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ABSTRACT

We examine different ways of numerically computing th
distribution function of conditional expectations where th
conditioning element takes values in a finite or countab
infinite outcome space. Both the conditional expectatio
and the distribution function itself are computed via Mont
Carlo simulation. Given a limited (and fixed) compute
budget, the quality of the estimator is gauged by the inver
of its mean square error. It is a function of the fractio
of the budget allocated to estimating the conditional e
pectation versus the amount of sampling done relative
the “conditioning variable”. We will present the asymptot
ically optimal rates of convergence for different estimato
and resolve the trade-off between the bias and variance
the estimators. Moreover, central limit theorems are esta
lished for some of the estimators proposed. We will als
provide algorithms for the practical implementation of th
estimators and illustrate how confidence intervals can
formed in some cases. Major potential application are
include calculation of Value at Risk (VaR) in the field o
mathematical finance and Bayesian performance analys

1 INTRODUCTION

Let X be a real-valued random variable (r.v.) and letZ

be a random element taking values in a finite or countab
infinite outcome space. For fixedx ∈ IR, our goal in this
paper is to compute

α
4= IP(IE(X|Z) ≤ x). (1)

Thus, this paper is focused on computing the distributio
function of a conditional expectation in the setting in whic
the conditioning random elementZ is discrete.

There are several different applications contexts th
have served to motivate our interest in this class of problem
The first such application concerns risk management port
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lios that contain substantial numbers of financial derivativ
options. The theory of options pricing asserts that, und
suitable conditions, an option’s current value can be e
pressed as a conditional expectation, where the condition
random elementZ is the current price of the underlying
asset(s) and the expectation is computed under the so-ca
“equivalent martingale measure”;see, for example, Duffi
(1996) for details.

Consequently, if a portfolio consists of a single option
(1) expresses the probability that the value of the portfol
is less than or equal tox. It is worth noting that in
such an application, the inner conditional expectation
computed using the equivalent martingale measure, wher
the outer probability involves the postulated dynamics of th
underlying asset. It is common to use diffusion process
to model the movement of the asset price. Hence, su
applications typically give rise to a continuous conditionin
element Z. The computational theory for (1) whenZ
is continuous is quite different both mathematically an
algorithmically and can be found in a companion pape
Lee and Glynn (1999).

The second major class of applications that we have
mind concerns performance evaluation problems in whic
statistical uncertainty exists about the dynamics of the u
derlying mathematical model. Assuming that the model
known up to a finite-dimensional statistical parameter,
is often appropriate to model the residual uncertainty v
a posterior distribution on the parameter space that inco
porates both observational data anda priori knowledge.
When the parameter space is discrete, this can lead to
problem of the form (1) in which the conditioning random
elementZ is discrete. To illustrate this point, an example
is in order.

Consider a telecommunications service provider th
needs to make a decision regarding capacity expansion
a certain neighborhood over the next year. The goal is
deliver requested web-pages to users in less than one sec
on average. Suppose thatN is the number of subscribers
4
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in the neighborhood during the next year, and letXi be
the delivery time for thei-th web-page requested within
the neighborhood (measured in seconds). It is reasona
to expect that(Xi : i ≥ 1) satisfies a law of large numbers
(LLN) of the form

1

n

n∑
i=1

Xi → IE(X1|N) a.s.. (2)

asn → ∞, where a.s. denotes “almost surely”. For exampl
(2) holds, under suitable conditions, if(Xi : i ≥ 1) is a
stationary sequence which is conditionally ergodic, give
N . One could attempt to design the system capacity
that IE(X|Z) ≤ 1 a.s. However, such a system desig
would entail building capacity appropriate to dealing wit
the “worst case” performance scenario (“best case” in term
of revenue) associated with the neighborhood customer b
N for the provider. Substantial potential savings can b
realized by instead computingIP(IE(X|N) ≤ 1). If this
probability is sufficiently close to one, then the desig
capacity is deemed adequate; otherwise, it needs to
increased.

We start, in Section2, by considering two estimators fo
α that used a fixed amount of sampling per outcome val
of Z to compute the conditional expectation ofX given
that outcome value. Rates of convergence are studied,
a central limit theorem is obtained. Section 3 is concern
with studying the potential improvement in convergence ra
that is achievable if one permits the amount of samplin
done to computeIE(X|Z) to depend onZ. Finally, Section 4
provides numerical results pertaining to the performance
the basic estimator.

