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ABSTRACT

We examine different ways of numerically computing the
distribution function of conditional expectations where the
conditioning element takes values in a finite or countably
infinite outcome space. Both the conditional expectation
and the distribution function itself are computed via Monte
Carlo simulation. Given a limited (and fixed) computer
budget, the quality of the estimator is gauged by the inverse
of its mean square error. It is a function of the fraction
of the budget allocated to estimating the conditional ex-
pectation versus the amount of sampling done relative to
the “conditioning variable”. We will present the asymptot-
ically optimal rates of convergence for different estimators

Peter W. Glynn
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lios that contain substantial numbers of financial derivative
options. The theory of options pricing asserts that, under
suitable conditions, an option’s current value can be ex-
pressed as a conditional expectation, where the conditioning
random elemeng is the current price of the underlying
asset(s) and the expectation is computed under the so-called
“equivalent martingale measure”;see, for example, Duffie
(1996) for details.

Consequently, if a portfolio consists of a single option,
(1) expresses the probability that the value of the portfolio
is less than or equal ta. It is worth noting that in
such an application, the inner conditional expectation is
computed using the equivalent martingale measure, whereas
the outer probability involves the postulated dynamics of the

and resolve the trade-off between the bias and variance of underlying asset. It is common to use diffusion processes

the estimators. Moreover, central limit theorems are estab-
lished for some of the estimators proposed. We will also
provide algorithms for the practical implementation of the

estimators and illustrate how confidence intervals can be
formed in some cases. Major potential application areas
include calculation of Value at Risk (VaR) in the field of

mathematical finance and Bayesian performance analysis.

1 INTRODUCTION

Let X be a real-valued random variable (r.v.) and ¥t

be a random element taking values in a finite or countably
infinite outcome space. For fixed € R, our goal in this
paper is to compute

« 2 P(E(X|Z) < x). 1)
Thus, this paper is focused on computing the distribution
function of a conditional expectation in the setting in which
the conditioning random elemetit is discrete.

There are several different applications contexts that
have served to motivate our interest in this class of problems.
The first such application concerns risk management portfo-
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to model the movement of the asset price. Hence, such
applications typically give rise to a continuous conditioning

elementZ. The computational theory for (1) whe#

is continuous is quite different both mathematically and

algorithmically and can be found in a companion paper,
Lee and Glynn (1999).

The second major class of applications that we have in
mind concerns performance evaluation problems in which
statistical uncertainty exists about the dynamics of the un-
derlying mathematical model. Assuming that the model is
known up to a finite-dimensional statistical parameter, it
is often appropriate to model the residual uncertainty via
a posterior distribution on the parameter space that incor-
porates both observational data aadpriori knowledge.
When the parameter space is discrete, this can lead to a
problem of the form (1) in which the conditioning random
elementZ is discrete. To illustrate this point, an example
is in order.

Consider a telecommunications service provider that
needs to make a decision regarding capacity expansion in
a certain neighborhood over the next year. The goal is to
deliver requested web-pages to users in less than one second
on average. Suppose thatis the number of subscribers



Lee and Glynn

in the neighborhood during the next year, and Xgt be r.v’s in which X ;(Z;) follows the distributionP(X € -|Z;).
the delivery time for the-th web-page requested within  In other words,
the neighborhood (measured in seconds). It is reasonable

to expect tha(X; : i > 1) satisfies a law of large numbers P(X;(Z) € Aij,1<i<n1<j<m|Z:i>1)
(LLN) of the form o o -
L =T][]Px € aijizo.
=3 Xi > E(X1IN) as. ) i=1j=1
n

= The obvious estimator is then
asn — oo, where a.s. denotes “almost surely”. Forexample, "
(2) holds, under suitable conditions, (X; : i > 1) is a a(m,n) = 1 Zl (Xm(Z:) < x)
stationary sequence which is conditionally ergodic, given n -
N. One could attempt to design the system capacity so

that E(X|Z) < 1 a.s. However, such a system design where X,,(Z;) = m~1 sznzl X;(Z;). Because the sample

\t/;/]ouuld en:an bu,',ld'n? capacity appropna}ltbe t? deaI!’n_g ;N'th sizem associated withX,, (Z;) is independent of the out-
e "worst case” performance scenario (*best case” in terms come valueZ;, we calla(m, n) an estimator with outcome-

of revenue) associated with the neighborhood customer base:

N for th id Substantial potential . b independent sampling rate.
or the provider. - substantial potential savings can be We wish to develop a central limit theorem (CLT) for this
realized by instead computinB(E(X|N) < 1). If this

