Proceedings of the 1999 Winter Simulation Conference
P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds.

OPTIMISTIC PARALLEL SIMULATION OVER A NETWORK OF WORKSTATIONS

Reuben Pasquini
Vernon Rego

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907-1398, U.S.A.

ABSTRACT object-oriented parallel simulation library for distributed-
memory multiprocessors and workstation clusters. This

The low cost and scalability of a PC and ethernet-based net- paper explores techniques for regulating interprocessor com-

work of workstations (NOW) makes the NOW an attractive munication (IPC) between processors participating in a par-

platform for parallel discrete event simulation (PDES). This allel simulation on a network of workstations.

paper discusses the demands a parallel simulation places

upon a network that connects distributed workstations, and 1.1 PDES Concepts

presents two approaches to managing inter-processor com-

munication in PDES on a NOW. Adiscrete event simulation executes a time-ordered sequence
of simulationevents Each event object hastane-stamp
1 INTRODUCTION and ahandler The simulation uses an event’s time-stamp

to schedule the event’s execution. A simulation executes
A discrete event simulation (DES) uses a computer to test events in nondecreasing time—stamp order so viratal
a model of a system whose state changes at discrete pointstime (the time—stamp on the last executed event) never

in time. A simulation operates on a modettevariables decreases. The simulation calls an eveh#isdlermethod
during each of a sequence of time-ordeggdnts A parallel to execute the event. During its execution, an event may
discrete event simulation (PDES) attempts to speed up the access simulation objects and schedule future events.
execution of a DES by distributing the simulation’s workload Parallel simulation attempts to speedup a simulation’s

between multiple processors. Parallel simulation holds great execution by distributing the simulation’s events and objects
promise for meeting the simulation needs of developers of across multiple processors. Givéw processors and/
increasingly complex systems. events, each processor would ideally hantigN events,

A network of workstations is an inexpensive and widely suggesting an ideal speedupof Unfortunately, distributed
available platform for PDES. A NOW usually consists of events may not access simulation objects in time—stamp
several workstations or PC’s connected by an ethernet. A order. For example, processBr may execute an eveii,
NOW has advantages and disadvantages when compared towith time—stampTZg, = 16 after processoP, executes an
a multiprocessor (MP) like the IBM SP2 or SGI Origin. eventE; with time-stampTg, = 36. If E, generates an
A NOW, based on commodity hardware and software, is eventE. with time—-stamplg, = 21 that P, must execute
inexpensive and easy to upgrade. Today, each node of a(since E. accesses a simulation objectp, located on
NOW (workstation) is just as computationally powerful as processorP,), then E. accesse® p, after E, even though
a node of an MP since most MP systems use the same pro-Tg, < Tg,.
cessor found in workstations. However, the interconnection A PDES must execute events incausally consistent
network in a multiprocessor supports communication with way. A simulation is causally consistent if events access
higher bandwidth, lower latency, and stronger reliability each simulation object in nondecreasing time—stamp order.
guarantees than the typical ethernet that interconnects the The time warp algorithm (Jefferson 1985) is an example of
nodes in a NOW. an optimisticalgorithm for PDES. Time warp is optimistic

Experiments with théAraSoL PDES system indicate in the sense that each procesggrexecutes events in time—
that a parallel simulation with tight interprocessor coupling stamp order under the optimistic assumption that causality
must regulate its rate of interprocessor communication to run is not being violated. At any point, howeveFy may
well on a NOW.PARASOL is an experimental process- and receive astragglereventE; (from another processor) that

1610

Pasquini and Rego

should have been executed before the last several eventsk, on a remote processadr;, Pp sendsP; a message. If
already executed by (see Figure 1). WhewPy receives Py later receives a straggler event from a remote processor,
the stragglerEs, Pg rolls backto a check-pointed system then Py sends an anti-message B to cancel eventE,.
state that corresponds to a time—stamp which is less than theFinally, each processor periodically exchanges virtual time
straggler’s time—stamp. Processyresumes its execution information with every other processor to compute a new

from this point, andPy processes the stragglér, in the global virtual time (gvt). The gvt is a lower bound on the
right time—stamp order. A successful optimistic PDES PDES virtual time.
minimizes the runtime costs dftate-savingsystem state Many PDES systems avoid problems with interproces-