2 ESTIMATION METHODOLOGY WITH
SAMPLING RATE INDEPENDENT
OF OUTCOME

Suppose that the range of the random elementZ is{z1, z2, . . . }.
Our discussion in this section presumes the ability of th
simulationist to:

1. draw samples from the distributionIP(Z ∈ ·);
2. for eachzi (i ≥ 1), draw samples from the

conditional distributionIP(X ∈ ·|Z = zi).

We consider here the “obvious estimator” forα. To precisely
describe this estimator, let(Zi : 1 ≤ i ≤ n) be a sequence
of independent identically distributed (i.i.d.) copies of th
r.v. Z. Conditional on(Zi : 1 ≤ i ≤ n), the sample(
Xj (Zi) : 1 ≤ i ≤ n, 1 ≤ j ≤ m

)
consists of independent
1655
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r.v.’s in whichXj (Zi) follows the distributionIP(X ∈ ·|Zi).
In other words,

IP(Xj (Zi) ∈ Aij , 1 ≤ i ≤ n, 1 ≤ j ≤ m|Zi : i ≥ 1)

=
n∏

i=1

m∏
j=1

IP(X ∈ Aij |Zi).

The obvious estimator is then

α(m, n) = 1

n

n∑
i=1

I
(
X̄m(Zi) ≤ x

)
,

whereX̄m(Zi) = m−1∑m
j=1 Xj (Zi). Because the sample

size m associated withX̄m(Zi) is independent of the out-
come valueZi , we callα(m, n) an estimator with outcome-
independent sampling rate.

We wish to develop a central limit theorem (CLT) for this
estimator that describes its rate of convergence. For a giv
computer budgetc, let m(c) andn(c) be chosen so that the
computational effort required to generateα(m(c), n(c)) is
approximatelyc. To this end, letδ1 be the average amount of
time required to generateZi and letδ2 be the average amount
of time required to generateXj (Zi). Then, the aggregate
effort required to computeα(m, n) is approximatelyδ1n +
δ2mn. It follows thatδ1n(c)+δ2m(c)n(c) ≈ c. In order that
X̄m(c)(Zi) → IE(X|Zi) a.s. asc → ∞, we clearly need
to impose the requirement thatm(c) → ∞ as c → ∞.
Consequently,δ1n(c) + δ2m(c)n(c) ≈ δ2m(c)n(c) for c

large. Finally, we may, without loss of generality, assum
δ2 = 1 (for otherwise, we can simply re-define the units b
which we choose to measure computer time). Given th
analysis, it is evident that(m(c), n(c)) must be chosen to
satisfy the asymptotic relationm(c)n(c)/c → 1 asc → ∞.

For a given sampling plan((m(c), n(c)) : c ≥ 0),
let α1(c) = α(m(c), n(c)) be the estimator available after
expendingc units of computational time. The key to under-
standing the behavior ofα1(c) is to develop an expression
for the bias ofα1(c). This will permit us to perform the
standard “bias-variance” trade-off necessary to compute t
most efficient possible sampling plan.

Note that

IEα(m, n) =
∑
z∈0+

p(z)IP(X̄m(z) ≤ x)

+
∑
z∈0−

p(z)(1 − IP(X̄m(z) > x))

= α +
∑
z∈0+

p(z)IP(X̄m(z) ≤ x) (3)

−
∑
z∈0−

p(z)IP(X̄m(z) > x),
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where0+ = {zi : IE(X|Z = zi) > x, i ≥ 1}, 0− = {zi :
IE(X|Z = zi) ≤ x, i ≥ 1} and p(z) = IP(Z = z). Thus,
the rate at which the bias goes to zero is determined
the rate at whichIP(X̄m(z) ≤ x) → 0 for z ∈ 0+ and the
rate at whichIP(X̄m(z) > x) → 0 for z ∈ 0−. These rates
involving the distribution ofX̄m(z) are of a type that have
been extensively studied as part of the substantial literat
on “large deviation”.