) - . estimator that describes its rate of convergence. For a given
probability is sufficiently close to one, then the design

L i : . computer budget, let m(c) andn(c) be chosen so that the
papacny is deemed adequate; otherwise, it needs to becomputational effort required to generatén(c), n(c)) is
increased. . . L . approximately. To this end, les; be the average amount of

We start, n Section2, by conS|der|ng two estimators for time required to generat and lets, be the average amount
« that used a fixed amount_t_)f sampling per outcome value of time required to generati ;(Z;). Then, the aggregate
of Z to compute the conditional expectation &f given

) effort required to compute (m, n) is approximatelysin +
that otu tclc)lmgt \t/ﬁlue' Ra}tesb?f .cor(ljveggert]_ce %rg studied, agdS_zmn. It follows thatéin(c)+é82m(c)n(c) ~ c. Inorder that
a.frt]entra(lj 'Imlth eor(tamt!slq ainea. etc_ lon 3 1S concern(—: Xme(Zi) - E(X|Z;) a.s. asc — oo, we clearly need
\t,f\?at issuamgvaglsoifegnls gre]rprg?t\;emznalrggssy %;Q:Q;epﬁg to impose the requirement that(c) — oo asc — oo.

: ) Consequently,$ 8 ~ 3 for
done to comput& (X |Z) to depend or¥. Finally, Section 4 9 ydun(e) + am(cn(c) 2m(c)n(c) ¢

. ical it aining to th ; ¢ large. Finally, we may, without loss of generality, assume
brovides numerical results pertaining to the performance ot s, _ 4 (for otherwise, we can simply re-define the units by
the basic estimator.

which we choose to measure computer time). Given this
analysis, it is evident thatmn(c), n(c)) must be chosen to
satisfy the asymptotic relation(c)n(c)/c — 1 asc — oo.

For a given sampling plari(m(c), n(c)) : ¢ > 0),
let a1(c) = a(m(c), n(c)) be the estimator available after
expending: units of computational time. The key to under-
standing the behavior af1(c) is to develop an expression
for the bias ofay(c). This will permit us to perform the
standard “bias-variance” trade-off necessary to compute the
most efficient possible sampling plan.

Note that

i=1

2 ESTIMATION METHODOLOGY WITH
SAMPLING RATE INDEPENDENT
OF OUTCOME

Suppose thatthe range of the random elerdasf{zs, zo, . . . }.
Our discussion in this section presumes the ability of the
simulationist to:

1. draw samples from the distributid®(Z < -);

2. for eachz; (i > 1), draw samples from the
conditional distributionP(X € -|Z = 7). _

Xedz=m Ec(m.n) = Y pQPXn() <x)

We consider here the “obvious estimator” éor To precisely zely

de;cribe this es'timat'or, IetZ,»' l<is<n be a sequence + Z P21 —PXn(2) > x))

of independent identically distributed (i.i.d.) copies of the

riv. Z. Conditional on(Z; : 1 < i < n), the sample -

(X;(Z):1<i<n,1<j<m) consists of independent =a+ ), POPEn@) =) ®)

zelly

— Y PRPXu() > x),

zel'_

zel'~
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wherel'y = {z : E(X|Z =2z) > x,i > 1}, T_ = {z : hypothesis, we can derive an asymptotic approximation for
E(X|Z =z) <x,i > 1} and p(z) = P(Z = 7). Thus, the bias ofai(c). Putn* =inf{n(z) :i > 1}.

the rate at which the bias goes to zero is determined by

the rate at whicHP(X,,(z) < x) — 0 for z € 'y and the A5.  B* = {z :i > 1n(z) = n*} is non-empty

rate at whichP(X,,(z) > x) — 0 for z € I'_. These rates and finite.

involving the distribution ofX,, (z) are of a type that have ~ A6.  inf{n(z):i > 1,z # B*} > n*.
been extensively studied as part of the substantial literature
on “large deviation”.

We say that a r.vX is lattice if X takes values only
in the set{c + kd : k € Z}, wherec is a fixed constant
andd > 0 is the lattice spacing. One of the fundamental
results in large deviations theory is the following; see p.121 ¢ = then
of Bucklew (1990).

Note that both A5 and A6 are trivially satisfied when
the range ofZ is finite.