(for potential rollback),rollback (to recover state when a sor communication by running on shared memory platforms.
straggler arrives)global virtual time(gvt) computation (to A shared memory architecture has important advantages over
determine a global minimum on the simulation’s virtual a distributed memory architecture for PDES. Shared mem-
time), andinterprocessor communicatiofiPC). ory allows processors to exchange data by passing pointers
between each other rather than packing the data into a mes-
sage to be sent over a network. A shared memory space also
allows a user to view his model as a single unit rather than
Processor 0 real ime = 1:00 a collection of subunits that communicate with each other.
Distributed memory platforms have two advantages
, over shared memory platforms for PDES. First, a distributed
K memory system can exploit idle processors already available
/ on a network of workstations to speedup a simulation. Sec-
)/ ond, a distributed memory multiprocessor can scale cheaply
! to a large number of processors to support parallel simula-
tions with sufficient parallelism.

Distributed memory PDES systems rely upon a message
real time = 1:00 passing library to provide high performance and platform
independent management of interprocessor communication,
synchronization, flow control, and buffer management. The
PVM (Suderam et al. 1994) andPI (1995) message passing
libraries are two popular communication systems. Most
message passing middleware is designed to address the
Figure 1: Causality Error in an Optimistic Parallel Simu- needs of structured parallel applications which synchronize
lation via blockingsend andreceive operations, but message

passing systems which use multithreading to efficiently

Several parallel simulation systems are in use today in Overlap communication and computation in asynchronous
experimental and applied settings. TBEW system is an and soft realtime applications have recently become available
optimistic event-based system developed at Georgia Tech (Gomez, Rego, and Sunderam 1997).

(Penesar and Fujimoto 1997B’arSeciS a conservative sys- Optimistic parallel simulations exhibit unpredictable
tem developed at UCLA (Bagrodia et al. 1998Yarpedis asynchronous communication patterns not well suited to
an optimistic system developed at the University of Cincin- the traditional synchronousend andreceive ~commu-
nati (Chetlur et al. 1997).APOSTLEis a process-based nhication paradigm. I®’ARASOL, a processoPp may send a
simulator that uses the breathing time-buckets algorithm Message to a destination procesBpmt unexpected times.
(Booth and Bruce 1997). The results in this paper are Rather than synchroniz€, and P1 with blocking send
based on experiments carried out wiArASOL, an opti- andreceive , PARASOL requiresPp to send its message
mistic simulator under development at Purdue University M Wwith a nonblockingi _send . ProcessoiP; eventually
(Mascarenhasy Knop, and Rego 1997)_ For the remainder receivesM sinceP; periodically pO"S the network for arriv-
of this paper the terms “parallel simulation” and “PDES” ing messages. This scheme has two drawbacks. First, since
both refer to optimistic parallel discrete event simulation. the simulation cannot anticipate when a new message will
arrive, the simulation must regularly poll the network for
1.2 Communication and PDES arriving messages within the simulation driver's event ex-
ecution loop. Second, non-blockingsend bypasses the
Fast, time|y communication is necessary to achieve good communication system’s flow control mechanisms. There-
performance in parallel simulation. Distributed processors fore, amessage sender can generate messages faster than the
executing a PDES exchange messages in at least threemessage passing system can deliver messages to receivers.
situations. First, when a processBg schedules an event In this way pending messages sent asynchronously (non—

1611

virtual time =120

virtual time =100

Processor 1

ProcessorP; generates an event for procesgirat virtual
time 100, but Py has already reached v.1.20 Processor
Po will roll back when Py receives the straggler event.

Optimistic Parallel Simulation over a Network of Workstations

blocking) can accumulate in the sender’s memory space and “optimism” in PDES. Adaptive synchronization allows each

eventually overwhelm the simulation. processor in a PDES to decide whether to execute its next
Several approaches to improving interprocessor com- event or wait to receive a message. A processor bases

munication performance in PDES have been proposed by its decision on probabilistic assumptions about the rate of

researchers. Chetlur et al. (1997) explore the benefits interprocessor communication.

of batching messages in th&WarpedPDES system. This Finally, Damani, Wang, and Garg (1997) describe an

work explores the trade-off in message batching between algorithm that avoids cascading rollbacks by requiring each

the benefit of decreasing per-message communication over- processorP to stamp each messagé¢ that P sends with

head and the cost of increased message delivery latency.two Lamport clocks (Lamport 1978). IP rolls back,

This trade-off is complicated in PDES by the potential for then P broadcasts a rollback-message with which the other

destructive interdependencies between messages in a batchprocessors can determine which of their received messages

For example, suppose that proces#grhas local virtual are valid and which are invalid. A shortcoming of this work

time Tp, = 9when Py generates a messagg:, that sched- is that it assumes the availability of an efficient and reliable

ules an eveni, with time-stampTg, = 10 on processor broadcast mechanism even though most local area networks

Py. ProcessorPy does not send/g, immediately, since do not directly provide such support.

