamp must be compared against all of
the local minimum timestamps in the global network.

Eventsfrom
adjacent PEs

l Event

Generator

Scheduler

Figure 2: The local processing element desigiihe
local processing element (PE) design uses two queues
for each server. The arrival queue holds the sorted list
of arrival events from the Event Generator. Service
events, which are created from processing success-
ful arrival events, are stored in the Service Queue
along with events from adjacent network processing
elements. A comparator samples the heads of both
gueues and indicates where the next minimum local
timestamped event resides.

This research also demonstrates that having both time
and event-driven simulation capability can be worth the
cost. A runtime comparison of event-driven versus time-
driven simulation is presented. Also, the additional cost
of the event-driven simulation capability is estimated. The
proposed solution consists of a parallel bus and a reduction

1461

network, similar to the control network combination found

in the CM-5 (Hord 1993). The mathematics presented are
not intended as new contributions. Rather, the math results
are used solely to assist in evaluating the expected speed
of the new proposed synchronization methods.

1.1 Related Work

Discrete event-driven simulation is inherently serial in na-
ture due to itscausality(Nicol 1996) constraints. In 1987,
Reed et al reported that the parallel implementation [of sim-
ulations] rarely completes more quickly than the sequential
implementation [when distributed simulations are run with
a central server network] (Reed 1987). In an effort to over-
come similar obstacles, Fujimoto developed the Rollback
Chip (Fujimoto 1992) to accelerate both state saving and
simulation checkpoint restoration which are required by
optimistic simulations when straggler events are encoun-
tered. Reynolds (1993) further established the requirement
for high speed network computation of the Global Virtual
Time (Jefferson 1985) and introduced the Parallel Reduction
Network as hardware support to attain that goal. Reynold's
method passes a vector of simulation values through a com-
putation reduction tree composed of Arithmetic Logic Units
(ALUs). Beaumont et al (1994) employ hardware support
for parallel discrete event simulation through the use of
Field Programmable Gate Arrays (FPGAS). A ring of in-
terconnected FPGAs determines which events contain the
smallest common timestamp.

Our previous work presented methods of accelerating
two processor level phases of a conservative discrete event
simulation, the event generation phase (Bumble 1997) and
the storage phase within an eventlist (Bumble 1998a,b). This
paper contributes two new algorithms which synchronize
a network of nodes according to the smallest timestamped
event held by the aggregation of processing elements. Un-
like Reynolds, the synchronization methods presented here
are not based on a message or vector passing scheme. The
presented network also differs from Reynold’s approach in
that it is not a tree. The proposed network interconnec-
tion is more geometrically scalable and it avoids incurring
message passing time penalties. The initial step in the pro-
posed network algorithms is purely a logic reduction step,
and should therefore also be much faster than the network
proposed in Beaumont.

2 BUS ARCHITECTURE

Traditional approaches in multi-processor simulation search
for the next smallest timestamp in a network of N processing

elements. The simulation model may have n active model

nodes distributed across the N processing elements in a
balanced fashion, but each processing element will have
one minimum timestamp for the model nodes it handles.



A Global Synchronization Network for a Non-Deterministic Simulation Architecture

Each processor minimum timestamp must be compared
against the other processor minimum timestamps found in
the network. Some of the more commonly encountered
network search algorithms include network structures con-
structed as k-ary trees depicted in Figure 3 and found in
Reynolds (1993). To determine the minimum timestamp
in such a network require®g, (n) communications steps.
The smallest timestamp is filtered to the root of the tree, and
from there the result must be distributed to the rest of the
network. One disadvantage of this system is that the wire
interconnect run lengths may become progressively longer
approaching the root of the tree. This method requires
O(log, (n)) communications steps. If all processing ele-
ment minimum timestamps were required to be compared
against each other) (log,(n)) steps would be the fastest
synchronization rate a simulator could hope to achieve.

