Proceedings of #11999Winter Simulation Conference

P. A. Farringta, H. B. Nembard, D. T. Sturrockand G W. Evans, eds.

A WIDELY DEPLOYABLE WEB-BASED NETWORK SIMULATION FRAMEWORK
USING CORBA IDL-BASED APIs

Arjun Cholkar

GTE Data Services
Irving, TX 75038, U.SA.

ABSTRACT

Web-base& network simulation frameworks are becming

highly portable and extensible.owever, they ill lack the
degre of language and platorm independence requirddr

large-scaé depbyment on the World Wide Wb. Qur

approachto enablinglarge-scale deploymnt uses a satf

standad CORBA-IDL based prgramming interfaces, a
publishe-subscriber modd for communication, and
dynamic compostion of al simuldion entities (smulated
network hosts and links). A protoype applicatio for

tesing distributedcomputing policies @monstrateghatthe

CORBA components not only provide larguage and

platform-independence, but also provide the &pilior

simulationists to comect objectgo athird party distributed

simulation. By using a uniform mesaging goproach toall

simulation events, objects can be reassigned tdfedént
simulaion entities without requiing code modifications.

Dynamic loading and unloading of objects during a

simulation run supportsfault simulation, simulation entity

polymorphism, and generaton of dynamic topologies. A

link-scheluling example has demonstrated that our

language and platform-independent nework simulation

framework attans extensibilityandflexibili ty.

1 INTRODUCTION

The World Wice Web (WWW) and the undeying Internet
provide a potetially huge distriuted omputing infra-

structue tha can be exénded to host distributed simula-

tion servies (Fistwick 1996). With recendevelgpments
in web-based imulation technology, the portabii and
versatility of simulation tools has increasedachatically
(Page Griffin, and Rother 1998)The ubiquiy of web
access &s also created a prising mediumfor large-scale
deployment.

Achieving large-sca¢ depbyability on the web poses
some interesing chalenges. Web-basedimulation tools
need to be portable across variety of computing

1587

Philip Koopman

Deparmentof Electrical and Gmputer Engineering:
Institute for Complex EngineeredSystems
Carregie MellonUniversty
Pittsburgh, A 15213, U.SA.

platforms. These simulatin tools also need toebas
flexible as traditional tools, anth particularneedto be
extensibleéby end users. Fihermore, ths flexibility should
not compromise on use-comfort issues such as wsing a
familiar implementation language.Therefore web-based
simulation tools need to preide a portable rd extensible
infrastructurewith interoperabiliy suppot for distributed
simuldion olject written in a variety of languags.

The aurrent trend toward building web-basel network
simulation frameworks is to use platform indepedent
objectorientad (OO) technologiessuwch as Java(Arnold
and Goslig 1996) ad RMI/Enterprise Java Beans
(Thomas 1998) These frameworks ae portabe and
extensible, but requirghat all smulation olbects be
developed in the single languagé Java.This approach
limits the ability to re-useexisting code and iinits the
deployability of the framework to ony those uses who are
comfortable with theJava bnguage.

This paperproposesa web-basednetwork simulation
framework that ugs the Common Object Request Broker
Architecture (COBA) (OMG 1998) technolog to
provide a flexible, exnsible platform-independentand
language-indeperdent dmulation environment that is
suitablefor large-scale depyment. The framework uses
standard ORBA Interface [Bfinition Languege (IDL)
(OMG 199) basedApplication Pragramming Interfaces
(APIs) amd a CORBA Object Request Broker (ORB)
(OMG 1998) to provid the necessy location
transparecy and bBnguage indepenehce. These COBA
comporents enable isnulationists to write their own
objects on theirown plaforms, and have their objects
participae from their plaforms in a emote-simulation
hostedby a third pary.