Py wants to batchMg, with another message. Processor

Pp goes on to execute an evely scheduled by a message 2 COMMUNICATION PROTOCOLS FOR PDES

Mg, sent fromPy at virtual timeTp, = 11. ProcessorPy

should not executé;, since P; should have executefl, Thetorusis an often used benchmark for measuritura-
(the event thatMg, will schedule) before sendin@/g, . SovL’s performance. The torus model consists dfx N
However, if Py does not notice this conflict, thePy may servers arranged in a mesh that wraps around at its ends to
go on to generate a messalfg,. Finally, P batchesMg, form a doughnut. The experiment evenly distributé%/2

with Mg, without realizing that a destructive dependency simulation processes over the mesh and then allows the
exists between the two messages in the batch (see Figure 2) processes (customers) to move randomly between neigh-
Penesar and Fujimoto (1997) describe an adaptive flow boring serversv? times. A customer that arrives at a server
control mechanism for regulating the rate at which each pro- requests to be serviced for an exponentially distributed ser-
cessor generates events for other processors. Their adaptivevice time. If the server is busy, then the server places the
algorithm computes a virtual time window that limits each customer in a FIFO queue.
processor’s optimism so that no processor advances too far Experiments testind®AraSoL’s performance simulat-
beyond the system gvt. In this way, the adaptive algo- ing other models revealed th&araSor could not even
rithm attempts to prevent a processor from generating an complete a simulation of a baseball queueing model on a
event that will later be canceled by an anti-message. Simi- network of workstations (NOW). Like the torus, the baseball
larly, Ferscha (1995), Mascarenhas (1997), and others havemodel consists of aiv x N mesh of servers. Unlike the
explored adaptive synchronization algorithms that regulate torus, the baseball connects the ends of the mesh to form a
ball (rather than a doughnut), and the baseball allockifes
customers (rather thai?/2 customers). The ball shape
Processor 0 @ means that each processor simulating a baseball communi-
; cates with up to three neighbors (rather than two neighbors),
and doubling the number of customers doubles the amount
of interprocessor communication. Figure 3 shows diagrams
of 4 x 4 torus and baseball models whose objects are evenly
distributed between four processo®y(P1, P2, P3).
An investigation into the reason fa?PaArRASoOL’s diffi-
culty simulating the baseball model reveals that the simula-

{ tion generates messages faster than the network can deliver
messages. Since a parallel simulation generates messages
Processor 1 @ at random points in time, a message sender may not syn-
chronize with a message receiver without risking deadlock.
For example, suppose processgrsends a messagdéy to
ProcessoPg batches messages for evehtsandE . together processorP; with MPI's normal blockingsend routine.
even thoughE,. depends on an evetit, from P1, and E;, ProcessorPy may block on thesend until P; receives
will be rolled back whenE, arrives atP;. My, depending on MPI's flow-control algorithm. Ideally,
P1 eventually uses MPI's non-blocking_receive or
Figure 2: Message Batching in PDES probe routines to receiveMy. However, if P, sends a

1612

Pasquini and Rego

sages faster than receivers process messages. When a pro-
cessorPy sends a messag® with MPI's non-blocking

i _send routine, i _send returns a handleH,, that Py

can test to determine when MPI has safely deliveltedo

M'’s destination. Processdiy places each handlHy, in a
send-list. Processdry periodically tests each handle in the
send-list, and discards every handlg; whose messaghf

has been delivered. The FTWP simply requires a processor
Pop to stop simulating new events whég's send-list grows
beyond a fixed size (five handlesiaraSoL’s implementa-

tion of FTWP). ProcessaPy can resume simulating events
as soon as the network delivers enough of the outstanding
messages in the send-list.

