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ABSTRACT

Our previous work presented methods of accelerating n
deterministic discrete event simulation at the processi
element level. Here, two algorithms are proposed for sy
chronizing a network of processing elements according
the next network minimum event timestamp. One meth
has an expected running time ofO(k) while the second
has an expected running time ofO(k log(k)). A network
architecture is developed and simulation results of the tim
expected to locate and broadcast the next network minim
timestamp are reported.

1 INTRODUCTION

Methods of speeding up the runtime of Non-Determinist
Discrete Event Simulation are presented with the intent
developing an architecture capable of running a simulati
fast enough to be practical for dealing with emergencie
One scenario which could utilize our results would be
traffic model of a city, such as Atlanta, during a large even
like the Olympic games. Assuming that the traffic model w
already in place, if an emergency situation, for example
terrorist bomb, required the re-routing of traffic, an operat
should be able to add detour adjustments to the model,
quickly rerun the simulation to test proposed detours befo
their implementation. The intent here is to present parts
a machine architecture which are accelerated beyond
simulation speed possible with a normal general purpo
computer. The result is a simulator capable of providin
detailed accurate traffic simulations fast enough to be use
to traffic engineers and police during emergencies. Ma
deterministic simulation machines have been built as log
simulators. Yet there may be an even wider audience
non-deterministic machines.

In a simulation network, generalized by Figure 1, nod
are synchronized using either a time-driven or event-driv
simulation approach. Time-driven simulation models st
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through every time increment whether or not an even
curs. This model is simple and easy to implement. How
processing empty simulation cycles detracts from an
timum simulation speed. Event-driven simulation mo
jump from simulation event to event, skipping the em
cycles; however, the cost of determining the next event
in a network of nodes and synchronizing the nodes to
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Figure 1: A Network of Processing Elements. A
simulation network consists of event sources, sink
and way-points. Each must be synchronized to t
global system time clock. Two common methods o
synchronization are time-driven and event-driven sy
chronization. Arrival statistics of the various source
and sinks can be used to gauge which method
faster. The time-driven simulator illustrated uses
master/slave approach similar to Levendel (Levend
1982). The Master Synchronizer asserts the Start li
at the beginning of each time cycle. Each netwo
processor signals it is ready for the next time cyc
by asserting its Done line. The Start and Done line
are configured as reduction network lines illustrate
in Figure 4.
0



Bumble and Coraor

gh

ws
el.
ed,
gin
for
nes
me
er

d
tor
Fig
re
cle
n,
h
hin
-
e’s
l of

s
t

-

l

ime
he
e-
st

he
tion

d
re

ults
eed

a-

m-
ial
th
r-
ck
nd
y
n-

ent
l

ion
d’s
m-

ts
rt
of
-
the

ng
ent
nd
his
ze
ed
n-

ere
The
in
c-
g
ro-
p,
ork

rch
ng
del
n a
ve
s.
simultaneously may be higher than simply stepping throu
all the empty intermediate time intervals.

A single architecture can be constructed which allo
a simulation to run as either a time or event-driven mod
For the non-deterministic simulation architecture propos
the decision between the two models is made at the be
ning of the simulation and the selected model is used
the simulation duration. Hence, this paper also exami
criteria that can be used to select the best alternative. Ti
driven synchronization is relatively trivial, so the pap
concentrates on event-driven systems.

A simulator is composed of individual nodes joine
in a network. Each node consists of an event genera
local event queues, and a scheduler as depicted in
ure 2. To prevent causality errors, individual nodes a
synchronized so that all process the same simulation cy
simultaneously. In conservative event-driven simulatio
individual nodes all jump to the simulation cycle whic
coincides with the smallest timestamped event held wit
the network. Logistical difficulties occur in both the com
munication and sorting of the timestamps. Each nod
local minimum timestamp must be compared against al
the local minimum timestamps in the global network.

comparator

Service
Queue

Event

Generator

adjacent PEs
Events from

Scheduler

Arrival
Queue

Figure 2: The local processing element designThe
local processing element (PE) design uses two queue
for each server. The arrival queue holds the sorted lis
of arrival events from the Event Generator. Service
events, which are created from processing success
ful arrival events, are stored in the Service Queue
along with events from adjacent network processing
elements. A comparator samples the heads of both
queues and indicates where the next minimum loca
timestamped event resides.