We say that a r.v.X is lattice if X takes values only
in the set{c + kd : k ∈ ZZ}, wherec is a fixed constant
and d > 0 is the lattice spacing. One of the fundament
results in large deviations theory is the following; see p.1
of Bucklew (1990).

Theorem 2.1 Let (Xi : i ≥ 1 be an i.i.d. sequence
of r.v.’s such thatIEX1 < x. Supposeϕ(θ) = IE exp(θX1) <

∞ for θ ∈ IR and thatIP(X1 > x) > 0. Then, ifX1 is not
lattice,

lim
m→∞ IP

(
1

m

m∑
i=1

Xi > x

)
exp(mη)

√
m = 1√

2πσ
,

where

η = θ∗x − logϕ(θ∗),

ϕ′(θ∗)

ϕ(θ∗)
= x,

σ 2 = ϕ′′(θ∗)

ϕ(θ∗)
− x2.

In view of Theorem 2.1, we now make the following
assumptions:

A1. For i ≥ 1 and θ ∈ IR, IE[exp(θX)|Z = zi] <

∞;
A2. IP(X > x|Z = zi) > 0, zi ∈ 0−,

IP(X ≤ x|Z = zi) > 0, zi ∈ 0+;
A3. IE(X|Z = zi) 6= x for i ≥ 1;
A4. For i ≥ 1, X1(zi) is not lattice.

With A1-A4 in hand, Theorem 2.1 guarantees the e
istence, for eachzi , of finite constantsγ (zi) andη(zi) such
that

IP(X̄m(Z1) > x|Z1 = zi)

∼ m−1/2γ (zi) exp(−mη(zi)), zi ∈ 0−

IP(X̄m(Z1) ≤ x|Z1 = zi)

∼ m−1/2γ (zi) exp(−mη(zi)), zi ∈ 0+

(4) as

m → ∞, wheream ∼ bm asm → ∞ means thatam/bm →
1 as m → ∞. With the aid of a couple of additional
165
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hypothesis, we can derive an asymptotic approximation f
the bias ofα1(c). Put η∗ = inf {η(zi) : i ≥ 1}.
A5. B∗ = {zi : i ≥ 1, η(zi) = η∗} is non-empty

and finite.
A6. inf {η(zi) : i ≥ 1, zi 6= B∗} > η∗.

Note that both A5 and A6 are trivially satisfied when
the range ofZ is finite.

Proposition 2.1 Assume A1-A6. Ifm(c) → ∞ as
c → ∞, then

m(c)1/2 exp(η∗m(c))(IEα1(c) − α) → γ ∗

as m → ∞, where

γ ∗ 4=
∑

z∈0+∩B∗
p(z)γ (z) −

∑
z∈0−∩B∗

p(z)γ (z).

Proof. It follows from Markov’s inequality that for
θ ≥ 0,

IP(X̄m(Z1) > x|Z1 = zi) ≤ exp(−θmx + m9(θ, zi))

where9(θ, zi) = log IE[exp(θX)|Z = zi]. In particular, if
zi ∈ 0−, we may chooseθ so thatθ = θ∗(zi), whereθ∗(zi)

satisfies9 ′(θ∗(zi), zi) = x. Then, we obtain the relation

IP(X̄m(Z1) > x|Z1 = zi) ≤ exp(−mη(zi)); (5)

this inequality holds uniformly inm ≥ 1 and zi ∈ 0−.
Similarly,

IP(X̄m(Z1) ≤ x|Z1 = zi) ≤ exp(−mη(zi)) (6)

for m ≥ 1 and zi ∈ 0+.
From (4), it is evident that

m(c)1/2 exp(η∗m(c))(IEα(c) − α) (7)

=
∑

z∈0+∩B∗
p(z)m(c)1/2eη∗m(c)IP(X̄m(c)(z) ≤ x)

−
∑

z∈0−∩B∗
p(z)m(c)1/2eη∗m(c)IP(X̄m(c)(z) > x)

+
∑

z∈0+∩B∗c

p(z)m(c)1/2eη∗m(c)IP(X̄m(c)(z) ≤ x)

−
∑

z∈0−∩B∗c

p(z)m(c)1/2eη∗m(c)IP(X̄m(c)(z) > x).