Thewarp-token protocaWTP) imposes order on PDES
interprocessor communication on a NOW by requiring the
processors to take turns sending messages. The WTP cir-
culates a token between the processors participating in a
parallel simulation. A processal can send a message only
when Py holds thetoken Therefore, each message that
Pp generates is stored in a send-queue uRgiteceives the
token. WhenPy receives the tokenfy bundles every mes-
sage in its send-queue into the payload ebleen-message
K. ProcessoiP then broadcast& to the other processors.
The number of messages Ki's payload (the batch size)
is therefore a function of the rate at whidh generates
messages and the token circulation time. When processor
P, receiveskK, P, unpacks each component messages
in K's payload. If P, is the destination foM, then P,
executesM'’s handler routine. Only the token holder can
send a token message, and every token message is broadcast
to every processor. The token holder can send only one
token message per possession, and the token moves between
processors in a predefined order.

(b) Baseball 21 GVT

Figure 3: Torus and Baseball Models A parallel simulation’s global virtual time (gvt) is the min-
imum of the local virtual time (Ivt) on each processor and
messagel; to Py before receivingW/o, then P1 may block the time-stamp on every message in transit between proces-
onsend. The PDES is deadlocked in this situation since sors. An optimistic parallel simulation must periodically
Po and Py are both blocked irsend operations. To avoid compute gvt so that each participating processor can reclaim
this kind of deadlockPAraSoL allows a processor to com- the memory allocated to checkpoint buffers. Since a pro-
municate with another processor only with non-blocking cessor cannot rollback to a virtual time preceding gvt, each
i _send andi _receive operations.PARASOL bypasses checkpoint buffer saving state with virtual time smaller than
the communication system'’s flow control mechanisms when gvt can be safely reclaimed by a processor. The process of
ParaSoL uses non-blocking _send . Therefore, a sender reclaiming old checkpoint buffers is calléassil collection
can generate messages faster than the message passing sys- Most gvt algorithms require each processor to report
tem can deliver the messages to receivers. These messagefs |vt to a leader who computes the new gvt and broadcasts
accumulate in the sender’'s memory space, and eventually the result. A PDES that employs such an algorithm must
overwhelm the simulation. balance the communication cost of gvt calculation with

This paper compares two approaches to communica- the memory cost of delayed fossil collection to select a
tion in PDES that impose flow control on the simulation’s frequency for gvt calculation.
message traffic. Théow-controlled time-warp protocol The WTP has the benefit of making gvt computation
(FTWP) does not allow message senders to generate mes-simple, frequent, and inexpensive. The warp token proto-

1613

Optimistic Parallel Simulation over a Network of Workstations

col’s gvt algorithm Requires each processgrto maintain

a Lamport clockG p, that tracks the Ivt on each processor
in the simulation. A Lamport clock is simply an array with
an entry for each processor. Whety receives a token
messagek, Pp looks at the time-stamp oK to determine
the Ivt Ty at the processolP; that sentK, and Py sets
Gpyls] = T;. Next, Py looks at the time-stami, on
each messag#f, from P to processorP, packed inK's
payload. If7, < Gpy[r], then Py setsG py[r] = T,. After
processing every messa@é. in K's payload, Pp knows
the gvt isgur = min(G p,[r]), the smallest virtual time in
G,

2.2 Message Cancellation

When a processaPy in a PDES rolls backPy sends anti-
messages to cancel messages Hyatent during the period
being rolled back. If an anti-message sent to processor
P by Pp to cancel messag®; does not arrive until after

P1 has processed events triggeredMy, then Py is forced

to rollback its computation. Whe rolls back, Py may

be forced to send its own anti-messages which may in turn
cause more rollbacks. This phenomenon, called time-warp
thrashing or cascading rollbacks, can significantly slow the
parallel simulation.

The WTP avoids time-warp thrashing by eliminating
the need for anti-messages. Each proces¥pkeeps a
Lamport clock Cp, to track Py’s dependencies on other
processors. For example, iy receives a message from
P1 that schedules an evehgs at virtual time33, then Py
updatesC p, so thatCp,[1] = 33 just before executingza.
When Py generates a messagé, Py attaches a copy of
Cp, to M before placingM in the send-queue (to later be
bundled into a tokerk). If Py rolls back, Pp must roll
Cp,’s state back. Therefor&p, is a state-saved object.