All simulation entities ($mulatedhostsand links) in the
framework are ©mposed ugig stok and use-written
objects. A mechanism base on te publisher-subscriber
model (Rajkumar, Gagliardi, ad Sha 1995 facilitates
communiction among thes ohjeds. All interactions within
the framework aremessage-basel and have a uniform mess-

Cholkar and Koopman

age format. This enables loosely coupled interaction distributed computing communities to combine the best of
between objects in a simulation entity and facilitates reloca- both worlds. It builds upon ideas drawn from CORBA-
tion of objects to different simulation entities with ease. based generic simulators to create a language-independent,

The IDL-based APIs in the framework also include distributed network simulation framework. This allows
support for dynamic loading and unloading of modules remote user-written objects to cooperate in a simulation,
(user-written and stock objects). This enables modules to distributed on several machines, in a language-independent
load or unload other modules dynamically during the and platform-independent fashion. To our knowledge, this
simulation run. This facility is useful for simulating faults, degree of flexibility is novel for a network simulation
changing the behavioral aspects of simulation entities framework. Additionally, our framework offers a set of
(simulation entity polymorphism) and generating dynamic networking specific tools for composition and analysis of
topologies. This adds tremendous flexibility to the the simulation.

simulation framework and makes it well suited to simulate
real-world wired and wireless networks.
A prototype application for network simulation

Our framework stresses providing flexibility by
dynamically composing simulation entities. The publisher-
subscriber communication model along with a uniform

frameworks was also implemented as a proof-of-concept message format aids us in achieving this goal. This com-
exercise. The application includes networking-specific munication model is similar to the anonymous communi-
tools for visualization, debugging and post-simulation data cation model (Oki et. al. 1993) used in the distributed
analysis. These tools aid in rapid composition and analysis computing community and facilitates relocation of objects
of a simulated network. to different simulation entities during a simulation run.

The Defense Modeling and Simulation Office’s
(DMSO) High Level Architecture (HLA) (Dahmann,
Fujimoto, and Weatherly 1997) also supports such
Simulation tools can be primarily divided into two classes, language-independent and platform-independent composi-
generic simulatorsand simulation frameworks Generic tion of a simulation. However, the HLA differs from our
simulators are relatively simple and can be used as buildingframework in that it is generic rather than networking-
blocks for more complex, specialized simulators. specific. Hence, it does not include any tools for
Simulation frameworks, on the other hand, include synthesizing and analyzing network simulations. The HLA
specialized tools to simplify the development of domain- does provide reasonable underlying mechanisms for future
specific simulations. Therefore, simulation frameworks versions of our framework, but was not ready in time to be
may be preferable to generic simulators. used on the current project described in this paper.

The CORBA-based simulation facility developed at
Bellcore (Shen 1996) for generic discrete-event simulation 3 NETWORK SIMULATION FRAMEWORK
provides a location-transparent and language-independent
mechanism for generic simulations, and is suitable for The architecture of the network simulation framework is
remote simulation. However, this work is targeted solely derived from a top-down Object Oriented (OO) view of a
for generic simulations and would have to be extended to network. To produce an extensible foundation for the
be applicable to domain-specific contexts. framework, we identified the core components present in

Mature network simulation frameworks such as REAL all communication networks and built their software
(Keshav 1988), ns-2 (Fall and Varadhan 1998), INSANE counterparts. These core components are modeled as
(Mah 1998) and x-Sim (Brakmo, Bavier, Peterson, and abstract classes, where each abstract class heads a
Raghavan 1997) provide rich APIs and tools, and have hierarchy of a particular type of components. Components
been extensively used by researchers. However, even withget more specialized and embody additional features and
support for web-based simulation in REAL, its flexibility is properties with each successive level in the hierarchy. In
limited because it does not provide simulation support for addition, all components were built using well-established
user-written objects in its web-based mode. This limits its OO design patterns (Gamma et al. 1995) to make them
utility for large-scale deployment over the Web. highly re-usable.