This research also demonstrates that having both t
and event-driven simulation capability can be worth t
cost. A runtime comparison of event-driven versus tim
driven simulation is presented. Also, the additional co
of the event-driven simulation capability is estimated. T
proposed solution consists of a parallel bus and a reduc
1461
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network, similar to the control network combination foun
in the CM-5 (Hord 1993). The mathematics presented a
not intended as new contributions. Rather, the math res
are used solely to assist in evaluating the expected sp
of the new proposed synchronization methods.

1.1 Related Work

Discrete event-driven simulation is inherently serial in n
ture due to itscausality(Nicol 1996) constraints. In 1987,
Reed et al reported that the parallel implementation [of si
ulations] rarely completes more quickly than the sequent
implementation [when distributed simulations are run wi
a central server network] (Reed 1987). In an effort to ove
come similar obstacles, Fujimoto developed the Rollba
Chip (Fujimoto 1992) to accelerate both state saving a
simulation checkpoint restoration which are required b
optimistic simulations when straggler events are encou
tered. Reynolds (1993) further established the requirem
for high speed network computation of the Global Virtua
Time (Jefferson 1985) and introduced the Parallel Reduct
Network as hardware support to attain that goal. Reynol
method passes a vector of simulation values through a co
putation reduction tree composed of Arithmetic Logic Uni
(ALUs). Beaumont et al (1994) employ hardware suppo
for parallel discrete event simulation through the use
Field Programmable Gate Arrays (FPGAs). A ring of in
terconnected FPGAs determines which events contain
smallest common timestamp.

Our previous work presented methods of accelerati
two processor level phases of a conservative discrete ev
simulation, the event generation phase (Bumble 1997) a
the storage phase within an event list (Bumble 1998a,b). T
paper contributes two new algorithms which synchroni
a network of nodes according to the smallest timestamp
event held by the aggregation of processing elements. U
like Reynolds, the synchronization methods presented h
are not based on a message or vector passing scheme.
presented network also differs from Reynold’s approach
that it is not a tree. The proposed network interconne
tion is more geometrically scalable and it avoids incurrin
message passing time penalties. The initial step in the p
posed network algorithms is purely a logic reduction ste
and should therefore also be much faster than the netw
proposed in Beaumont.

2 BUS ARCHITECTURE

Traditional approaches in multi-processor simulation sea
for the next smallest timestamp in a network of N processi
elements. The simulation model may have n active mo
nodes distributed across the N processing elements i
balanced fashion, but each processing element will ha
one minimum timestamp for the model nodes it handle
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Each processor minimum timestamp must be compar
against the other processor minimum timestamps found
the network. Some of the more commonly encounter
network search algorithms include network structures co
structed as k-ary trees depicted in Figure 3 and found
Reynolds (1993). To determine the minimum timestam
in such a network requireslogk(n) communications steps.
The smallest timestamp is filtered to the root of the tree, a
from there the result must be distributed to the rest of t
network. One disadvantage of this system is that the w
interconnect run lengths may become progressively long
approaching the root of the tree. This method requir
O(logk(n)) communications steps. If all processing ele
ment minimum timestamps were required to be compar
against each other,O(logk(n)) steps would be the fastest
synchronization rate a simulator could hope to achieve.

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Figure 3: K-ary Search Tree Network The K-ary
search network topology allows N processing elements
in a network to compare individual local minimum
timestamp results to the winner of the K elements
on the level below. Successive winners compete in
tournament style comparisons.

Section 3 presents a method which avoids individu
timestamp comparisons. For large mean arrival rates,
new method approachesO(k). Multiple transmitters share
the bus and are able to generate signals simultaneou
The bus architecture is composed of a bi-directional r
duction logic network employing Emitter Coupled Logic
(ECL) (Pickles 1997) which gives the interface reasonab
transmission speed, and ECL hardware connects nicely w
CMOS technology (Chappell 1988). ECL switching spee
is accomplished by keeping transistors always biased in th
active regions. This bias alleviates the delay required f
the sufficient accumulation of charge to change the state
saturated gates. The gates switch much faster than conv
tional CMOS gates; however, they also burn significant
more power. OR or NOR logic is used to run buses in tw
directions as depicted in Figure 4. Reduction logic can
accomplished directly at the processing element I/O poin
without processor intervention.
he

146
d

-

r

e

y.

h

ir

f
n-

Processing
Element

Processing
Element

Processing
Element

Processing
Element

Figure 4: The PE Interconnection Network The in-
terconnections consist of high speed Emitter-Coupled
Logic (ECL) gates. ECL buses link the Processing
Elements (PE) together, allowing a rapid and semi-
parallel determination of the next smallest network
timestamp. The OR network assists in the compu-
tation of the smallest timestamp and serves for both
computation and bus signal driving. The PEs can
both assert and read the bus signal values. A dashe
control line is provided to allow the PE to prevent
the propagation of signals to subsequent elements on
the bus. The use of this control line is illustrated in
Figure 5.