When Py receives a token message Pp handles each
messagé/p in K'’s payload whose destination £, and Py
placesMj onto a list for received messages. This message
is fossil collected when the gvt advances pa&fs time-
stamp. Events triggered by messaygg may causePy to
rollback. During this processPp may generate an anti-
messaged; to cancel some messad# whose destination
is processorP;. If My is still in Py's send-list, thenPy
removesM; from the send list and discardg; and Aj.
Otherwise, Py just discardsAj.

ProcessoPy does not need to semth to P; to cancel
M1, because; automatically cancel&/; whenP; processes

Py at virtual time (vt) 45 and Cp,[0] = 45. Message
Mg's destination isPy (destination(Mg) = 0), and My
schedules an event afy at virtual time Ty, = 43. Since
Ty, < Cpyldestination(Mop)], processoP; cancels events
scheduled byV1 and removes\f1 from P1’s receive-list.
Using Lamport clocks to track message dependencies
in WTP allows a processaPy to avoid sending messages
that should not be sent. For example, suppose fhat
generates an everfi, to be executed at process@i at
virtual time T, = 23. ProcessorPy packs eveniE, with
a dependency clockg, into a messagé/r,, and Py adds
Mg, to Po's send queue. NextPp executes an event
E;, scheduled by a message sent frém at virtual time
Tk, = 34. Before executingf,, processorPy updates its
dependency Lamport clock so th@p, [1] = 34. If the next
eventE. generates a messa@er, before Py receives the
token, then wherPg placesM, onto its send listPy sees
that Cg, [destination(Mg,)] > Tg,. In other words Mg,
depends on a state at proces#arthat will be undone by
messagellg,, so Pg discardsMg, (see Figure 2).

2.3 Summary of FTWP and WTP

A parallel simulation may generate messages faster than the
network can deliver messages. When this happens, mes-
sages waiting to be sent accumulate in the sender’'s memory
space, and eventually overwhelm the simulation. The FTWP
and WTP protocols offer two approaches to regulating in-
terprocessor communication in PDES. The FTWP simply
forces a processor that generates messages too quickly to
wait for the network to deliver the messages.

The WTP only allows processors to communicate
through messages placed in the payload of a token. Only
the token holder can send a token message, and every token
message is broadcast to every processor. The token holder
can send only one token message per possession, and the to-
ken moves between processors in a predefined order. Since
every token message is broadcast to every processor, each
processor can collect enough information to compute the
system gvt by maintaining a Lamport clock that tracks the
Ivt at each processor. Finally, WTP eliminates the need for
anti-message by stamping each payload mesaagéth a
Lamport clockCy, that tracksM’s dependency on the state
at different processors. A processBrcancels a message
M if P sees that some state on whithdepends has been
made invalid.

My. Recall that each token message is broadcast to every 2.4 Reliable Broadcast over UDP/IP Multicast

processor. Therefore, wheh, receiveskK, P; unpacks
messageé{g and notices that/p’s destination isPy. Before
discarding Mo however, P; scans through its receive-list
to check if any of the messagdg’ received depend on
a state thatMy violates. For example, ifPp sentM; to
P; at virtual time 45, then M1 depends on the state at

1614

The WTP is designed to function well over ethernets and
other local area networks that support reliable broadcast at
the physical layer. On these networks, messages passed
between processors can only be lost as the result of buffer
overflow at a receiving processor or a connecting network

Pasquin and Rego

switch However, sinceWTPisbase onthecyclic exchange 50 Runime -4 processors

of atoken ead processbcan compue an uppe bourd on %%’*
the size of its UDP recéve buffer by simply placing alimit . S
on the size of a messagtha a processocan send In other 350

words if ead processp P limits its maximun message
sizeto B bytes then P can allocakt areceave buffer of size
N * B bytes to awid buffer overflow in an N processor
simulation This simple flow contrd mechanim allows
WTP to broadcas message over an unloadel switched
etherné with UDP multicag without messag loss. 150
If a netwok switch or processo endpoirt is heavily
loaded then it may sometimes lose amessag despit the

300

250

200

runtime in seconds

100

WTP flow contrd mechanism In the® environments a 50
processp P, tha drops a messag M can serd a negaive -
0
ackrowledgmen (NACK) messagto requesthat the source 0 500 1000 sie (ot 2000 2500
processo P; resem M. Processo P, learrs tha M is
missirng when P, receves atoken messagfrom aprocessor (a) 4 Processors

tha is not the token-holde, or when atimer expires.