With the recent demand for web-based network
simulations, frameworks such as NetS8igiHou, Han and
Jain 1998) have been developed. NetSiprovides an
extensible simulation environment and a rich graphical
user-interface. A Java implementation gives Nef&iigh
portability, but comes at the price of a single-language
implementation approach. Two classes were derived frofntity, called Node

The network simulation framework discussed in this and Channel to model the fundamental concept of a
paper builds upon the work done in both the simulation and communication network in which a set of nodes exchange

2 PREVIOUS WORK

3.1 Object Hierarchy
All hardware components are derived from an abstract base

class calledEntity. This abstract class encapsulates method
definitions that are common to all hardware components.

1588

A Widely Deployable Web-Based Network Simulation Framework

messages over some communication medium. Another
level of class inheritance was used to constructHbst
andLink classes. Adost which is derived from &ode

has a Central Processing Unit (CPU) and input/output (1/O)
ports, while a_ink, which is derived from &hanne] could

be a simplex, half-duplex or full duplex link.

Each entity consists of aodule managerwhich
encapsulates an API, known as the ‘Module Plug-in API’
(MPA). TheModuleManageclass is an abstract base class
that heads a hierarchy of more sophisticated module
managers. Module managers are also refined using
multiple levels of inheritance, and there is always one and
only one module manager associated with each entity.
These inheritance hierarchies are shown in the class
diagram of Figure 1. (All notations in figures are per the
Object Modeling Technique (OMT) (Rumbaugh et al.
1991, Rumbaugh 1994).

Entity Module Manager
- MPA
Node Channel Channel Node
Moduie Manages \Module Manager|
P
+ MPA +MPA
CPU
Host Link LF‘ A
Link Host
I 1/0 Port| ¥ Module Managei| Module Manager
+MPA +MPA

Figure 1: Class Diagram for Simulation Entities

Even with additional components, all entities have a
limited set of behavioral properties. Therefore, one or more
intelligent modulesare assigned to each entity to enhance
behavior.

To support flexible object composition, entities need a
standard way to reference all modules without having to
know particular module classes. Hence, all modules are
derived from an abstract base cladsdule which exports
an interface known as the Module Callback Interface
(MCIl). The MCI contains methods for module
initialization, message processing and module shutdown.
Figure 2 shows the inheritance hierarchy for a module,
where ModuleX and ModuleY are example concrete
classes derived from the abstract base chMedule A
typical host or link consists of a number of assigned
modules and an appropriate module manager. Figure 3
shows typical host and link configurations.

3.2 CORBA IDL-based APIs
The Module Plug-in API (MPA) and the Module Callback
Interface (MCI) provide standard interfaces and semantics

for modules and the simulation entities to refer to each

1589

Modsle

+MCT

L

ModuleX] ModuleY]

+MCI +MCI

Figure 2: Class Diagram for Modules

Host .+|Concrete Modulg Link .+ |Concrete Modulq

il

+MCI +MCI

1

1

CPU

1 1

Host
Module Manager
1

Link
Module Manager

1/0 Port

+MPA +MPA

Figure 3: A Typical Host and Link Configuration

other without having to know concrete class details. This is
helpful when simulation entities need to be composed
dynamically.

The flexibility provided by the MPA and the MCI is
extended further by defining them in CORBA IDL and
using a CORBA ORB to provide necessary middleware
services. Modules written in a variety of languages and
distributed on a variety of platforms can be dynamically
reassigned to different simulation entities while
cooperating in a single simulation. CORBA thus provides
location transparency and language independence,
eliminating the need for complicated inter-process
communication code. In addition, it also makes our API
highly portable and our framework widely deployable.