The bus illustrated in Figure 4 is used to form a co
sensus among the processing elements. If any elem
asserts a signal on the bus, the signal is propagated
that all elements in the network quadrant are aware tha
least one element has asserted the signal. This broad
mode is employed by the algorithm described in Section
Each gate also contains an additional control line whic
when asserted, prevents signals from propagating furth
The on/off switching capability is used to pair elements
Section 3.2.

3 SEARCH ALGORITHM

The algorithms for finding the network minimum timestam
proceed in two basic phases. The first phase consists
a general elimination which prunes processing eleme
having timestamps larger than2k, the base 2 ceiling of
the global minimum timestamp. The second phase of
algorithm then finds the minimum among the remainin
nodes.

3.1 Phase 1 Elimination

First, all network processing elements (PEs) find their loc
minimum values. This search involves comparing the le
elements of the service and arrival queues from Figure
in O(1) time. A hardware algorithm for maintaining the
smallest event within a local processing element is presen
in Bumble (1998b). Next, each PE computes the differen
between the current global simulation time cycle and t
2
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next local minimum timestamp,tdiff, in O(1) time. The
current global simulation time cycle is always availab
at each node. Each PE determines the number of b
b, required to expresstdiff. For example, 13, requires 4
bits, 11012. The PEs simultaneously assert the signal lin
representingb on the global parallel Data Bus illustrated in
Figure 5. After all PE’s have floated theirb values on the
bus inO(1), the PEs whoseb value is greater than the bus
minimum signal line eliminate themselves from the searc
The smallest asserted signal line of the parallel bus narro
the scope of the search to the limited range of numbe
expressed in Equation 1:

2b − 2b−1 = 2b−1(2 − 1) = 2b−1 (1)

All elements not eliminated in this first phase are referre
to as active elements in the second phase.

paired
elements

paired
elements

reduction
network

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

NetworkNetwork
Core Edge

Processing
Elements

Data
Bus

Adjacency Line
Edge Line

eliminated
elements

signal/data lines
Bold indicates active

Figure 5: Algorithm Phase 2 Method 2 Elements
eliminated by the initial reduction step are illus-
trated inscribed with a cross. Signals flow unimpeded
through the eliminated processing elements (PEs). The
data signals are shown, in bold, traversing the upper
bus. The lower two-signal bus represents the basic
handshaking signals. The Edge signal indicates to each
PE whether or not that PE is on the network edge. All
PEs which have not self-eliminated during the first
phase generate an active Edge signal and propagat
the signal towards the network core. The Adjacency
signal is used to pair PEs. Each active PE, which
receives the Edge signal but not the corresponding
Adjacency signal, propagates its own Adjacency sig-
nal towards the direction of the network core. When
either another active PE or the core receives the Ad-
jacency signal, that PE does not propagate the signa
but instead compares its minimum local timestamp
with the timestamp value received on the Data bus.
The minimum value of the pair becomes the minimum
value at the node closest to the core while the outer
pair node is eliminated.
e
or
te
st
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3.2 Phase 2 Selection

The second phase of the algorithm can proceed in eith
of two methods. Method one requires a 3-bit reductio
network, and method two requires a 2-bit reduction networ
The first method performs a binary search through the ran
of timestamps isolated in Phase 1. The second meth
performs binary eliminations, tournament style, among th
remaining active nodes. The reduction network can als
serve as the Start and Done lines for the Master Synchroni
described by Figure 1.

In the first method, a Bus Master begins a binar
search through the remaining interval of time, described b
Equation 1, to determine the minimum global timestamp
A reduction network is used to allow the PEs to signa
whether their values are higher, equal, or lower than th
value floated on the parallel bus. Using Equation 1, th
global search can be completed inO(log2(2b−1)) = b − 1,

and the resulting global minimum timestamp range is visib
to all PEs simultaneously.