Runtime - 6 processors
450

3 SIMUL ATION PERFORMANCE st

400

A series of simple experimens were s& up to compare 30
the performane of WTP with FTWP. Severd experiments
compare PARASOL's run-times using WTP and FTWP to
simulat a simple basebdl queueiy model The baseball
consiss of amed of N x N sewerstha wraps arourd at its
ends to form a sphere The experimen evenly distributes

300

250

200

runtime in seconds

NZ customes over themesh of severs ard then allowseach 150

custome to move randomy betweea neighborilg severs w0

N2 times A custome tha arrives at a sever requess to

be servical for an exponentialy distributed service time. If %

the sewer is busy, then the sewer places the custome in a . e

F”:O queue' 0 500 mo?nesh sze (NA2)1500 2000 2500

Figure 4 compare PARASOL'S run-times simulating
the basebdlbenchmak with FTWP, WTP, and sequentially
(on one processor for severd values of N. The baseball Figure 4.[Basebdl Runtimes with WTP ard FTWP
simulatian runs roughly 1.75 longe with WTP than with
FTWP. The measuremestin Figure 5 imply tha mog of Total Events Per Processor (4 processors)

2.5e+06

the differen® in run time betwee WTP ard FTWP can / —
-

(b) 6 Processors

be attributed to the fact that eat processp executes 50%

more evens with WTP than with FTWP to complet the 26406
sane simulation The WTP executes more events because
the average rollbad size of a basebdlsimulatian is larger
with WTP than with FTWP, and the average numbe of
event betwea rollbacks is smalle with WTP than with
FTWP.

The performane of WTP shoutl improve if WTP's
average rollback size decreasesThe averag rollbad size
would decreasif lesstime passd betwea the time when a 500000
processoexecutesthefirstincorred evert (tha wil | berolled
back ard the time when the processorecaves the straggler

1.5e+06

ave. num. events

1e+06

messag tha cause the rollback One way to decreas this T aw py pr— 200 2500
time is to decreas the straggle message deiivery latercy. feshsize (2
A messaga delivery latercy isthe amourt of time between Figure 5:[Motd Events

1615

Optimistc Parallel Simulation over a Netwok of Workstations

when the sendiry processpb generate the messag and the
recaving processo recaves the message Since the WTP
requires a processo to acquie the token before sending
a messagethe average messag delivery latercy may be
larger with WTP than with FTWP,

Table 1 present average run-times for a four proces-
sa ping-porg benchmak tha suppot the hypothess that
PARASOL’S messag latercy is larger with WTP than with
FTWP. The ping-porg benchmak beginswith asingle event
E p, on processp Py tha scheduls an evert E, on are-
mote processp Pg, selecte randomy (from P1, P, or
P3). When P, executes evert Ep,, Ep, scheduls another
evert Ep, on Py, ard the cycle repeas 1000 times The
ping-pory ted is interestiryg becaus the tes does not have
any parallelisn (only one processpis simulatirg an event
at any give time) ard the teg does nat involve rollbacks.
The runtime of the ping-porg tes completey depend upon
PAraSoL'’s ability to quickly pas events from one proces-
sa to anothe. The measuremestin Table 1 show that
PARASoOL runs the ping-porg benchmak roughly 4 times
faste with FTWP than with WTP.

Table 1:MPing-porg with WTP ard FTWP

Protocol | Porg Runtime in Seconds
WTP 7.92
FTWP 1.80

4 CONCLUSIONS

The low cog and scalabiliy of a PC and ethernet-based
NOW makes it an attractve platform for PDES Since a
parallé simulation generate messageat randan points in
time, amessag sende may not synchroniz with amessage
recaver without risking deadlock Therefore PAraSoL al-
lows a processpto communicag¢ with anothe processor
only with non-blockirg i _send ard i _receiv e opera-
tions. Using non-blockirg i _send bypasse the commu-
nication systems flow contrd mechanismsso a sende can
generat messagefaste than the messag passiig system
can deliver the message to recdvers The® messages
accumulag in the sende’s memoy space and eventually
overwhem the simulation.