3.2.1 The Module Plug-in API

The CORBA-IDL based Module Plug-in APl (MPA) is
shown in Figure 4. Note that only the core API calls have
been shown. An illustration of how the APl would be used
is presented later in the paper.

module AmModuleManager
{
interface AmModulePluginAPT
{
long amRegisterPublisher{in AmSimulationDataTypes: :AmMessage inMessage),
long amRegistersubscriber(in AmsSimulationDatalypes::ZAmdessage inMessage);
long amSendMessage(in AmSimulationDataTypes: :AmMessage inMessage);
long amLoadModule(in AmSimulationDataTypes::AmMessage inMessage);
long amUnLoadModule(in AmSimulationDataTypes::AmMessage inMessage);

long amTransmitMessage(in AmSimulationDataTypes::AmMessage inMessage,
in string inInterfaceId):
¥
1

Figure 4: The Core Module Plug-in API

Cholkar and Koopman

There are two things worth noting about the MPA. agent for all inter-module messages bearing no knowledge
First, the MPA uses a uniform message format, of their contents. This complements our design goals of
AmMessagefor all calls. This feature, along with the “simple entities” and “intelligent modules”.
publisher-subscriber communication model, facilitates To illustrate the communication mechanism, consider
relocation of modules to different simulation entities. an example in which the two class&enderModuleand

Secondly, the MPA includes methods for dynamic ReceiverModule shown in Figure 6, are derived from
loading and unloading of modules. These requests areModule Both these classes inherit the MCI and provide the
generated by other cooperating modules desiring to necessary implementations for the methods in the MCI. In
dynamically alter the behavior of the simulation entity Figure 7, the instandeostAof classHost comprises of an
without user intervention. This feature enables simulating instance hostModuleManager of class
faults dynamically, changing entity behaviors dynamically, HostModuleManager which provides the necessary
and changing the topology of the simulated network on- implementations for methods in the MPA. The instance
the-fly. For example, loading a routing and forwarding hostA also has three modules assigned to it, namely
module on a host might change its behavior from an end- sender which is an instance of clag&enderModuleand
host to a router. Similarly, a router failure can be simulated receiverlandreceiver?2 which are both instances of class
by unloading all the modules on a router, causing the ReceiverModuleAs their names suggestnderacts as a
simulated network to re-route. This provides a dynamically publisher and desires to publish messages on a new
customizable simulation environment that can simulate a message-channeXYZ' receiverl and receiver2,on the
large number of scenarios. other hand, act as subscribers and desire to receive all

messages published on message-chanved”.
3.2.2 The Module Callback Interface

The CORBA-IDL based Module Callback Interface is Module
shown in Figure 5. This interface has three methods, .
amlnit, amProcessMessageand amDestroy which are

invoked for module-initialization, message-delivery and

module-shutdown respectively. These have a uniform

single-argument invocation format, enabling module
relocation to different simulation entities with ease.

SenderModule| |ReceiverModule

+MCI +MCI

module AmModule . .

i Figure 6: Class Diagrams for Modules
interface AmModuleCallbackInterface .
! SenderModule and ReceiverModule

void amInit(in AmSimulationDataTypes: : AnMessage inMessage);

void amProcessMessage(in AmSimulationDataTypes::AmMessage inMessage);

void amDestroy{in AmSimulationDataTypes: :AmMessage inMessage)

b

Figure 5: The Module Callback Interface o . e e
+MCI
3.3 Inter-Module Communication Y
¥ ¥
All inter-module communication in the framework is hostModuleManager: recefverl: recelver:
message-based and is built upon a publisher-subscriber HostModuleManager| | ReceiverModule | | ReceiverModule
model that is functionally similar to the anonymous +MPA M1 +MCL

communication model.
Messages are published on named software buses
called message-channelsThese message-channels are
dynamically created by an entity in response to requests
from modules to either publish on, or listen to, non-existent
message-channels. Message-channel names serve

Figure 7: Object Diagram for Host ‘hostA’

a The sequence of events using this communication
unique identifiers with scopes limited to each entity. A Fodel for the example configuration is shown in the
d P Y. sequence diagram of Figure 8. For clarity, API calls have

database_ of names for existing message-channels IS kept b)éeen simplified and arguments have not been encapsulated
each entity and can be queried by a module to decide on a

unique name for its new message-channel. Entities handle”’'2 theAmMessagenessage format.
message distribution transparently using message-channel
names. Thus, an entity acts only as a message-distribution