The selection phase has several significant advantag
over tree search methods. One advantage is the initial eli
ination step which occurs across the network at all PE
simultaneously. This advantage is opposed to a k-ary tr
in which the first comparison happens at the lowest lev
only. Another significant advantage is that the networ
is somewhat more conducive to geometric element layo
as opposed to a tree, where the interconnections betwe
element levels get progressively longer. At [gate] logi
speeds of two nanoseconds, an equivalent gate delay is
troduced by every foot of the interconnecting lines (MECL
1989). The gate delays of the proposed devices are expec
to be approximately one nanosecond (Pickles 1997). T
3-dimensional cubic array network illustrated in Figure
keeps all interconnection lengths uniformly short. The mo
important advantage is the significant reduction in the e
pected number of timestamp transmissions and coalition
Its disadvantages include requirements for additional har
ware and bus lines as illustrated in Figures 4 and 5. Th
event-driven simulation cost requires the extra Data Bus
lustrated in Figure 5. The Edge and Adjacency lines alon
with each line of this Data Bus must be configured as illus
trated in Figure 4 requiring three OR gates and two wire
per signal.

The second method proposed for Phase 2 allows t
processing elements which remain after the first phase
work in adjacent pairs. All active processing element
generate a signal which is passed towards the core alo
the network Edge signal line. Therefore any PE and th
core receiving this signal know that there exists at lea
one active element on their network edge side. Next, th
elements use their Adjacency signal line to form process
pairs. Active elements at the edge of the network propaga
both the Edge and Adjacency signals. The next innermo
3
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Figure 6: The 3-Dimensional Network Structure
Although trees, as depicted in Figure 3, have a log-
arithmicly decreasing structure, they offer difficult
geometric constraints for actual implementation. A
linear parallel bus offers a more implementable struc-
ture. In the network illustrated, each bus is composed
of reduction logic as shown in Figure 4. Much of the
communications can be accomplished by the Process
Element (PE) I/O cells. The length of each bus is a
trade-off between communications element switching
speed, bus signal propagation speed, and physical PE
geometry constraints. In this figure, the PE’s are ar-
rayed along linear busses. If there are 10 elements
on each bus, then the network may contain 8000 ele-
ments. The core may be composed of more than one
processor, but for the purposes of this paper, the core
is assumed to be one unit.

active element will receive both the Edge and Adjacen
signals along with the value of the smallest timestamp
the data lines as shown in Figure 5. This inner core si
element will propagate only the Edge signal towards th
core. Having alternating elements propagate the Adjacen
signal facilitates a pairing of the network elements. In ea
pair, the element closer to the network edge automatica
self eliminates. The inner paired element compares its lo
minimum timestamp with the value received on the dat
bus. The smaller value becomes the minimum used in t
next cycle. The core retains the smallest value until a
eight network quadrants have reported in, and then the c
broadcasts the final result. In addition to the geometr
network layout advantage of the first method, the seco
advantage of this mode is that as the number of nod
N, increases, the expected time of the minimum timestam
becomes more isolated. The first elimination becomes t
only step required.

4 EVENT VERSUS TIME-DRIVEN SIMULATION

This section derives equations which characterize the e
pected arrival time of the next event for two Independe
146
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and Identically Distributed (IID) networks. One network
processors generate exponentially distributed event arriv
The other network arrival rates follow a Weibull distributio

When confronted with a network of random event ge
erators, the next expected event time to occur can be ca
lated usingOrdered Statistics(Scheaffer 1990). We need
to determine the shortest expected arrival time in order
evaluate which simulation approach is the most appropri

LetX1, X2, . . . , Xn denote independent continuous ra
dom variables which have distribution functionsF1(x), F2(x),

. . . , Fn(x) and density functionsf1(x), f2(x), . . . , fn(x)

respectively. Ordered random variables,Xi , are denoted
X(1), X(2), . . . , X(n) where X(1) ≤ X(2) ≤ . . . ≤ X(n).
Continuous random variables allow the equality signs to
dropped. So the minimum value is

X(1) = min(X1, X2, . . . , Xn) (2)

The density function ofX(1), denotedg1(x) can be
found as:

P
[
X(1) ≤ x

] = 1 − P
[
X(1) > x

]

= 1 − P (X1 > x, X2 > x, . . . , Xn > x)

= 1 − [1 − F1(x)] [1 − F2(x)] · · · [1 − Fn(x)]

(3)

Taking the derivative of both sides yields the dens
function,

g1(x) = f1(x) [1 − F2(x)] · · · [1 − Fn(x)] +
[1 − F1(x)] f2(x) · · · [1 − Fn(x)] + . . .