SinceB∗ is finite, the difference of the first two sums on
the right-hand side of (7) converges toγ ∗; see (4). To handle
6
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the two final sums on the right-hand side of (7), observ
that (5) and (6) yield the bound

∣∣∣∣∣∣
∑

z∈0+∩B∗c

p(z)m(c)1/2eη∗m(c)IP(X̄m(c)(z) ≤ x)

−
∑

z∈0−∩B∗c

p(z)m(c)1/2eη∗m(c)IP(X̄m(c)(z) > x)

∣∣∣∣∣∣
≤
∑
z 6∈B∗

p(z)m(c)1/2eη∗m(c) exp(−η(z)m(c)). (8)

But according to A6, forz 6∈ B∗, η(z) − η∗ is uniformly
positive, som(c)1/2 exp(η∗m(c)) exp(−η(z)m(c)) → 0uni-
formly in z 6∈ B∗ asc → ∞. It follows from the Dominated
Convergence theorem that the right-hand side of (8) go
to zero, completing the proof.

Hence, ifγ ∗ 6= 0,

IEα1(c) − α ∼ γ ∗m(c)−1/2 exp(−η∗m(c)) (9)

providing us with our desired bias asymptotic. We now
turn to the variance ofα1(c). Note that

Varα1(c) = 1

n(c)
VarI (X̄m(c)(Z1) ≤ x)

= 1

n(c)
IEα1(c)(1 − IEα1(c)) (10)

∼ 1

n(c)
α(1 − α)

as c → ∞. If we now choose to optimize our choice of
(m(c), n(c)) so as to minimize

MSE(α1(c)) = Varα1(c) + (IEα1(c) − α)2

subject to the constraint thatm(c)n(c) ≈ c, the approxima-
tions (9) and (10) suggest that the optimal choice ofm(c)

satisfies the asymptotic

m∗(c) ∼ (logc)/2η∗

as c → ∞. This asymptotic relation is supported by the
following CLT for α1(c); this is our main result in this
section.

Theorem 2.2 Assume Assumptions A1-A6. Sup
pose thatm(c) → ∞ and n(c) → ∞ in such a way that
n(c)m(c)/c → 1 as c → ∞. Then, ifm(c) = ba logcc as
c → ∞ wherea ≥ 1/2η∗,
1657
√
c

logc
(α1(c) − α) ⇒ √

aα(1 − α) N(0, 1)

asc → ∞, where⇒ denotes weak convergence and N(0, 1)

is a normally distributed r.v. with mean zero and uni
variance. On the other hand, ifm(c) = ba logcc with
0 < a < 1/2η∗, then

cη∗a
√

logc (α1(c) − α) ⇒ γ ∗
√

a

as c → ∞.

Proof. Defineχi(m)
4= I (X̄m(Zi) ≤ x). Note that

α1(c) − α = 1

n

n∑
i=1

χ̂i (m) + IP(X̄m(Z) ≤ x) − α,

where χ̂i(m) = χi(m) − IP(X̄m(Z) ≤ x) is the centered
version ofX̂i(m). Then,

α1(c) − α = 1√
n

(
n∑

i=1

χ̂i (m)√
n

)
+IP(X̄m(Z) ≤ x) − α.

Observe that for eachi, χ̂i(m) is a bounded sequence of
r.v.’s, it follows that the family{χ̂i (m(c)) : i = 1, . . . , n(c),

c > 0} is uniformly integrable. By Lemma A-1, the
Lindeberg-Feller theorem (ref. Billingsley 1995) holds here
That is, asc → +∞,

n(c)∑
i=1

χ̂i(m(c))√
n(c)

⇒ σN(0, 1),

whereσ = √
α(1 − α).