Processing
Element
-7 ~ -
s ~
Processing | P YY) |__| Processing
Element Element
Processing l Processing (X X ) Processing l Processing
Element Element Element Element

Figure 3: K-ary Search Tree Network The K-ary
search network topology allows N processing elements
in a network to compare individual local minimum
timestamp results to the winner of the K elements
on the level below. Successive winners compete in
tournament style comparisons.

Section 3 presents a method which avoids individual
timestamp comparisons. For large mean arrival rates, the
new method approache3(k). Multiple transmitters share
the bus and are able to generate signals simultaneously.
The bus architecture is composed of a bi-directional re-
duction logic network employing Emitter Coupled Logic
(ECL) (Pickles 1997) which gives the interface reasonable
transmission speed, and ECL hardware connects nicely with
CMOS technology (Chappell 1988). ECL switching speed
is accomplished by keeping transistors always biased in their
active regions. This bias alleviates the delay required for
the sufficient accumulation of charge to change the state of

Processing
Element

Processing
Element

Processing

t
1
1
1
1
1
1
1
1
1
1
1
1
: Element

________________________

Figure 4: The PE Interconnection Network The in-
terconnections consist of high speed Emitter-Coupled
Logic (ECL) gates. ECL buses link the Processing
Elements (PE) together, allowing a rapid and semi-
parallel determination of the next smallest network
timestamp. The OR network assists in the compu-
tation of the smallest timestamp and serves for both
computation and bus signal driving. The PEs can
both assert and read the bus signal values. A dashed
control line is provided to allow the PE to prevent
the propagation of signals to subsequent elements on
the bus. The use of this control line is illustrated in
Figure 5.

The bus illustrated in Figure 4 is used to form a con-
sensus among the processing elements. If any element
asserts a signal on the bus, the signal is propagated so
that all elements in the network quadrant are aware that at
least one element has asserted the signal. This broadcast
mode is employed by the algorithm described in Section 3.
Each gate also contains an additional control line which,
when asserted, prevents signals from propagating further.
The on/off switching capability is used to pair elements in
Section 3.2.

3 SEARCH ALGORITHM

The algorithms for finding the network minimum timestamp
proceed in two basic phases. The first phase consists of
a general elimination which prunes processing elements
having timestamps larger tha?f, the base 2 ceiling of
the global minimum timestamp. The second phase of the
algorithm then finds the minimum among the remaining
nodes.

3.1 Phase 1 Elimination

saturated gates. The gates switch much faster than conven-girst, all network processing elements (PEs) find their local

tional CMOS gates; however, they also burn significantly
more power. OR or NOR logic is used to run buses in two
directions as depicted in Figure 4. Reduction logic can be
accomplished directly at the processing element 1/O points
without processor intervention.

1462

minimum values. This search involves comparing the lead
elements of the service and arrival queues from Figure 2
in O(1) time. A hardware algorithm for maintaining the
smallest event within a local processing element is presented
in Bumble (1998b). Next, each PE computes the difference
between the current global simulation time cycle and the



Bumble and Coraor

next local minimum timestampy;s, in O(1) time. The
current global simulation time cycle is always available
at each node. Each PE determines the number of bits,
b, required to expresgjyjf. For example, 13, requires 4
bits, 110%. The PEs simultaneously assert the signal line
representing on the global parallel Data Bus illustrated in
Figure 5. After all PE’s have floated theirvalues on the
bus inO(1), the PEs whosé value is greater than the bus
minimum signal line eliminate themselves from the search.
The smallest asserted signal line of the parallel bus narrows
the scope of the search to the limited range of numbers
expressed in Equation 1:
2b _ 2b—1 — 2b—1(2 _ 1) — 2b—1 (1)

All elements not eliminated in this first phase are referred

to as active elements in the second phase.