The FTWP and WTP protocokimplemert two different
approachs to controlling the flow of message between
processain PDES The FTWP simply requires aprocessor
Py to stgp simulatirg new evens when Py’s send-lis grows
beyond a fixed size The WTP circulates atoken between
the processa participatirg in a parallé simulation and a
processp Py can serd a messag only when Py holds the
token The measuremestin Sectio 3 show that PARASOL
simulates a simple queueilg benchmak in less time with
FTWP than with WTP. Messag delivety latercy is smaller
with FTWP than with WTR, so ParaSoL has a shorter

1616

averag rollbad distane with FTWP. Since ead rollback
undoes fewer events PARASOL complets a simulation in
fewer totd event with FTWP than with WTP.

Although FTWP has aclea advantag over WTP for
the simple modek presentd earlia, WTP has advantages
over FTWP for othe models First, WTP does not use anti-
messageso WTP shoutl have benefis for simulatiors that
sufer from cascadigrollbacks Modelswhichrequiremore
than one processoto shae the sane simulatin variables
may also beneft from WTP sinee WTP reliably broadcasts
every messag to every processn A processocan cheaply
broadcaschangs to a sharel variabke so othe processors
can updae their cacha@ copy of the variable A similar
mechanisn may allow sorre modek to cheapy implement
distributed locks and semaphoresExploring ard expanding
therange of applicatiors where PDES can beneft simulation
developes provides an unendig soure of future work.

REFERENCES

Bagrodia R. L., R. Meyer, M. Takai Y. Chen X. Zeng,
J. Martin, and H. Y. Song 1998 Parsec a parallel
simulation environmert for compkx systems |IEEE
Computer 31:10:77-85.

Booth C. J. M., and D. |. Bruce 1997. Stack-fres process-
orientad simulation Proceeding of the 11th Workshop
on Parallel and Distributed Simulation 182-185.

Chetlu, M., N. Abu-GhazelehR. Radhakrishnarand P. A.
Wilsey. 1997 Optimizing communicatio in time-
warp simulators Proceeding of the 12th Worksh@ on
Parallel and Distributed Simulation — Barif, Alberta,
Canada 64-71.

Damanj O. P, Y. M. Wang ard V. K. Gag. 1997 Opti-
mistic distributed simulatian basel on transitve depen-
dercy tracking Proceeding of the 11th Worksh@ on
Parallel and Distributed Simulatian (PADS’97) 90-97.

Ferscha A. 1995 Probabilistc adapive dired optimism
contrd in time warp. Proceeding of the 9th Workshop
on Parallel and Distributed Simulation 120-129.

Gomez J.C,, V. Rego, ard V. S. Sunderam 1997, Efficient
multithreadd use-spae transpot for netwok comput-
ing: Design ard teg of the TRAP protocol Journal
of Parallel and Distributed Computing 40:1:103-117.

Jdferson D. R. 1985 Virtua Time. ACM Transactiors on
Programmirg Language and System7:3:404-425.

Lamport L. 1978 Time, clocks and the orderirg of events
in distributed systems Communicatioa of the ACM,
21:558-565.

Mascarenhask., F. Knop, ard V. Rego. 1997 Mini-
mum cog adaptve synchronization Experimens with
the ParaSd system Proceeding of the 1997 Winter
Simulation Confeence 389-396.

Messag Passimg Interface Forum 1995 MPI: a message-
passiny interface standad.

Pasquini and Rego

Penesar, K. S., and R. M. Fujimoto. 1997. Adaptive flow
control in time warp.Proceedings of the 11th Workshop
on Parallel and Distributed Simulation (PADS’92)08-
115.

Sunderam, V., G. Geist, J. Dongarra, and R. Manchek.
1994. The PVM concurrent computing system: evo-
lution, experiences and trenddournal of Parallel &
Distributed Computing20:4:531-546.

AUTHOR BIOGRAPHIES

REUBEN PASQUINI received his Ph.D. in Computer Sci-
ences from Purdue University in 1999. His research interests
include parallel simulation and distributed systems.

VERNON REGO is a Professor of Computer Sciences at
Purdue University. He received his M.Sc.(Hons) in Mathe-
matics from B.I.T.S (Pilani, India), and an M.S. and Ph.D.
in Computer Science from Michigan State University (East
Lansing) in 1985. He was awarded the 1992 IEEE/Gordon
Bell Prize in parallel processing research, and is an Editor
of IEEE Transactions on Computerklis research interests
include parallel simulation, parallel processing, modeling
and software engineering.

1617

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