Proposition 2.1 Assume A1-A6. lfi(c) — oo as

m(c)Y2 exp(n*m(c))(Eas(c) — @) — p*

Theorem 2.1  Let(X; :i > 1 be an i.i.d. sequence
ofrvissuchthaEX; < x. Suppose(d) = Eexpl0X1) <
oo for 0 € R and thatlP(X1 > x) > 0. Then, ifX; is not

asm — oo, where

. A
lattice, y'= Y. py@- ), p@r@.
€Ty NB* zel_NB*
(1 " 1
im P{=>"X; > X> expmn)y/m = , Proof. It follows from Markov's inequality that for
m— o0 m i /211 0 0 > O,
where P(Xn(Z1) > x|Z1 = 2i) < exp(—0mx +m¥ (0, z;))
_ p* *
n=6"x —loge(®”), where W (9, z;) = log E[exp@X)|Z = z]. In particular, if
@' (6%) . z; € I'_, we may choosé so thatt = 6*(z;), whered*(z;)
p®* 7 satisfies¥’(0*(z;), z;) = x. Then, we obtain the relation
2 B (p//(e*) 2 _
o= @(6%) R P(X,(Z1) > x|Z1 = z;) < exp(—mn(z;)); %)
In view of Theorem 2.1, we now make the following  this inequality holds uniformly inz > 1 andz € T'-.
assumptions: Similarly,
Al. Fori>1landd € R, E[expX)|Z = z] < P(Xn(Z1) < x|Z1 = z) < exp(—mn(z:)) (6)
00,
A2. P(X >x|Z=z)>0,z€l'_, form >1landz e I'y.
P(X <x|Z=2z)>0,z €Ty; From (4), it is evident that
A3. EX|Z=z)#xfori=>1,
A4.  Fori > 1, X1(z) is not lattice. m(c)Y? exp(n*m(c))(Ea(c) — ) (7)
With A1-A4 in hand, Theorem 2.1 guarantees the ex- = Y p@m@Pe" Py (2) < x)
istence, for each;, of finite constanty (z;) andn(z;) such zel 4 NB*
that — > @MY M OP(Ryy () > x)
zell_NB*

P(X,(Z1) > x|Z1 = %)

12,0 me) (% -
~ m Py (@) exp—mn()), 7 €T t 2 p@m@ETOP X ) < x)
B (4) as zell L NB*¢
IP(Xm(Zi)lE X|Zl = Zi) _ Z p(Z)m(C)l/Zer)*m(c) P(Xm(c) (Z) - X).
~ m Yy () exp(—mn(z)), z €T el B
m — oo, wherea,, ~ by, asm — oo means thady, /b, — Since B* is finite, the difference of the first two sums on

1 asm — oo. With the aid of a couple of additional  the right-hand side of (7) convergestd; see (4). To handle
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the two final sums on the right-hand side of (7), observe
that (5) and (6) yield the bound

Y p@m@Y2 M OP(X ey (2) < x)

D p@me) e M OP(X ) (2) > x)
zel'_NB*¢

= 3 p@m(e) 2 ™ exp(—n(m(e)).

z¢B*

(8)

But according to A6, for; ¢ B*, n(z) — n* is uniformly
positive, son(c)Y? exp(n*m(c)) exp(—n(z)m(c)) — Ouni-
formly inz ¢ B* asc — oo. It follows from the Dominated
Convergence theorem that the right-hand side of (8) goes
to zero, completing the proof.

Hence, ify* #£ 0,

-1/2

Eai1(c) —a ~ y*m(c)”7“ exp(—n*m(c)) )

providing us with our desired bias asymptotic. We now
turn to the variance of1(c). Note that

1 _
—Varl (X )(Z1) < x)

vV =
ara(c) @
1
= —Ea1(c)(1 — Eai(c)) (20)
n(c)
1
~ —a(l—a)
n(c)
asc — oo. If we now choose to optimize our choice of

(m(c), n(c)) so as to minimize
MSE(e1(c)) = Varai(c) + (Eaa(c) — a)?

subject to the constraint that(c)n(c) ~ ¢, the approxima-
tions (9) and (10) suggest that the optimal choicengf)
satisfies the asymptotic

m*(c) ~ (logc)/2n*

asc — oo. This asymptotic relation is supported by the
following CLT for «a1(c); this is our main result in this
section.