Sincen(c)m(c)/c → 1 andm(c) = ba logcc, we have
thatc/(n(c) logc) → a. Hence, by the converging together
theorem (ref. Billingsley 1995), we have that

√
c

logc

n(c)∑
i=1

χ̂i(m(c))

n(c)
⇒ √

aα(1 − α) N(0, 1) (11)

asc → ∞. On the other hand,

√
c

logc
(IP(X̄m(c)(Z) ≤ x) − α)

=
√

c

logc
m(c)−1/2e−η∗m(c)

· m(c)1/2eη∗m(c)(IP(X̄m(c)(Z) ≤ x) − α).
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We know that the second term converges toγ ∗ by Propo-
sition 2.1. For the first term, notice that

√
c

m(c) logc
e−η∗m(c) = c

1
2− η∗m(c)

logc ·
√

logc

m(c)
· 1

logc
.

converges to 0 asc → ∞ sincem(c)/ logc → a and by
assumption,1/2 − aη∗ ≤ 0. By the converging theorem,
we must have that√

c

logc
(IP(X̄m(c)(Z) ≤ x) − α) ⇒ 0 (12)

as c → ∞. Applying the converging together theorem
once again, we thus obtain the first result by combining t
converging results (11) and (12).

Similarly, if m(c) = ba logcc andaη∗ < 1/2, then, we
have

caη∗√
logc

n(c)
=
√

c

n(c)m(c)

√
m(c)

logc
caη∗−1/2 → 0.

as c → ∞. By the converging together theorem, we hav
that

caη∗√
logc

n(c)∑
i=1

χ̂i(m(c))

n(c)
⇒ 0 (13)

asc → ∞. Also, by the converging together theorem,

caη∗√
logc (IP(X̄m(c)(Z) ≤ x) − α)

= m1/2em(c)η∗
(IP(X̄m(c)(Z) ≤ x) − α)

·
√

logc

m(c)
exp(η∗(a logc − m(c)))

→ γ ∗
√

a
. (14)

as c → ∞. Finally, we obtain the second result by com
bining the converging results (13) and (14).

The proof of Theorem 2.2 actually shows that i
n(c)m(c)/c → 1 as c → ∞ with m(c)/ log(c) → +∞,
then √

n(c)(α1(c) − α) ⇒ √
α(1 − α)N(0, 1)
165
asc → ∞. It follows that if m(c)/ log(c) → ∞, then

[
α1(c) − z

√
α1(c)(1 − α1(c))

n(c)
,

α1(c) + z

√
α1(c)(1 − α1(c))

n(c)

]

is an approximate100(1 − δ)% confidence interval forα,
provided c is large andz is selected so thatIP(−z ≤
N(0, 1) ≤ z) = 1 − δ. A natural choice form(c) here
is to setm(c) = bacrc for a > 0 with r ∈ (0, 1). This
suggests the following confidence interval procedure fo
computingα.

Algorithm 2.1

Step 0. Initialization. Input c, ν, anda.

Step 1. Determine the sample sizes.Set (m, n)
4=

(acν, a−1c1−ν).
Step 2. Determineα̂. Set

α̂
4= 1

n

n∑
i=1

I


 1

m

m∑
j=1

Xj (Zi) ≤ x


 .

Step 3. Form the(1−ξ)×100%confidence interval
for α̂. A consistent estimate of the standard

error (s.e.),sα̂, of α̂ is
√

α̂(1−α̂)
n

sinceα̂ ∼ α.
The c.i. is then set to

[
α̂ − zξ/2sα̂, α̂ + zξ/2sα̂

]
,

wherezξ/2 is the ξ/2-quantile of a N(0, 1)

r.v.

In Section 4, we offer empirical data associated with
the performance of this confidence interval procedure forα.

We conclude this section with a discussion of an al
ternative estimator that is applicable when the probabilit
mass function ofZ is known. For example, in our telecom-
munications service provider example, it may be that th
distribution of the number of subscribers is modelled via
Poisson r.v. or binomial r.v., in which case the probability
mass function is known explicitly. In particular, suppose
that the simulationist:

1. has knowledge of the probability mass function
p(·) corresponding to the random elementZ;

2. has the ability to draw samples from the con-
ditional distribution IP(X ∈ · |Z = zi), for
eachzi (i ≥ 1).
8
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The estimator we have in mind here is

α2(m) =
∑

i

p(zi)I (X̄m(zi) ≤ x),

so that the sample size used to estimateIP(IE(X|Z = zi) ≤
x) is again outcome-independent. The computer time
quired to generateα2(m) is proportional tom multiplied by
the number of outcome values forZ. Thus, the estimator
can only be (exactly) computed when the number of ou
come values forZ is finite. Throughout the remainder o
this section, we will assume that this is the case. Then,m

scales linearly in the computer budgetc so that examining
the rate of convergence as a function ofm is equivalent to
studying the rate of convergence as a function ofc.