Bold indicates active
signal/datalines

Data
Bus

Network
Core

T IT._M:

e |m|naed
elements

Network
Edge

-

Processing
Elements

4 reduction
/ network

Adjacency Line
EdgeLine

pai red
elements

pai red
elements

Figure 5: Algorithm Phase 2 Method 2 Elements
eliminated by the initial reduction step are illus-
trated inscribed with a cross. Signals flow unimpeded
through the eliminated processing elements (PEs). The
data signals are shown, in bold, traversing the upper
bus. The lower two-signal bus represents the basic
handshaking signals. The Edge signal indicates to each
PE whether or not that PE is on the network edge. All
PEs which have not self-eliminated during the first
phase generate an active Edge signal and propagate
the signal towards the network core. The Adjacency
signal is used to pair PEs. Each active PE, which
receives the Edge signal but not the corresponding
Adjacency signal, propagates its own Adjacency sig-
nal towards the direction of the network core. When
either another active PE or the core receives the Ad-
jacency signal, that PE does not propagate the signal
but instead compares its minimum local timestamp
with the timestamp value received on the Data bus.
The minimum value of the pair becomes the minimum
value at the node closest to the core while the outer
pair node is eliminated.

1463

3.2 Phase 2 Selection

The second phase of the algorithm can proceed in either
of two methods. Method one requires a 3-bit reduction
network, and method two requires a 2-bit reduction network.
The first method performs a binary search through the range
of timestamps isolated in Phase 1. The second method
performs binary eliminations, tournament style, among the
remaining active nodes. The reduction network can also
serve as the Start and Done lines for the Master Synchronizer
described by Figure 1.

In the first method, a Bus Master begins a binary
search through the remaining interval of time, described by
Equation 1, to determine the minimum global timestamp.
A reduction network is used to allow the PEs to signal
whether their values are higher, equal, or lower than the
value floated on the parallel bus. Using Equation 1, the
global search can be completeddm(logz(zbfl)) =b—-1,
and the resulting global minimum timestamp range is visible
to all PEs simultaneously.

The selection phase has several significant advantages
over tree search methods. One advantage is the initial elim-
ination step which occurs across the network at all PEs
simultaneously. This advantage is opposed to a k-ary tree
in which the first comparison happens at the lowest level
only. Another significant advantage is that the network
is somewhat more conducive to geometric element layout
as opposed to a tree, where the interconnections between
element levels get progressively longer. At [gate] logic
speeds of two nanoseconds, an equivalent gate delay is in-
troduced by every foot of the interconnecting lines (MECL
1989). The gate delays of the proposed devices are expected
to be approximately one nanosecond (Pickles 1997). The
3-dimensional cubic array network illustrated in Figure 6
keeps all interconnection lengths uniformly short. The most
important advantage is the significant reduction in the ex-
pected number of timestamp transmissions and coalitions.
Its disadvantages include requirements for additional hard-
ware and bus lines as illustrated in Figures 4 and 5. The
event-driven simulation cost requires the extra Data Bus il-
lustrated in Figure 5. The Edge and Adjacency lines along
with each line of this Data Bus must be configured as illus-
trated in Figure 4 requiring three OR gates and two wires
per signal.

The second method proposed for Phase 2 allows the
processing elements which remain after the first phase to
work in adjacent pairs. All active processing elements
generate a signal which is passed towards the core along
the network Edge signal line. Therefore any PE and the
core receiving this signal know that there exists at least
one active element on their network edge side. Next, the
elements use their Adjacency signal line to form processor
pairs. Active elements at the edge of the network propagate
both the Edge and Adjacency signals. The next innermost



A Global Synchronization Network for a Non-Deterministic Simulation Architecture

and Identically Distributed (I1ID) networks. One network’s
processors generate exponentially distributed event arrivals.
The other network arrival rates follow a Weibull distribution.
When confronted with a network of random event gen-
erators, the next expected event time to occur can be calcu-
lated usingOrdered Statistic{Scheaffer 1990). We need
to determine the shortest expected arrival time in order to
evaluate which simulation approach is the most appropriate.
LetX1, X», ..., X, denote independent continuous ran-
dom variables which have distribution functiafgx), Fo(x),
..., F,(x) and density functionsfi(x), fo(x), ..., fu(x)
respectively. Ordered random variables,, are denoted
X(]_), X(z), ey X(n) where X(j_) < X(z) < ... < X(n).
Continuous random variables allow the equality signs to be
dropped. So the minimum value is