Theorem 2.2 Assume Assumptions A1l-A6. Sup-
pose thatn(c) — oo andn(c) — oo in such a way that
n(c)m(c)/c — 1 asc — oo. Then, ifm(c) = |alogc| as
¢ — oo Wherea > 1/2n*,
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ﬁ (@1(c) — @) = Vaa(l—a) N©, 1)

asc — 0o, where= denotes weak convergence an@®NL)

is a normally distributed rv. with mean zero and unit
variance. On the other hand, h(c) = |alogc| with

0 <a < 1/2p*, then

n*a _ v
¢4 /loge (ay(c) ot)=>ﬁ

asc — 00.

Proof. Define y;(m) 2 1(X,,(Zi) < x). Note that

1. ,
ar(e) —a ==Y " Ri(m) + P(X(Z) < x) —«a,
n i=1
where % (m) = xi(m) — P(X,,(Z) < x) is the centered
version of X;(m). Then,

Observe that for eaah x; (m) is a bounded sequence of
r.v.'s, it follows that the family{ x; im(c)) : i = 1, ... , n(c),
¢ > 0} is uniformly integrable. By Lemma A-1, the
Lindeberg-Feller theorem (ref. Billingsley 1995) holds here.
That is, asc — +o0,

1
Jn

Xi (m)

NG

a1(c) —a = )+P(Xm(2) <x)—a.

n(c) ~

Z Xi (m(C))

whereo = a(1 — o).

Sincen(c)m(c)/c - 1andm(c) = |lalogc], we have
thatc/(n(c) logc) — a. Hence, by the converging together
theorem (ref. Billingsley 1995), we have that

c n(c) )2
1
\ logc ;

asc — oo. On the other hand,

V oae (|P(Xm(c)(Z) =x)—a)

1/2 ,—n*m(c)

= oN(0, 1),

M©) ., Jaa@—a) N©.1)

n(c) 1D

m(c)”

Iog
- m ()Y 2" ™) (P(X (o) (Z) < x) — ).
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We know that the second term converges/toby Propo-
sition 2.1. For the first term, notice that

1_n*me)
¢ mm© 2 e
m(c)logc

converges to 0 as — oo sincem(c)/logc — a and by
assumption1/2 — an* < 0. By the converging theorem,
we must have that

loge 1
m(c) logc’

c

logc (PXn()(Z) <x) —a) =0

(12)

asc¢ — oo. Applying the converging together theorem

once again, we thus obtain the first result by combining the

converging results (11) and (12).
Similarly, if m(c) = lalogc| andan* < 1/2, then, we
have

can’ /logc _ c m(c) can =12 _ .
n(c) V n(cym(c) logc

asc — oo. By the converging together theorem, we have
that

n(c) ~

" /loge > % =0 (13)
i1

asc — oo. Also, by the converging together theorem,

1" Jloge (P(Xn(e)(Z) < x) — @)
= m2OT(P(Xy((2) < x) — @)

logc

exp(n*(aloge —m(c)))
m(c)

*

14

N

asc — oo. Finally, we obtain the second result by com-
bining the converging results (13) and (14).

The proof of Theorem 2.2 actually shows that if
n(c)m(c)/c — 1 asc — oo with m(c)/log(c) — o0,
then

(14)

vn(e)(ar(c) —a) = Va(l— a)N(, 1)
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asc — oo. It follows that if m(c)/log(c) — oo, then

|:061(C) -z

is an approximatd00(1 — §)% confidence interval foe,
provided ¢ is large andz is selected so thaP(—z <
N(@,1) < z) = 1-—34. A natural choice form(c) here

is to setm(c) = |ac"] for a > 0 with »r € (0,1). This
suggests the following confidence interval procedure for
computinga.

a1(c)(1—ai(c))
n(c) ’

a2 oq(c)(l—al(c))]

n(c)

Algorithm 2.1

Step 0.
Step 1.

Initialization. Input ¢, v, anda.

Determine the sample sizeSet (m, n) =
(ac’,a e,
Determinea. Set

Aélnl 1iX~(Z-)<
a—n. — i(Zy<x].

Step 2.

j=1
Step 3. Form the(1—¢&) x 100%confidence interval
for «. A consistent estimate of the standard

N A(1—&) N
error (s.e.)sz, of & is ,/ “2% sinced ~ .

The c.i. is then set to
[& — ze/256. @ + ze254]

wherezg > is the £ /2-quantile of a NO, 1)
r.v.