1590

A Widely Deployable Web-Based Network Simulation Framework

sender: m oduleMan ager:| receiverl: receiver2: ———
ModuleM=n ager ReceiverModule ReceiverModule * Model Execution e m
T T T « Sioek Objerts = =
' :
amGetMsgChnlNames) .
: ;eturn ;trmg

*Diatn Analysis Services
I 0
1 amRegisterPublisher(*XYZ")

Return int am G etMsgChnlNames()

Return String[] :
o | amGetMseChnlNames() , -
|‘ T t—' = ok . System Module {CORBA Objet)
- P Slamislalicaist h
+— Rerarn String] e . User Madule {CORBA Object)

T . iher(® o
amRegisterSubscriber(“XYZ") | Java™ User Iivter Tace
—

]
am RbgisterSubscriber (“XVZ")
1

Figure 9: System Architecture of the Prototype

Return int
am SendMessage(msg)

decides to start a new simulation. Upon receiving a
simulation request, the simulation server spawns a process
called aSimulation ExecutiveThe simulation executive
; takes over the task of managing the simulation and
' ' ' coordinating interactions between different entities in the
Figure 8: Sequence Diagram for an Example Scenario of simula’gion. Egch user_interface_ has e_:xactly one simulation
Inter-Module Communication executive assigned to it. The simulation executive handles
scheduling events and checking for breakpoints. Each host
or link is encapsulated intdostExecutiver LinkExecutive
Three features provided by this model are noteworthy. class respectively. These classes act as wrappers for the
First, if no subscribers had subscribed to message-channeforresponding entities and present an APl that other
‘XYZ’, publisher sender could have still published components in the system use for startup/shutdown of the
messages. Second, the message distribution service irffncapsulated entity, event delivery, instrumentation and
hostAdoes not care about the contents of a message, andniécting asynchronous inputs. These executives are
just delivers the message to all the registered subscribersderived from a base cladsntityExecutivethat supports
Finally, all publishers and subscribers can subscribe and common functionality. _ _
unsubscribe whenever they choose. Thus, these features ~ TYPical sequences of interactions that take place
provide a loosely coupled communication mechanism that @mong the various components in the system are shown
is useful for dynamic inter-module communication and [N the sequence diagram in Figure 10. On startup, the user

[am S et¢onsum erNames()

amProcessMessage (msg)

module reassignment. interface first contacts th@imulationServicend requests
the creation of a neimulationExecutiveNext, an input
4 PROTOTYPE OVERVIEW specification provided by the user is sent to the

SimulationExecutive This specification is then parsed

A prototype framework was implemented using a and the appropriatéiostExecutive and LinkExecutive
traditional two-tier client server model with a portable are instantiated. The specification also contains identifiers
user-interface that requests simulation services from a for modules that need to be loaded (recall that for a host
remote, compiled simulation kernel. This system O©OF link to exhibit a desired set of behavioral properties,
partitioning provides portability to the framework without mModules need to be assigned to if). Thus, each
compromising on model execution speed. Additionally, our HostExecutiveor LinkExecutiveinstantiates its modules.
approach reduces startup costs such as download latencies.] hése modules then interact with the entity encapsulated

The prototype consists of a simulation kernel N the executive through the MPA and drive the
implemented in C++ and a user-interface written in Java. A Simulation.

CORBA ORB is used to provide remote object invocations A simulation typically consists of many stock
and facilitates communication between the user-interface Mmodules and a few user-written modules. Stock modules

and the simulation kernel. A CORBA name service is used aré pre-defined to help provide a variety of facilities such
for providing the appropriate object references at run-time. @S routing abilities for aHost or statistical message
In addition, a Relational Database Management System corruption for alink. User-written modules might be
(RDBMS) is used to provide the necessary logging modules written by the user or could be third-party

facilities. This system architecture is illustrated in Figure 9. Modules conforming to the MCI and the MPA. In order to
Access to the simulation kernel is via a simulation Pootstrap these modules into a simulation, an activation

server, which waits for simulation requests. Simulation daemon is included in the code shipped with the user
requests are generated by user interfaces when a usefnterface.