For i ≥ 1, let

κm(zi) = IP(X̄m(Z1) ≤ x|Z1 = zi)

if zi ∈ 0+ and let

κm(zi) = IP(X̄m(Z1) ≤ x|Z1 = zi)

if zi ∈ 0−. Then,

IEα2(m) − α =
∑
z∈0+

p(z)κm(z) −
∑
z∈0−

p(z)κm(z)

and

Varα2(m) =
∑

i

p(zi)
2κm(zi)(1 − κm(zi)). (15)

Assume that A1-A4 hold (and note that A5-A6) are auto
matic, in view of our finite outcome assumption). It follow
that Proposition 2.1 asserts that ifγ ∗ 6= 0, then

IEα2(m) − α ∼ γ ∗m−1/2 exp(−η∗m)

asm → ∞. Furthermore, (4) and (15) together imply tha

Var α2(m) ∼ β∗m−1/2 exp(−η∗m)

asm → ∞, where

β∗ =
∑
z∈B∗

p(z)2γ (z).

As a consequence, the mean square error satisfies
asymptotic relation

MSE(α2(m)) ∼ β∗m−1/2 exp(−η∗m)
165
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asm → ∞, so that the mean square error converges to ze
exponentially fast in this setting. Thus, in those setting
where it applies,α2(m) is to be preferred toα1(c), at
least asymptotically (for large computer budgets). Th
analysis also suggests that in the large-sample context
is the sampling of theZ-values (the “outer sampling”) that
contributes primarily to the variability ofα1(c) (rather than
the “inner sampling”).

3 ESTIMATION METHODOLOGY
WITH OUTCOME DEPENDENT
SAMPLING RATE

The large deviations asymptotics expressed by (4) assert t
the impact ofm on the rate at which the individual bias terms
in (3) go to zero is highly state-dependent. This sugges
that the amount of sampling necessary to mitigate the effe
of bias is highly outcome-dependent and that improve
algorithms for estimatingα can, at least in principle, be
obtained by permitting the “inner sample size”m to be
outcome- dependent. Our goal in this section is to explo
the potential increases in efficiency that can be obtained v
such an idea.

We start with the case in which the mass function ofZ

is known. In this case, a sampling plan is an assignment
sample sizesEm = (m(zi) : i ≥ 1) to each possible outcome
value ofZ, leading to the estimator

α3( Em) =
∑

i

p(zi)I (X̄m(zi )(zi) ≤ x).

The total computer time expended to calculateα3( Em)

is approximately proportional to
∑

i m(zi). Thus, given a
computer budgetc, this effectively acts as a constraint on∑

i m(zi). We wish to find a selection of the sample size
(m(zi) : i ≥ 1) which minimizes the mean square error o
α3( Em), subject to the constraint that

∑
i m(zi) ≤ c. We

will denote the corresponding estimatorα3(c).
Assume A1-A4. To simplify the (mathematical) techni-

cal issues involved, we will suppose, through the remaind
of this section, that the number of different outcome value
for Z is finite, so that A5 and A6 are also in force. Jus
as for the estimatorα2(m), the bias and variance ofα3( Em)

may easily be computed:

IEα3( Em) − α =
∑
z∈0+

p(z)κm(z)(z) −
∑
z∈0−

p(z)κm(z)(z)

and

Var α3( Em) =
∑

i

p(z)2κm(zi )(zi)
(
1 − κm(zi )(zi)

)
.

9
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The following result uses the above expressions
determine the optimal sampling planm∗ = (m∗

c (zi) : i ≥ 1)

(for large computer budgetsc) and the associated rate o
convergence.

Theorem 3.1 Assume A1-A4. Then, for any choic
of Emc = (mc(zi) : i ≥ 1) satisfying

∑
i mc(zi) ≤ c,

lim inf
c→∞

1

c
logMSE(α3( Emc)) ≥ −τ ∗

where

τ ∗ =
(∑

i

η(zi)
−1

)−1

.