[1 − F1(x)] [1 − F2(x)] · · · fn(x)

(4)
The expected time of the next arrival event can then

calculated by finding the expectation ofg1(x) as follows:

E(x) =
∫ ∞

0
xg1(x)dx (5)

For an actual simulator, the computation of Equation
would be automated given that the user supplies the ap
priate F(x) and f (x). For the purposes of this paper, th
expected minimum timestamp is derived for 2 sample dis
butions, the Exponential and Weibull Distributions. The
mathematical results are not intended as new contributio
The equations are used to derived the results of Sectio

4.1 Exponentially Distributed Example

As a simple example, the next expected event time for a n
work of two exponentially distributed event generators is c
4
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culated. The exponential density function is provided in
Equation 6:

f (x) = 1

θ
e− x

θ (6)

The exponential cumulative distribution function can
then be calculated as:

F(x) = 0 f or t < 0

F(x) = P (X ≤ x) =
∫ x

0

1

θ
e− x

θ dt

= −e− x
θ

∣∣∣x
0

= 1 − e− x
θ f or t ≥ 0

(7)
The density function for this example just contains two

generators, so Equation 4 simplifies to:

g1(x) = f1(x) [1 − F2(x)] + [1 − F1(x)] f2(x) (8)

Substituting equations 6 and 7 into Equation 8 yield
the following probability density function,g1(x):

g1(x) =
(

1
θ1

e
− x

θ1

) [
1 − (1 − e

− x
θ2 )

]
+[

1 − (1 − e
− x

θ1 )
] (

1
θ2

e
− x

θ2

)

=
(

1
θ1

+ 1
θ2

)
e
− (θ1+θ2)

θ1θ2
x

(9)

Next, the development of the expected value of th
minimum is derived by inserting Equation 9 into Equation 5
to derive:

E(x) =
∫ ∞

0
x

(
1

θ1
+ 1

θ2

)
e
− (θ1+θ2)

θ1θ2
x
dx

=
(

1
θ1

+ 1
θ2

) ∫ ∞

0
x e−αxdx

where α = (θ1+θ2)
θ1θ2

(10)

Equation 10 can be simplified by applying the following
0(n) definition (Beyer 1978):

0(n) =
∫ ∞

0
xn−1 e−xdx (11)

The situation in Equation 10 is slightly different due
to theα in the exponent. We can massage Equation 10 b
using the substitutiony = αx anddy = αdx. Equation 12
is derived:

∫ ∞

0
xn−1 e−αxdx =

∫ ∞

0

( y

α

)n−1
e−y 1

α
dy

=
(

1
α

)n
∫ ∞

0
yn−1 e−ydy =

(
1

α

)n

0(n)

(12)
146
y

The results of Equation 12 and the substitution forα

can be inserted back into Equation 10. For Equation 10,
= 2. Note that0(n) = (n − 1)!.

E(x) =
(

1
θ1

+ 1
θ2

)
0(n)

(
1
α

)n

E(x) =
(

1
θ1

+ 1
θ2

)
0(2)

(
1
α

)2

E(x) =
(

1
θ1

+ 1
θ2

)
(2 − 1)!

(
1
α

)2

E(x) = θ1θ2
θ1+θ2

(13)

The results of Equation 13 can be interpreted as follows
If the mean of the first process,θ1, is 5 seconds, and the
mean of the second process,θ2, is 10 seconds, then the
expected minimum arrival time of the two processes is give
by Equation 13 as:

E(x) = θ1θ2
θ1+θ2

E(x) = 5·10
5+10 = 3.33 seconds

(14)

For three exponentially distributed event generators, th
next expected event for x would occur at time:

E(x) = θ1θ2θ3
θ2θ3+θ1θ3+θ1θ2

(15)

The software simulations reported in Section 5 assum
that all event generators create events with the sameθ

value. Therefore the expected value of the next event i
Equation 15 can be generalized to Equation 16, where
is the number of processing elements.

E(x) = θ
N

(16)

4.2 Weibull Distribution Example

As a second example, an IID Weibull distribution is calcu-
lated. This example is calculated for a 2 source experiment
similar to Equation 14. The Weibull distribution has the
density function found in Equation 17.

f (x) = γ
θ

xγ −1e−xγ /θ f or x > 0 (17)

Equation 17 can be integrated directly to derive the
cumulative distribution function in Equation 18.