1591

Cholkar and Koopman

(a) Initialization

wvoid AmRPMScheduler:: amInit{AmMessage* inMessage)

{
char* initString = str dup ((char *) inMessage -> getMessage());
amParselnput(initString);
free(initString);

AmMessage* registrationMessage = new AmMessage(name, "XMIT_REQUEST");
dulehL. - amRegister Subscriber (rogistrationM

delete registrationMessage;
H

(b) Message Processing

void AWRPMScheduler::amProcessMessage(Am Message* inMessage)

{
if(strnemp(inMessage -> getMessageTypel), "XMIT_REQUEST", AM MAX NAME_SIZE) == 0)
{

AmPacket* packet = AmP: 3 ialize(in[Ve -> getM
ifipacket == INULL)
{ cerr << "Could not de-serialize the packet." << endl; return; }

Figure 10: Sequence Diagram for a Typical Startup o Clasity Packet ket
Scenario amSchedulePacket (packet);

delete packet;

5 EXAMPLE APPLICATION !

To exercise the MPA and the MCI, we implemented the (c) Shutdown
behavior of Resource Priority Multiplexing (RPM) void AmRPMScheduler:: amDestray{(AmMessage* inMessage)
(Hansen 1999) modules for scheduling network traffic. We 8

found it straightforward to implement RPM schedulers as
modules in our framework, and obtained simulation results
matching theoretical behavior predictions.

RPM is a probabilistic method for sharing resources
among competing tasks, and is normally used for
scheduling network traffic from flows that compete for
access to a specific network link. RPM involves two
components — the RPM scheduler and the RPM equation
solver. Due to space limits, we only discuss the RPM
scheduler, although the equation solver was also
implemented. The RPM scheduler is made up ofaaker
that assigns priorities to packets and saheduling
mechanisnthat transmits these packets. The marker has a
built-in state machine having one state per competing flow.
The holding times for each state are decided by the RPM
equation solver. These holding times depend on the task
mix and the service levels requwed by each task. (The the RPM module, the module does not have any cleanup
terms task and flow are used interchangeably throughout Kt form and is thus empt
this section; the RPM scheduler sees the manifestation of g VorK to per py.

A simple two-host network was simulated to test the

task as a.flow of pacKets that the task prodgces.) RPM modules, in which one host was the sender and the
The implementation for the methods in the MCI for .
. - other the receiver. Three modules were used to generate
the RPM scheduler is shown in Figure 11(a) through 11(c). : . .
- traffic bound from the sender to the receiver. The traffic
Only the necessary code to explain the concepts and . :
illustrate the use of the MCl and MPA has been included profiles for the three modules (pr tasks) are shqwn in Table
1. The notation used for the high and low profiles denotes

RPMFIgéJr:Z dﬁaﬁ’nzgﬁrfIrt1ri]t(iaalIInItlt?]tlez?rgfgulséeq;resgcsetrfgrinthﬁt the amount of time the task is in a particular state (high or
' y: P P low) and the traffic it generates. For example, the task A

parameters, which can be user-specified via a conﬂguratlongenerates 5Mbps of traffic, 95% of the time. A RPM

file, or can be set by a module dynamically at run-time. The .
. o . : scheduler was also assigned to sender and was used to
input parameters contain information about queue sizes and hedul kets f he th dul he bandwidth
other configuration options. On parsing the input parameters schedule packets from the three modules. The bandwidt

X ' of the link connecting the two hosts was set to 30Mbps.

the module registers as a subscriber to a message-chann he last column in Table 1 indicates the assurance-levels
named “XMIT_REQUEST". This message-channel is used to ,
equired by each task.

receive messages from other modules on the entity that want
to send packets out on the network.