In Section 4, we offer empirical data associated with
the performance of this confidence interval procedurexfor

We conclude this section with a discussion of an al-
ternative estimator that is applicable when the probability
mass function o is known. For example, in our telecom-
munications service provider example, it may be that the
distribution of the number of subscribers is modelled via a
Poisson r.v. or binomial r.v., in which case the probability
mass function is known explicitly. In particular, suppose
that the simulationist:

1. has knowledge of the probability mass function
p(-) corresponding to the random elemefit

2. has the ability to draw samples from the con-
ditional distributionlP(X € - |Z = z), for
eachz; (i = 1).
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The estimator we have in mind here is

az(m) = ) (Xm(zi) < %),

so that the sample size used to estimRtE(X|Z = z;) <
x) is again outcome-independent. The computer time re-
quired to generateo(m) is proportional tan multiplied by
the number of outcome values fa@r. Thus, the estimator
can only be (exactly) computed when the number of out-
come values folZ is finite. Throughout the remainder of
this section, we will assume that this is the case. Then,
scales linearly in the computer budgeso that examining
the rate of convergence as a functionmofis equivalent to
studying the rate of convergence as a functior.of

Fori > 1, let

Kkm(zi) = IP(Xm(Zl) <x|Z1=12z)
if zz € 'y and let
km(zi) = P(X,n(Z1) < x|Z1 = z)

if zz eC'_. Then,

Eao(m) —a = Y p@km(2) = Y p()kn(2)

zely zel_
and

Varaa(m) = Y p(z)%km(z)(L = kn(z)).  (15)

Assume that A1-A4 hold (and note that A5-A6) are auto-
matic, in view of our finite outcome assumption). It follows
that Proposition 2.1 asserts thatyif # 0, then
Eao(m) —a ~ y*m~ Y2 exp(—n*m)
asm — oo. Furthermore, (4) and (15) together imply that
Var az(m) ~ B*m~Y? exp(—n*m)

asm — oo, where

B =) p@*@).

zeB*

As a consequence, the mean square error satisfies thea

asymptotic relation

MSE(a2(m)) ~ B*m Y2 exp(—n*m)
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asm — o0, so that the mean square error converges to zero
exponentially fast in this setting. Thus, in those settings
where it applies,az(m) is to be preferred tari(c), at
least asymptotically (for large computer budgets). This
analysis also suggests that in the large-sample context, it
is the sampling of th&-values (the “outer sampling”) that
contributes primarily to the variability af;(c) (rather than

the “inner sampling”).

3 ESTIMATION METHODOLOGY
WITH OUTCOME DEPENDENT
SAMPLING RATE

The large deviations asymptotics expressed by (4) assert that
the impact ofn on the rate at which the individual bias terms
in (3) go to zero is highly state-dependent. This suggests
that the amount of sampling necessary to mitigate the effect
of bias is highly outcome-dependent and that improved
algorithms for estimatingr can, at least in principle, be
obtained by permitting the “inner sample size’ to be
outcome- dependent. Our goal in this section is to explore
the potential increases in efficiency that can be obtained via
such an idea.

We start with the case in which the mass functiorZof
is known. In this case, a sampling plan is an assignment of
sample sizes: = (m(z;) : i > 1) to each possible outcome
value of Z, leading to the estimator

a3(m) =Y p@) (X (z) < x).

The total computer time expended to calculatgm)
is approximately proportional ty ; m(z;). Thus, given a
computer budget, this effectively acts as a constraint on
> . m(z;). We wish to find a selection of the sample sizes
(m(z;) : i > 1) which minimizes the mean square error of
a3(m), subject to the constraint that, m(z;) < c. We
will denote the corresponding estimates(c).

Assume Al-A4. To simplify the (mathematical) techni-
cal issues involved, we will suppose, through the remainder
of this section, that the number of different outcome values
for Z is finite, so that A5 and A6 are also in force. Just
as for the estimatat,(m), the bias and variance o ()
may easily be computed:

Eas(it) —a =Y p(@kme (@) =Y p@kn (@)

zely zel'_

nd

Var a3(i) = Y p() k() @) (1= km) (@) -
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The following result uses the above expressions to
determine the optimal sampling plart = (m}(z) : i > 1)
(for large computer budget§ and the associated rate of
convergence.

Theorem 3.1  Assume Al-A4. Then, for any choice
of me = (mc(z) 1 i > 1) satisfyingd ", m.(z;) <,

liminf

c—>00

L logMSE@s(iie)) = —*
C

where

-1
T = (Z n(z,-)_1> :
Furthermore, if we choose:(z;) = lct*/n(zi)],
1
lim —logMSEa3(m™*)) = —t*.
c—>00 C

Proof. We would like to minimize MSExz(i)) with
respect tom(z;) : 1 <i < K) whereK is the cardinality
of the outcome space &. In order to make the minimiza-
tion problem a bit more tractable, we will determine some
bounds on MSEx3(i)). Specifically, we use the inequality
O x)? <n Y x?, to bound MSEugz(im)) by

2
Y@ ameme

A 2
MSE(a3) < Var@) + K XZ: PR @

< (K+DY p@Py (e @@

zel’

(16)

by (4) since A1-A4 hold. Denote by the term on the
right hand side (RHS) of the last inequality.