Figure 6: The 3-Dimensional Network Structure
Although trees, as depicted in Figure 3, have a log-
arithmicly decreasing structure, they offer difficult
geometric constraints for actual_ implementation. A X = min(X1, Xa. ..., Xu) )
linear parallel bus offers a more implementable struc-
ture. In the network illustrated, each bus is composed

' A -4, © The density function ofX(;), denotedgi(x) can be
of reduction logic as shown in Figure 4. Much of the

found as:
communications can be accomplished by the Process
Element (PE) 1/O cells. The length of each bus is a P[Xy <x]=1-P[Xq > x]
trade-off between communications element switching
speed, bus signal propagation speed, and physical PE =1-PX1>x,Xo>x,..., X, >x) 3)
geometry constraints. In this figure, the PE’s are ar-
rayed along linear busses. If there are 10 elements =1-[1- F®][1- FR®)]---[1- F,x)]
on each bus, then the network may contain 8000 ele-
ments. The core may be composed of more than one Taking the derivative of both sides yields the density

processor, but for the purposes of this paper, the core  function,
is assumed to be one unit.

g1(x) = fix)[1- F00)]---[1- F0)]+
active element will receive both the Edge and Adjacency [1— F1(0)] f2(x) -+ [1— Fa()] + ...
signals along with the value of the smallest timestamp on [1- F1()][1— Fo(x)] - fulx)
the data lines as shown in Figure 5. This inner core side (4)
element will propagate only the Edge signal towards the The expected time of the next arrival event can then be

core. Having alternating elements propagate the Adjacency calculated by finding the expectation gf(x) as follows:
signal facilitates a pairing of the network elements. In each

pair, the element closer to the network edge automatically 0
e g : ; E(x) = xg1(x)dx (5)
self eliminates. The inner paired element compares its local 0
minimum timestamp with the value received on the data-
bus. The smaller value becomes the minimum used in the For an actual simulator, the computation of Equation 5

next cycle. The core retains the smallest value until all would be automated given that the user supplies the appro-
eight network quadrants have reported in, and then the core priate F(x) and f(x). For the purposes of this paper, the
broadcasts the final result. In addition to the geometric expected minimum timestamp is derived for 2 sample distri-
network layout advantage of the first method, the second butions, the Exponential and Weibull Distributions. These
advantage of this mode is that as the number of nodes, mathematical results are not intended as new contributions.
N, increases, the expected time of the minimum timestamp The equations are used to derived the results of Section 5.
becomes more isolated. The first elimination becomes the

only step required. 4.1 Exponentially Distributed Example

4 EVENT VERSUS TIME-DRIVEN SIMULATION As a simple example, the next expected event time for a net-
work of two exponentially distributed event generators is cal-

This section derives equations which characterize the ex-

pected arrival time of the next event for two Independent

1464



Bumble and Coraor

culated. The exponential density function is provided in
Equation 6:

OE % e (6)

The exponential cumulative distribution function can
then be calculated as:

F(x)
F(x)

fort <0

fort >0
(7)
The density function for this example just contains two
generators, so Equation 4 simplifies to:

g1(x) f10) [1 = F2(0)] + [1 - Fi(x)] fa(x)

(8)

Substituting equations 6 and 7 into Equation 8 yields
the following probability density functiong1(x):

T [1-a-em]+

[1—(1—6_‘;71) e_é>

g1(x)
()]

Next, the development of the expected value of the
minimum is derived by inserting Equation 9 into Equation 5
to derive:

1 _(01+02)
E(x) +—> e 1% “dx

= <% %)/{; x e “dx (10)
where o = (0;;;?)