Figure 11: MCIl Method Implementations for the RPM
Scheduler

Figure 11(b) shows the implementation of the
amProcessMessagemethod, containing the decision
process of the RPM module. ThamClassifyPacket
method classifies and marks packets with an appropriate
priority that depends on the state of the state-machine in
the marker. After marking, the packets are enqueued and
scheduled for transmission. If the queues get full, the
scheduler in theamSchedulePacketethod starts dropping
packets with the lowest priorities until there is enough
space in the queues to enqueue the new packet.

Figure 11(c) shows themDestroy method of the
module. As there is neither any shared state between the
RPM module and other modules nor any persistent state in

1592

A Widely Deployable Web-Based Network Simulation Framework

Table 1: Traffic Profiles for the Modules A, B, and C T
Task Low Profile High Profile | Assurance
A | 95%@5Mbps | 5%@20Mbps 99%
B 85%@2Mbps | 15%@18Mbps 99%
C 90%@7Mbps| 10%@12Mbps 98%

Dt Rate Plbips}
Assuranae Lavel (%)

The results obtained for the network simulation | ”L m l L“ M| [M\ Jl '
problem are shown in Figure 12 and 13. Figure 12 shows (L n{" A i
the observed traffic generated by the three modules. It can T

be seen that this traffic confirms to the traffic profiles of :
Table 1. The delivered traffic at the receiver and the e OO S PEE P PP P DPECECOCPE PO PEP

st e Vel

assurance-levels for the tasks are shown in Figure 13. It is . .

apparent that all three modules get equal to or more than Figure 12: Traffic Generated by Tasks A, B, and C
the assurance-levels that they desire. The values actually

obtained were 99.16%, 99.28% and 99.58% for tasks A, B ’

and C respectively. Additionally, it can be seen that _

guaranteeing a service-level of 99%, 99% and 98% for the | | |

three modules, which have the potential of generating more . ‘ ‘

traffic than the link can handle, is a non-trivial task. P .

The RPM module implementation delivered the M_U N | ” U |/ [|
expected results with a minimum of implementation effort. 0 I i L g U LI
Thus, we feel that our MPA and MCI are sufficient and (1 B I
useful for implementing even relatively complex modules. |
6 CONCLUSIONS AND FUTURE WORK
The concurrent need to provide portability and extensibility Levels of Tasks A, B, and C
to web-based simulation frameworks, while providing
complete language-independence and platform-
independence for large-scale deployment, mandates a
careful choice of distributed object technologies plus a
good design. Previous web-based network simulation
frameworks fall short of providing complete language and
platform-independence, limiting deployability.

Our approach to enabling large-scale simulation
framework deployment uses CORBA-IDL based APIs, a
publisher-subscriber communication model, and dynami
composition of all simulation entities. The CORBA
components provide language and platform-independence.
In addition, they allow simulationists to write their own
objects on their own platforms and have their objects
participate from their platforms in a remote-simulation.
We used a uniform message format to enable module
reassignment to different simulation entities without
requiring source-code modifications or recompilation. Our
APIs also include support for dynamic loading and
unloading of modules, which facilitates simulation of
faults, simulation entity polymorphism and dynamic
topologies. A networking example demonstrated the
applicability of this approach to realistic modeling projects.

Despite the flexibility and suitability of our framework
for large-scale deployment, an implementation based on it

still has to address issues such as security, protection andBra
fault-tolerance if it is to be deployed on the World Wide

Web. For example, in order to achieve secure
communications, users need to be authenticated and
messages may have to be encrypted. We envision the
future use of SSL-based (Freier, Karlton, and Kocher
1996) CORBA ORBs.

The work presented herein demonstrates that it is
possible to attain a web-based network simulation
framework suitable for large-scale deployment without
. sacrificing extensibility or flexibility. The prototype

described in this paper is being used to evaluate distributed
computing policies, and is being itself executed as a
simulation on distributed computers. It is envisioned that
other such naturally distributable simulations will benefit
from a similar approach.

ACKNOWLEDGEMENTS

This research was sponsored by DARPA under contract
N66001-97-C-8527 (the Amaranth project), and made use
of hardware donated by Intel Corporation.