Now, let's minimize (16) with respect ta& subject to
>_.m(z) = candm(z) > Oforall z. Letx be the Lagrange
multiplier of the equality constraint. Taking partials with
respect tan(z), the optimizerm™*(z) must satisfy

a—av = p@?y (@™ @1 (—n(2) + 1 =0.
m(z)

In other words,

m*(z) = 1 < )
R '

Substituting the above expression #ot(z) into the equality
constraint, we deduce thatsatisfies

I
p(2)?y(@n(2)

¢ =¥ 565 109(P@%y (@)1(2)

—logx =
o0 Y. n@t
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Hence, we have derived the expression for the optinfét)
that minimizes the upper bound:

-1 .
m*(2) = % + () Hog(p(2)%y @n(2)
@ Zlog(p(w)zy(w)n(w))
o nw)t n(w) '

w

The minimized upper bound on M%&g (1)) is thus equal
to

*c
9

Vinin = K (]‘[(p(z)zy(z)n(z))f*"@‘l) e’

where t* £ -, n@~H7L In other words, the upper
bound,V, on MSHa3(m)) is converging to zero exponen-
tially fast at the rate0 (e~ "¢). Notice thatt* is largely
determined byy*.

Let's now examine a lower bound on the MSE. Notice
that, for largem(z),

v(2)

NG exp(—m(2)n(z))

R 1
MSE(a3(m) > 5 Z p(2)?

since any one of two term®(X,,() (z) < x) or P(X () (2)
> x) is greater than or equal ty2.

Note that in order to drive MSfs(m)) to 0, we
must have that thé:. that minimizes MSEx) must satisfy
me /' +oo for all z asc / +oo. On the other hand, for
eache > 0, there existsM, such that for allm > M.,
m~Y2 > exp(—em). Combining these two remarks, we
have that for alle > 0O, there existsC, such that for all
c> C¢

min MSE(x3(m))

1
> min > g (@)%Y (2) exp(—(n(2) + €)m(z))

C
Y.+ 6)‘1) '

In other words, for alk > C¢,

= constant exp(

1 ~1
= log(MinMSE@)) > ———————.
> - log(min MSE@)) = S @t

-1
Y.n@1t
This completes the proof.

Thus, the optimal choice:* (rather than, for exam-
ple, using constant sample sizes asdg(m)) impacts the
exponential rate at which the mean square error converges
to zero. Of course, implementation ag(c) (= az(m*))
requires knowledge of(z;) for i > 1. Note, however, that
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the formula form (z;) asserts that the most critical outcome
values are those for which(z;) is close to zero. In such a
setting, the corresponding “large deviations” involves look-
ing at events that are relatively more likely. Such a regime
is one in which the corresponding large deviations are rel-
atively more Gaussian (since the deviation involves a tail
event that is relatively closer to the mean of the distribution).
In sampling Gaussian r.v.s with mean< x and standard
deviation o, the likelihood of a deviation in the sample
mean greater thanis approximatelexp(—n (i —x)2/202)
(in “logarithmic scale”). This suggests the approximation
n(z) ~ (u(z) — x)?/20%(z) for i > 1, wherep(z) and
o(z;) are, respectively, the mean and standard deviation of
the distributionlP(X € - |Z = z;). Of course, for outcome
valuesz; with large n(z;), (u(z;) — x)%/20%(z;)

will not give a good approximation to its. As men-
tioned earlier, suchy(-)’s have a small contribution te*.
Hence, for each;, this heuristic would propose spending
a small portion of the computational budget to estimate
(u(zi) —x)?/20%(z;), and then using this to estimajéz;),
followed by “production runs” to compute.

The algorithm below gives a practical methodology for
the implementation ofi3(c).