F(x) = 1 − e−xγ /θ x > 0 (18)
5
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Equations 17 and 18 can be inserted into Equation
Also, if IIDs are assumed, thenγ1 = γ2 and θ1 = θ2
allowing additional simplifications:

g1(x) =
(

γ1
θ1

xγ1−1e−xγ1/θ1

) (
e−xγ2/θ2

) +(
e−xγ1/θ1

) (
γ2
θ2

xγ2−1e−xγ2/θ2

)
= 2γ

θ
xγ −1e−2xγ /θ

where θ1 = θ2 and γ1 = γ2

(19)

To find the expected minimum, the results of Equ
tion 19 are inserted into Equation 5:

E(x) =
∫ ∞

0

2γ

θ
xγ e−2xγ /θ dx (20)

If we then let y = xγ so thatx = y1/γ and dx =
1
γ

y
1−γ

γ dy, we can substitute these results into 20 to obta

E(x) = 2γ
θ

∫ ∞

0
ye−2y/θ 1

γ
y

1−γ
γ dy

= 2
θ

∫ ∞

0
y1/γ e−2y/θ dy

(21)

Employing the Gamma function substitution (Beye
1978) listed in Equation 22, wherea = 2

θ
and n = 1

γ
we

find a solution for Equation 21.

∫ ∞

0
xne−axdx = 0(n + 1)

an+1
(22)

E(x) = 2
θ

∫ ∞

0
y1/γ e−2y/θ dy

=
(

2
θ

) 
0

(
1
γ

+1
)

(
2
θ

) 1
γ +1


 =

(
2
θ

)− 1
γ

0
(

1
γ

+ 1
)

(23)

Equation 23 has a nice solution forγ = 1 or γ = 2.

For the latter case, the formula yields:

E(x) =
(

2
θ

)− 1
2

0
(

1
2 + 1

)
=

(
2
θ

)− 1
2 1

20
(

1
2

)

=
√(

θ
2

) 1
2

√
π

(24)

Equation 23 can be generalized for N different IID
generators as:

E(x) = (
N
θ

)− 1
γ 0

(
1
γ

+ 1
)

(25)

Note that the larger the number of event generato
which exist in the system, the shorter the expected tim
to the next event,E(x). Although these examples use
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homogeneous distributions, it is assumed that the trend ho
for independent heterogenous distributions as well. So t
larger the number of event generators in the simulation, t
faster the events will arrive, and the smaller the mean tim
between events grows.

5 RESULTS

Networks of processing elements deployed in three dime
sional cubic arrays were simulated for both time and even
driven mechanisms. The event-driven synchronization tim
was computed assuming that the worst case signal propa
tion delay was required for all steps. The signal propagati
delay is assumed to be composed of the time required
propagate a signal through each reduction gate in the
ray as depicted in Figure 4. The gates are assumed
be high speed Emmiter-Coupled Logic (ECL) one nan
second delay gates (Pickles 1997). Processing elements
assumed to be deployed along linear buses whose leng
are determined by the number of processors in the sim
lation. The processing element connections to the bus
assumed to be spaced 10 centimeters apart, well within
run lengths listed for properly terminated ECL transmis
sion lines (MECL 1989). Propagation delay along the bu
is assumed to be 5 nanoseconds per meter excluding
time through the OR gate drivers. The peripheral buses
processing elements are assumed to connect to the mid
level of linear buses. Gates at the end of the buses brid
onto the next bus layer. There are three interconnected
layers illustrated in Figure 6.

The arrival distributions determine the time require
to locate the next smallest timestamp in the network. F
the time-driven simulation mode, the time required is com
posed of two components. The first component tallies t
propagation delay as the signals are passed through e
repeater gate illustrated in Figure 4. The second compon
is the propagation time in the wire runs between each ga
The signal must pass through the entire network from
edge elements to its core. The delay of each signal throu
the network is approximated in Equation 26.

delay = ((array dim)(array length)+
array dim− 1)(switchingtime)+
(array length)(elementspacing)
(prop delay)

(26)

The event-driven simulation time was computed b
using the same pair of components described above. O
bus propagation/elimination step is always necessary. Th
the power of 2, k, which is a logarithmic ceiling of the
expected minimum network timestamp value is compute
Next, the number of events, E, which could be expected
arrive before2k is computed. Each comparison is assumed
require about 4ns. Finally,log2(E) determines the number
6
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of comparisons needed to calculate the network minimu
timestamp. Each communication through the network
assumed to be from edge to core, the worst case scena