REFERENCES

Arnold K. and J. Gosling. 1997 he Java Programming
Language 2d ed. Addison Wesley Publishing Co.

kmo L., A. Bavier, L. Peterson, and V. Raghavan.
1997.x-Sim User’'s Manual [online]. Available from

1593

Cholkar and Koopman

http://www.cs.arizona.edu/classes/cs525/xsim/xsim.ht
ml [accessed 2/12/1999].

Dahmann J., R. Fujimoto, and R. Weatherly. 1997. The

Department of Defense High Level Architecture. In

Proceedings of the 1997 Winter Simulation

Conference142-149.

K., K. Varadhan. 1998.NS [software online].
University of California, Berkeley, CA. Available
from http://www-mash.cs.berkeley.edu/ns/ns.html
[accessed 03/21/1999].

Fishwick P. A. 1996. Web-Based Simulation: Some
Personal Observations. IRroceedings of the 1996
Winter Simulation Conferenc@&72-779.

Freier A., P. Karlton, and P. Kocher. 1996. The SSL
Protocol — Version 3.0. Internet Dratft.

Gamma E., R. Helm, R. Johnson, and J. Vlissides. 1995.
Design Patterns: Elements of Reusable Object-
Oriented SoftwareAddison Wesley Publishing Co.

Hansen J. 1999. Resource Priority Multiplexing. ICES,
Carnegie Mellon University, Pittsburgh, PA.

Hou C., C. Han, and R. Jain. 1998etSim © [online].
Ohio State University. Available from
http://eewww.eng.ohio-state.edu/drcl/grants/
middleware97/netsimQ.html [accessed 03/21/1999].

Keshav S. 1988. REAL: A Network Simulator. UCB CS
Tech Report 88/472. University of California,
Berkeley, CA.

Mah B. 1998.INSANE [software online]. Sandia National
Labs. Available from http://www.ca.sandia.gov/
~bmah/Software/Insane/index.html

[accessed 03/21/1999].

Object Management Group (OMG). 199Bhe Common
Object Request Broker Architecture: Architecture and
Specification — Revision 2.2.

Oki B., M. Pfluegl, A. Siegel, and D. Skeen. 1993. The
Information Bus - An Architecture for Extensible
Distributed Systems. IRroceedings of the 1993 ACM
Symposium on Operating System Principles

Page E., S. Griffin, and S. Rother. 1998. Providing
Conceptual Framework Support for Distributed Web-
Based Simulation within the High Level Architecture.
In Proceedings of SPIE: Enabling Technologies for
Simulation Science,|87-292.

Rajkumar R., M. Gagliardi, L. Sha. 1995. The Real-Time
Publisher/Subscriber Inter-Process Communication
Model for Distributed Real-Time Systems: Design and
Implementation. InProceedings of the 1995 IEEE
Real-time Technology and Applications Symposium

Rumbaugh J., M. Blaha, W. Premerlani, F. Eddy, and W.
Lorenson. 1991.0Object Oriented Modeling and
Design Prentice Hall.

Rumbaugh J. 1994. The Life of an Object Model: How the
Object Model Changes During Developmeiturnal
of Object-Oriented Programming(1):24-32.

Fall

1594

Shen C. 1996. A CORBA Facility for Network Simulation.
In Proceedings of the 1996 Winter Simulation
Conference613-619.

Thomas A. 1998. Enterprise Java Beans Technology:
Server Component Model for the Java Platform. White
Paper, Sun Microsystems.

AUTHOR BIOGRAPHIES

ARJUN CHOLKAR is a Systems Architect at GTE Data
Services. He holds an MS degree in computer engineering
from Carnegie Mellon University and his interests lie in
distributed system design and development.

PHILIP KOOPMAN is an Assistant Professor of
Electrical and Computer Engineering at Carnegie Mellon
University. He holds a Ph.D. in computer engineering, and
has had a variety of experiences with distributed embedded
computer systems in industry and the military.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