Algorithm 3.1
Step 0. Initialization. Input ¢, 0 < r < 1, and
{p(z) i =1}
Step 1. Estimate then(-). Let m* = ¢"/K. For

each z, we samplem* X’s according to
P(X € -|Z =z) and set

Xm* (Z)Z
i Y (X (@) — X (20)2

i) 2

NI =

2

Step 2. Estimate the optima#t: (). Let ¢*

AL Setm(z) 2 n(2)Le/t*.
Determinea. Set

2
Step 3.

@3(0) = Y pI (X (2) < x);

i.e., we samplem(z) X’s under the d.f.
P(X € - |Z = z) and takeas(c) as the
weighted sum of the indicator functions with
the weights being equal tp(z)’s.

We conclude this section by discussing the use of
outcome-dependent sampling in the context of random ele-
mentsZ for which the probability mass function is unknown.
In this setting, we must resort to sampling tAgs, as for
the estimatorr1(c). Here, a sampling plan requires assign-
ing, for a given computer budget an “outer sample size”
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n = n(c). If outcomez; is sampled, then the “inner sample
size” m = m(z;) is utilized. Forn large, the amount of
“inner sampling” at outcome; will then be approximately
np(zi)m.(z;) by the LLN. Consequently, the sampling plan
m = (ms(z) :i > 1) andn = n(c) must be selected so
that) ", p(zi)mc(z;) - n(c) = c. This leads to the estimator

1 n(c) ~
() = o= Zl I(Xmu(z)) < %)

Here,

Eas(c) —a = ) p@kmn(@ = D pDkm() (2

zel'4 zel_

and
1
Var a4(c) = — (Eaa(c)) (1 — Eaa(c)).
n(c)

An analysis very similar to that given in Section 2 tar(c)
establishes the following CLT.

Theorem 3.2  Assume Al1-A4. Suppose that for
i > 1, mc(z;) — oo and n(c) — oo in such a way
thatn(c) - Y ; p(zi)mc(zi)/c - Lasc — oo. If me(z;) =
la(logc)|/n(z;) asc — oo wherea > 1/2, then
é(om(c) — @) = Java(l—a) N, 1)
C

asc — oo, wherev = ), p(z;)/n(z;). On the other hand,
if me(z;) = la(logc)/n(z)] asc — oo where0 < a < 1/2,
then

c*loge(aa(e) — ) = 3 p)y @) "3 /a"?
asc — o0.

Comparing Theorem 2.2 to Theorem 3.2, we see that
the qualitative form of the convergence rates and limit struc-
ture is identical. Furthermore, Theorem 2.2 identifies the
optimal mean-square error achievable for a given (large)
value ofc¢ as approximately1/25n*) - (logc/c) - (1 — ),
whereas Theorem 3.2's optimal mean-square error looks
asymptotically like(v/2) - (logc/c) - «(1 — ). Hence, the
improvement obtained by using outcome-dependent sam-
pling rates is asymptotically in proportion g /v.

As for the implementation af3(c), heuristics need to
be applied, in order to circumvent the difficulties inherent
in n(-) being unknown. The Gaussian heuristic suggested
earlier in this section is one alternative.
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When compared with that of Section 2, the analy-

sis of this section suggests that use of outcome-dependent c

sampling, while an improvement on outcome independent
sampling, tends not to lead to “orders of magnitude” im-
provement in convergence rates. In particular,\;/ﬁeg c/c
convergence rate is characteristic of both types of estimators
when the mass functiop(-) is unknown to the simulationist
(and must be estimated computationally). In view of the
ease of applicability of1(c), as well as its very general
domain of applicability, we recommend the use of this esti-
mator in lieu of additional problem structure that may shift
the choice elsewhere.

4 NUMERICAL RESULTS

In this section, we will report the numerical results of
the algorithms proposed in the Section 2. The example
we have used is as follows: Assume that the conditioning

random element 2 binomiak10, 0.4) and that conditioned
onzZ =7z X D N(z/2 — 2.3,1). The exact value of
a 2 P(E(X|Z) < 0) is given by

4

2

10

( )o.4zo.6lCH = 0.6331
Z

z=0

4
Y Pz=2=
z=0

The proposed algorithm presented in this paper was
programmed in ANSI-C.We replicate the estimator 200
times. Denote by{@;(c) :i = 1,...,200 the values of
the 200 replicates of the estimatai(c), given that the
computational budget is equal to We estimate the mean,
standard error, bias, and MSE of the estimator as follows:

seta(c) 2 (17200 Y22 &, (c);

i=

se. setsy(c) 2 \/(200— D129 () — @(e)?;

=

mean:

bias: setby(c) 2 a(c) — a, whereo is the exact
theoretical value;
MSE:  set MSE(c) 2 (20071 Y224, (c) — a)2.