In Figures 7-10, the two event-driven methods d
scribed in Section 3, are illustrated. The two methods a
labeledEvent-Driven Rangeand Event-Driven Elements.
The Event-Driven Range algorithm, the first method d
scribed in Section 3.2, performs a binary search by dividi
the range of possible time values isolated in the first elim
ination phase. Alternatively, in the second method fro
Section 3.2, the Event-Driven Element method, the alg
rithm takes advantage of the fact that as the distributi
means increase, the remaining elements become more
lated at the extreme edges of the distribution curves. T
first method must step through the remaining binary range
numbers, searching for the minimum. The second meth
tends to jump directly to the correct element in O(1) as t
distribution means increase. All plotted time units are
nanoseconds.

Figure 7 plots the time required by the network minimum
timestamp search algorithm as the number of process
elements and the event generator Exponential means v
The Exponential event generators used in the distributio
are IID. Figure 8 shows a slice of Figure 7 at the 100
processing element mark. The graphs indicate a clear g
which can be harvested if the time and event-driven metho
are used in conjunction. The second method in the seco
phase of the event-driven algorithm clearly yields significa
gains for exponential distributions with large means.
scenario which would benefit from this algorithm migh
be one where the simulation has distribution means in t
millisecond range but requires nanosecond resolution.

Figure 9 illustrates the results of a simulation using II
Weibull distributed sources. The plot varies the number
processing elements and the arrival rates of those eleme
Time-driven simulation works well with smaller mean ar
rival rates, and the second proposed event-driven meth
the Event-Driven Element method, works best with high
distribution means. Figure 10 clearly illustrates the grea
potential range of benefit to be gained by a machine wh
can proceed using either a time or an event-driven approa

The criteria used to select between the best simulat
method is based on calculations determining which alt
native requires less time. If the expected time to the ne
event can be computed using Equation 5, the rest of
process is pure accounting. The results of the computat
yield the number of expected time-driven steps required
advance to each new event.

Using Equation 26, the time-driven estimate is appro
imated by Equation 27.

Time-Driven duration = E(x)(delay) (27)
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Event-Driven Range
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Event-Driven Elements

Time-Driven

Figure 7: Exponential Distribution in Event vs
Time-Driven Simulation The graph illustrates a net-
work of IID nodes in network sizes ranging from 125
to 8000 nodes. Each node is generating arrival event
according to an Exponential distribution withmeanar-
rival times ranging from1 to 214. The graph illustrates
that for an exponential arrival rate, the mean arrival
time offers the most significant impact to network syn-
chronization. The time required for the event-driven
model is computed by counting the longest signal run
from the edge to the center of the network multiplied by
the propagation delay per unit length. One nanosecon
is added for each OR gate, see Figure 4, encountere
in traversing the path to the network core. The time-
driven delay through the network is the duration of
the number of time steps required.
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Figure 8:Exponential Distribution slice of Figure 7
Illustrates a slice taken from Figure 7 where the sim-
ulation contains 1000 processing elements. The firs
method from Section 3.1 is labeled as the Event-Driven
Range, and the second method from the same sectio
is labeled Event-Driven Elements. The graph illus-
trates that a time-driven approach used in conjunction
with the Event-Driven Element method provides the
fastest network search approach.
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Figure 9: Weibull Distribution in Event vs Time-
Driven Simulation The Weibull distribution results
are similar to the Exponential. The optimum cross
over point from the time-driven to the event-driven
method allows a wider speedup gain to be derived.
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Figure 10: Weibull Distribution slice of Figure 9
The graph is a slice of Figure 9 at the 1000 processing
element mark. The relative simulation search times
are displayed. Clearly, the optimal solution would be
a simulator which could select between the Time and
Event-Driven Element approaches.

The event-driven time estimate for Section 3.2 is comput
by estimating the number of active elements left in th
range which exists after the initial elimination step. Th
calculation shown in Equation 28 is composed of the dela
required for the first phase elimination and the addition
expected number of eliminations required by the seco
phase.

Event-Driven duration= delay(1 + log2(F (x) ∗ N))

(28)

The selection between event-driven and time-drive
simulation is then a choice between the smallest estima
provided by Equations 27 or 28.
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