Equation 10 can be simplified by applying the following
['(n) definition (Beyer 1978):

T'(n) =/ "L e dx (11)
0

The situation in Equation 10 is slightly different due
to thea in the exponent. We can massage Equation 10 by
using the substitution = ax anddy = adx. Equation 12
is derived:

oo o) -1
n—1 —oax \"
dx = =
/(; X e X /0 (o{)
n (% . 1\"
(2) [ e >dy=(5> rn)

1
eV —dy
o

(12)

1465

The results of Equation 12 and the substitution dor
can be inserted back into Equation 10. For Equation 10, n
= 2. Note thatl'(n) = (n — 1)!.

Ew = (R+&)rm(2)

Ex) = (%+%>F(Z) (‘%>2 (13)
b = (24 a0 ()

E(x) eflfsz

The results of Equation 13 can be interpreted as follows.
If the mean of the first proces8;, is 5 seconds, and the
mean of the second process, is 10 seconds, then the
expected minimum arrival time of the two processes is given
by Equation 13 as:

E@ = % 0
Ex) = % = 3.33 seconds

For three exponentially distributed event generators, the
next expected event for x would occur at time:

016203

E(x) 0203101030102

(15)

The software simulations reported in Section 5 assume
that all event generators create events with the séme
value. Therefore the expected value of the next event in
Equation 15 can be generalized to Equation 16, where N
is the number of processing elements.

0

E(x) N

(16)

4.2 Weibull Distribution Example

As a second example, an [ID Weibull distribution is calcu-
lated. This example is calculatedrfa 2 source experiment
similar to Equation 14. The Weibull distribution has the
density function found in Equation 17.

f&x)

Y y—1,—x¥ /0
axV e ™% for x>0

17

Equation 17 can be integrated directly to derive the
cumulative distribution function in Equation 18.
x>0

F(x)=1—e¢ /¢ (18)



A Global Synchronization Network for a Non-Deterministic Simulation Architecture

Equations 17 and 18 can be inserted into Equation 8.
Also, if IIDs are assumed, thep; = y> and 61 = 62
allowing additional simplifications:

) = (Banenva) (o) 4
—xY1/0 —1_—xY2/6
(e x /1) (g_:xyz e /2) (19)
— %’xy—le—ZxV/G
where 601 = 02 and y1 = y»
To find the expected minimum, the results of Equa-

tion 19 are inserted into Equation 5:

o0

2

E(x):/ %x’/e_zxy/edx (20)
0

If we then lety = x¥ so thatx = y¥7 and dx
1
—y 5 dy, we can substitute these results into 20 to obtain:

00 1 1y
E(x) %y/ ye‘zy/e;y 7 dy

(21)
2 /0 Y7 =210 g,

Employing the Gamma function substitution (Beyer
1978) listed in Equation 22, where= 3 andn = 3 we
find a solution for Equation 21.

F(n—l—l)

/O " ey e (22)
E(x) = (%/ yYre=2/%qy
O(0) =0 r
9 (23)

Equation 23 has a nice solution fpr=1or y = 2.
For the latter case, the formula yields:

(2) "r(Ery)=(5)

VO

[N

i
2

E(x) ir(s

(

) (24)

Equation 23 can be generalized for N different IID
generators as:

(25)

(7T (2+y)

Note that the larger the number of event generators
which exist in the system, the shorter the expected time
to the next event,E(x). Although these examples use

1466

E(x)

homogeneous distributions, it is assumed that the trend holds
for independent heterogenous distributions as well. So the
larger the number of event generators in the simulation, the
faster the events will arrive, and the smaller the mean time
between events grows.