Furthermore, if we choosem∗
c (zi) = bcτ ∗/η(zi)c,

lim
c→∞

1

c
logMSE(α3(m∗)) = −τ ∗.

Proof. We would like to minimize MSE(α3( Em)) with
respect to(m(zi) : 1 ≤ i ≤ K) whereK is the cardinality
of the outcome space ofZ. In order to make the minimiza-
tion problem a bit more tractable, we will determine som
bounds on MSE(α3( Em)). Specifically, we use the inequality
(
∑n

i=1 xi)
2 ≤ n

∑n
i=1 x2

i , to bound MSE(α3( Em)) by

MSE(α3) ≤ Var(α̂) + K
∑

z

p(z)2 γ (z)2

m(z)
e−2m(z)η(z)

≤ (K + 1)
∑
z∈0

p(z)2γ (z)e−m(z)η(z) (16)

by (4) since A1-A4 hold. Denote byV the term on the
right hand side (RHS) of the last inequality.

Now, let’s minimize (16) with respect toEm subject to∑
z m(z) = c andm(z) > 0 for all z. Let λ be the Lagrange

multiplier of the equality constraint. Taking partials wit
respect tom(z), the optimizerm∗(z) must satisfy

∂V

∂m(z)
= p(z)2γ (z)e−m∗(z)η(z) (−η(z)) + λ = 0.

In other words,

m∗(z) = −1

η(z)
log

(
λ

p(z)2γ (z)η(z)

)
.

Substituting the above expression form∗(z) into the equality
constraint, we deduce thatλ satisfies

− logλ = c −∑
z

1
η(z)

log(p(z)2γ (z)η(z))∑
z η(z)−1

.

166
Hence, we have derived the expression for the optimalm∗(z)

that minimizes the upper bound:

m∗(z) = η(z)−1c∑
w η(w)−1

+ η(z)−1 log(p(z)2γ (z)η(z))

− η(z)−1∑
w η(w)−1

∑
w

log(p(w)2γ (w)η(w))

η(w)
.

The minimized upper bound on MSE(α3( Em)) is thus equal
to

Vmin = K

(∏
z

(p(z)2γ (z)η(z))τ∗η(z)−1

)
e−τ∗c,

where τ ∗ 4= (
∑

z η(z)−1)−1. In other words, the upper
bound,V , on MSE(α3( Em)) is converging to zero exponen
tially fast at the rateO(e−τ∗c). Notice thatτ ∗ is largely
determined byη∗.

Let’s now examine a lower bound on the MSE. Notic
that, for largem(z),

MSE(α3( Em)) ≥ 1

2

∑
z

p(z)2 γ (z)√
m(z)

exp(−m(z)η(z))

since any one of two terms,IP(X̄m(z)(z) ≤ x) or IP(X̄m(z)(z)

> x) is greater than or equal to1/2.
Note that in order to drive MSE(α3( Em)) to 0, we

must have that theEmc that minimizes MSE(α̂) must satisfy
Emc ↗ +∞ for all z as c ↗ +∞. On the other hand, for
eachε > 0, there existsMε such that for allm ≥ Mε ,
m−1/2 ≥ exp(−εm). Combining these two remarks, we
have that for allε > 0, there existsCε such that for all
c > Cε

minMSE(α3( Em))

≥ min
1

2

∑
z

p(z)2γ (z) exp(−(η(z) + ε)m(z))

= constant· exp

( −c∑
z(η(z) + ε)−1

)
.

In other words, for allc > Cε ,

−1∑
z η(z)−1

≥ 1

c
log(minMSE(α̂))≥ −1∑

z(η(z) + ε)−1
.