We choosev = 0.2 in this example and apply Algo-
rithm2.1. Table 1 summarizes the numerical results.

To deduce the rate of convergence of the estimator, we
plot thelog(MSE(c)) vs.logc and the plot (Figure 1) turns

Conditional Expectation via Monte Carlo

Table 1: Numerical Results for Algorithm 2.1

mean s.d. bias | log(MSE)/c

1024 | 0.6454| 0.1226| 0.0123 -0.0041

2048 | 0.6475| 0.0963| 0.0144 -0.0023

4096 | 0.6454| 0.0784| 0.0123 -0.0012

8192 | 0.6386| 0.0589| 0.0055 -0.0007

16384 | 0.6383| 0.0468| 0.0052 -0.0004
32768| 0.6347| 0.0352| 0.0016 -0.0002
65536 | 0.6332| 0.0251| 0.0001 -0.0001
131072| 0.6332| 0.0189| 0.0001 -0.0001

A plot of log(mse) vs. log(c)
T

log(mse)
I
o
T

-8 L L L L L
10 11 12

9
log(c)

Figure 1: Distribution Function Estimator for the Discrete
Case Example

Out of the 200 experiments, we tested the number of
times, N, the confidence intervals covered the true value.
The corresponding estimated coverage probability is then set

top 2N /200. The standard error of the estimated coverage
probability is given by,/p(1— p)/200 and is expressed
inside the parenthesis beside the corresponding probability
in the Table 2. All coverage probabilities converge to the
correct values.

Table 2: Confidence Interval Coverage Probabilities of the
Discrete Case Example

out to be linear.

This suggests that MSE) ~ V¢ for some constants
V andA. We can estimatéog V and X by the y-intercept
of the plot and its slope respectively. The theoretical slope
and intercept are equal te(1 — 0.2) = —0.8 and 0.7680
resp.; whereas the empirical slope and intercept are equal to
—0.78 and 1.29 respectively. The slope estimate matches
the theoretical value quite well.

c 90% cov. 95% cov. 99% cov.
1024 0.89 (0.02)| 0.91 (0.02)] 0.97 (0.01)
2048 0.89 (0.02)| 0.93 (0.02)] 0.98 (0.01)
4096 0.89 (0.02)| 0.91 (0.02)] 0.99 (0.01)
8192 0.91 (0.02)| 0.95 (0.02)] 0.98 (0.01)
16384 0.88 (0.02)| 0.94 (0.02)| 0.98 (0.01)
32768 0.90 (0.02)| 0.95 (0.02)] 0.99 (0.01)
65536 0.90 (0.02)| 0.97 (0.01)] 0.99 (0.01)
131072 0.91 (0.02)| 0.97 (0.01)] 1.00 (0.00)

1662




Lee and Glynn

ACKNOWLEDGMENTS

Research partially supported by Army Research Office Grant
No. DAAGSS-97-0377-P0001 and National Science Foun-
dation Grant DMS-9704732-001.

APPENDIX
Lemma A-1  Assume that the following conditions
hold:
1. thervis(X.;:j=12,... ,n(c),c>0)is

ii.d. Wheren(c) /’ 400 asc /' +o0;

2. EXc1=0022EX2;
3. limno?=0%¢€(0,00);
4. the family{Xf’1 : ¢ > 0} is uniformly inte-
grable.
Then, {X2 ci=1,...,n(),c > 0} satisfies the Linde-

berg- FeIIer condltlon namely,

lim —f X2,dP =0
=000 JIXoalzedn@oe
for all e > 0.

Proof. We need to show that if Conditions 1-3 hold,
then for alle > 0 andn > 0, there exist< (¢, n) such that
for all ¢ > C(e, ),

1
—E X255 1Xeal = ev/n@ o] < n.
c

By Condition 3, we know that there exists such that for
all ¢ > C, 62 € (6%/2,302/2). Let& = o/+/2. Then, for
all ¢ > C, we have that? > 2. Now, by Condition 4 and
the assumption that(c) /' +o00 asc /' +o0, there exists
C(e,n) > C such that

E[X2:1Xe1l > ey/n(Cle ) €] < ne? Ve >0,

Then, for allc > C(e, n),

l
SE[X231Xeal 2 V(@ o
C
1
= _2 [ 17|XL1|>6\/%0'{|
= i2 [L17|Xc1|>€\/%€] sincec > C
1
= _2 I:clv|Xcl|>€\/m§]
1
< g'n 2=1.
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Sincee > 0 andn > 0 are arbitrary, we have proved the
lemma.
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