5 RESULTS

Networks of processing elements deployed in three dimen-
sional cubic arrays were simulated for both time and event-
driven mechanisms. The event-driven synchronization time
was computed assuming that the worst case signal propaga-
tion delay was required for all steps. The signal propagation
delay is assumed to be composed of the time required to
propagate a signal through each reduction gate in the ar-
ray as depicted in Figure 4. The gates are assumed to
be high speed Emmiter-Coupled Logic (ECL) one nano-
second delay gates (Pickles 1997). Processing elements are
assumed to be deployed along linear buses whose lengths
are determined by the number of processors in the simu-
lation. The processing element connections to the bus are
assumed to be spaced 10 centimeters apart, well within the
run lengths listed for properly terminated ECL transmis-
sion lines (MECL 1989). Propagation delay along the bus
is assumed to be 5 nanoseconds per meter excluding the
time through the OR gate drivers. The peripheral buses of
processing elements are assumed to connect to the middle
level of linear buses. Gates at the end of the buses bridge
onto the next bus layer. There are three interconnected bus
layers illustrated in Figure 6.

The arrival distributions determine the time required
to locate the next smallest timestamp in the network. For
the time-driven simulation mode, the time required is com-
posed of two components. The first component tallies the
propagation delay as the signals are passed through each
repeater gate illustrated in Figure 4. The second component
is the propagation time in the wire runs between each gate.
The signal must pass through the entire network from its
edge elements to its core. The delay of each signal through
the network is approximated in Equation 26.

delay ((array_dim)(array_length +
array_dim — 1)(switchingtime)+
(array_length) (elementspacing

(prop_delay)

(26)

The event-driven simulation time was computed by
using the same pair of components described above. One
bus propagation/elimination step is always necessary. Then
the power of 2, k, which is a logarithmic ceiling of the
expected minimum network timestamp value is computed.
Next, the number of events, E, which could be expected to
arrive before* is computed. Each comparisonis assumedto
require about 4ns. Finallypg>(E) determines the number



Bumble and Coraor

of comparisons needed to calculate the network minimum
timestamp. Each communication through the network is
assumed to be from edge to core, the worst case scenario.

In Figures 7-10, the two event-driven methods de-
scribed in Section 3, are illustrated. The two methods are
labeled Event-Driven Rangend Event-Driven Elements
The Event-Driven Range algorithm, the first method de-
scribed in Section 3.2, performs a binary search by dividing
the range of possible time values isolated in the first elim-
ination phase. Alternatively, in the second method from
Section 3.2, the Event-Driven Element method, the algo-
rithm takes advantage of the fact that as the distribution
means increase, the remaining elements become more iso-
lated at the extreme edges of the distribution curves. The
first method must step through the remaining binary range of
numbers, searching for the minimum. The second method
tends to jump directly to the correct element in O(1) as the
distribution means increase. All plotted time units are in
nanoseconds.

Figure 7 plots the time required by the network minimum
timestamp search algorithm as the number of processing
elements and the event generator Exponential means vary.
The Exponential event generators used in the distributions
are IID. Figure 8 shows a slice of Figure 7 at the 1000
processing element mark. The graphs indicate a clear gain
which can be harvested if the time and event-driven methods
are used in conjunction. The second method in the second
phase of the event-driven algorithm clearly yields significant
gains for exponential distributions with large means. A
scenario which would benefit from this algorithm might
be one where the simulation has distribution means in the
millisecond range but requires nanosecond resolution.

Figure 9 illustrates the results of a simulation using 11D
Weibull distributed sources. The plot varies the number of
processing elements and the arrival rates of those elements.
Time-driven simulation works well with smaller mean ar-
rival rates, and the second proposed event-driven method,
the Event-Driven Element method, works best with higher
distribution means. Figure 10 clearly illustrates the greater
potential range of benefit to be gained by a machine which
can proceed using either a time or an event-driven approach.

The criteria used to select between the best simulation
method is based on calculations determining which alter-
native requires less time. If the expected time to the next
event can be computed using Equation 5, the rest of the
process is pure accounting. The results of the computation
yield the number of expected time-driven steps required to
advance to each new event.

Using Equation 26, the time-driven estimate is approx-
imated by Equation 27.

Time-Driven duration =

E(x)(delay) 27)

1467

N Event-Driven Range —<—
e Event-Driven Elements -=---

TimeUnits - ’,’ \,A\ Time-Driven -&--

50000

6000

. Exponential Dist Mean
Num of Processing Elements

7000 go00

Figure 7: Exponential Distribution in Event vs
Time-Driven Simulation The graph illustrates a net-
work of 1ID nodes in network sizes ranging from 125
to 8000 nodes. Each node is generating arrival events
according to an Exponential distribution witleanar-

rival times ranging froni to 214. The graph illustrates
that for an exponential arrival rate, the mean arrival
time offers the most significant impact to network syn-
chronization. The time required for the event-driven
model is computed by counting the longest signal run
from the edge to the center of the network multiplied by
the propagation delay per unitlength. One nanosecond
is added for each OR gate, see Figure 4, encountered
in traversing the path to the network core. The time-
driven delay through the network is the duration of
the number of time steps required.

450

T T T
B Event-Driven Range ——
F Event-Driven Elements -+---
400 - Time-Driven -&-- b

350 -

Time Units

L Ty L L L
6000 8000 10000 12000 14000 16000
Exponentia Dist Mean

20‘00 4(;00
Figure 8: Exponential Distribution slice of Figure 7
lllustrates a slice taken from Figure 7 where the sim-
ulation contains 1000 processing elements. The first
method from Section 3.1 is labeled as the Event-Driven
Range, and the second method from the same section
is labeled Event-Driven Elements. The graph illus-
trates that a time-driven approach used in conjunction
with the Event-Driven Element method provides the
fastest network search approach.



A Global Synchronization Network for a Non-Deterministic Simulation Architecture

R a Event-Driven Range ——

RN Event-Driven Elements -&---

10000 ¢ [ Time-Driven -+--
Time Units

1000 ¢
100 ¢

10F

1000
2000
3000
4000
5000 50000
Weibull Dist Mean

6000
Num of Processing Elements

7000 gnog

Figure 9: Weibull Distribution in Event vs Time-
Driven Simulation The Weibull distribution results
are similar to the Exponential. The optimum cross
over point from the time-driven to the event-driven
method allows a wider speedup gain to be derived.

220

T T
Event-Driven Range —<—
Event-Driven Elements -+--

20 Time-Driven -&— |

180

160

140 £

Time Units

120 [

100 #*

-6

. . . . . .
4000 6000 8000 10000 12000 14000 16000
Exponential Dist Mean

2000

Figure 10: Weibull Distribution slice of Figure 9
The graph is a slice of Figure 9 at the 1000 processing
element mark. The relative simulation search times
are displayed. Clearly, the optimal solution would be
a simulator which could select between the Time and
Event-Driven Element approaches.

The event-driven time estimate for Section 3.2 is computed
by estimating the number of active elements left in the
range which exists after the initial elimination step. The
calculation shown in Equation 28 is composed of the delays
required for the first phase elimination and the additional
expected number of eliminations required by the second
phase.

Event-Driven duratior= delay1 + log,(F (x) * N))
(28)

The selection between event-driven and time-driven

simulation is then a choice between the smallest estimate,
provided by Equations 27 or 28.

1468

BIBLIOGRAPHY AND REFERENCES

Beaumont, C., Boronat, P., and Champeau, J. et al. Re-
configurable technology: An innovative solution for
parallel discrete event simulation support.8th Work-
shop on Parallel and Distributed Simulation (PADS
'94). Proceedings of the 1994 Workshop on Parallel
and Distributed Simulatiorpages 160—-163, Edinburgh,
UK, July 1994. IEEE, SCS, San Diego, CA, USA.

Beyer, William H., editor. CRC Standard Mathematical
Tables CRC Press, Inc., Boca Raton, FL, 25 edition,
1978.

Bumble, Marc, and Coraor, Lee. Introducing parallelism to
event-driven simulation. IRroceedings of the IASTED
International Conference—Applied Simulation and Mod-
elling, ASM 97, Banff, Canada, July 27-August 1, 1997
1997.

Bumble, Marc, and Coraor, Lee. Architecture for a non-
deterministic simulation machine. 1998 Winter Simu-
lation Conference Proceedingsolume 2, pages 1599—
1606, December 1998a.

Bumble, Marc, and Coraor, Lee. Implementing parallelism
in random discrete event-driven simulation.lecture
Notes in Computer Science 1388, Parallel and Dis-
tributed Processingpages 418-427. IEEE Computer
Society, Springer, March 1998b.

Chappell, Barbara A., Chappell, Terry 1., Schuster, Stan-
ley E., Segmuller, Herman M., Allan, James W., Franch,
Robert L., and Restle, Phillip J. Fast cmos ecl receivers
with 100-mv worst-case sensitivithEEE Journal of
Solid-State Circuits23(1):59—67, February 1988.

Fujimoto, Richard M., Tsai, Jya-Jang, and Gopalakrishman,
Ganesh C. Design and evaluation of the rollback chip:
Special purpose hardware for time watREE Trans-
actions on Computer#t1(1):68—82, January 1992.

Hord, R. Micheal.Parallel Supercomputing in MIMD Ar-
chitectures CRC Press, Inc., Boca Raton, Florida,
1993.

Jefferson, David R. Virtual time. ACM Transactions on
Programming Languages and Systemg3):404—425,
July 1985.

Levendel, Y. H., Menon, P. R., and Patel, S. H. Special-
purpose computer for logic simulation using distributed
processingThe Bell System Technical Journ&l(10):
2873-2909, December 1982.

Motorola. MECL Device Data1989.

Nicol, David M. Principles of conservative parallel simu-
lation. In Proceedings of the 1996 Winter Simulation
Conference

Pickles, Neil S., and Lefebvre, Martin C. ECL I/O buffers for
BiCMOS integrated systems: A tutorial overvielEEE
Transactions on Educatio0(4):229-241, November
1997.



Bumble and Coraor

Reed, Daniel A., Molony, Allen D., and McCredie, Bradley D.
Parallel discrete event simulation: A shared memory
approach.Proc of the 1987 ACM SIGMETRICS Conf
on Meas and Model of Comput Sy$5(1):36—-38, May
1987.

Reynolds, Jr., Paul F., Pancerella, Carmen M., and Srini-
vasan, Sudhir. Design and performance analysis of
hardware support for parallel simulation¥ournal Of
Parallel And Distributed Computingl18(4):435-453,
August 1993.

Scheaffer, Richard L.Introduction to Probability and its
Applications The Duxbury Advanced Series in Statis-
tics and Decision Sciences. PWS-KENT Publishing
Company, Boston, USA, 1990.

AUTHOR BIOGRAPHIES

MARC BUMBLE is a graduate studentin the Computer Sci-
ence and Engineering department at the Pennsylvania State
University in University Park, PA. He received his B.S. and
M.S. degrees in Electrical Engineering from the Univer-
sity of Pennsylvania in Philadelphia. His current research
investigates architectures for accelerating non-deterministic
simulation, including the application of reconfigurable logic.

LEE CORAOR is an Associate Professor of Computer Sci-
ence and Engineering at the Pennsylvania State University
in University Park, PA. He received his Ph.D. in Electri-
cal Engineering from the University of lowa. Dr. Coraor
has worked on the design, implementation and performance
evaluation of decoupled architectures and is currently in-
vestigating FPGA architectures and applications.

1469



	MAIN MENU
	PREVIOUS MENU
	---------------------------------------
	Search CD-ROM
	Search Results
	Print