This completes the proof.
Thus, the optimal choicem∗ (rather than, for exam-

ple, using constant sample sizes as forα2(m)) impacts the
exponential rate at which the mean square error conver
to zero. Of course, implementation ofα3(c) (= α3(m∗))

requires knowledge ofη(zi) for i ≥ 1. Note, however, that
0
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the formula form∗
c (zi) asserts that the most critical outcom

values are those for whichη(zi) is close to zero. In such a
setting, the corresponding “large deviations” involves loo
ing at events that are relatively more likely. Such a regim
is one in which the corresponding large deviations are r
atively more Gaussian (since the deviation involves a t
event that is relatively closer to the mean of the distribution
In sampling Gaussian r.v.’s with meanµ < x and standard
deviation σ , the likelihood of a deviation in the sample
mean greater thanx is approximatelyexp(−n(µ−x)2/2σ 2)

(in “logarithmic scale”). This suggests the approximatio
η(zi) ≈ (µ(zi) − x)2/2σ 2(zi) for i ≥ 1, whereµ(zi) and
σ(zi) are, respectively, the mean and standard deviation
the distributionIP(X ∈ · |Z = zi). Of course, for outcome
valueszi with largeη(zi), (µ(zi) − x)2/2σ 2(zi)

will not give a good approximation to itsη. As men-
tioned earlier, suchη(·)’s have a small contribution toτ ∗.
Hence, for eachzi , this heuristic would propose spending
a small portion of the computational budget to estima
(µ(zi)−x)2/2σ 2(zi), and then using this to estimateη(zi),
followed by “production runs” to computeα.

The algorithm below gives a practical methodology fo
the implementation ofα3(c).

Algorithm 3.1

Step 0. Initialization. Input c, 0 < r < 1, and
{p(zi) : i ≥ 1}.

Step 1. Estimate theη(·). Let m∗ = cr/K. For
each z, we samplem∗ X’s according to
IP(X ∈ · |Z = z) and set

η̂(z)
4= 1

2

X̄m∗(z)2

1
m∗−1

∑m∗
j=1(Xj (z) − X̄m∗(z))2

.

Step 2. Estimate the optimalmc(·). Let τ ∗ 4= ∑
z

η̂(z)−1. Setm(z)
4= η(z)−1c/τ ∗.

Step 3. Determineα̂. Set

α3(c) =
∑

z

p(z)I
(
X̄m(z)(z) ≤ x

) ;

i.e., we samplem(z) X’s under the d.f.
IP(X ∈ · |Z = z) and takeα3(c) as the
weighted sum of the indicator functions with
the weights being equal top(z)’s.

We conclude this section by discussing the use
outcome-dependent sampling in the context of random e
mentsZ for which the probability mass function is unknown
In this setting, we must resort to sampling theZi ’s, as for
the estimatorα1(c). Here, a sampling plan requires assign
ing, for a given computer budgetc, an “outer sample size”
166
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n = n(c). If outcomezi is sampled, then the “inner sample
size” m = mc(zi) is utilized. Forn large, the amount of
“inner sampling” at outcomezi will then be approximately
np(zi)mc(zi) by the LLN. Consequently, the sampling plan
Em = (mc(zi) : i ≥ 1) and n = n(c) must be selected so
that

∑
i p(zi)mc(zi) · n(c) ≈ c. This leads to the estimator

α4(c) = 1

n(c)

n(c)∑
i=1

I (X̄mc(Zi) ≤ x).

Here,

IEα4(c) − α =
∑
z∈0+

p(z)κm(z)(z) −
∑
z∈0−

p(z)κm(z)(z)

and

Var α4(c) = 1

n(c)
(IEα4(c))(1 − IEα4(c)).

An analysis very similar to that given in Section 2 forα1(c)

establishes the following CLT.

Theorem 3.2 Assume A1-A4. Suppose that fo
i ≥ 1, mc(zi) → ∞ and n(c) → ∞ in such a way
that n(c) ·∑i p(zi)mc(zi)/c → 1 as c → ∞. If mc(zi) =
ba(logc)c/η(zi) as c → ∞ wherea ≥ 1/2, then

√
c

logc
(α4(c) − α) ⇒ √

aνα(1 − α) N(0, 1)

asc → ∞, whereν = ∑
i p(zi)/η(zi). On the other hand,

if mc(zi) = ba(logc)/η(z)c asc → ∞ where0 < a < 1/2,
then

ca
√

logc(α4(c) − α) ⇒ (
∑

i

p(zi)γ (zi)η(zi)
1/2)/a1/2

as c → ∞.

Comparing Theorem 2.2 to Theorem 3.2, we see th
the qualitative form of the convergence rates and limit stru
ture is identical. Furthermore, Theorem 2.2 identifies th
optimal mean-square error achievable for a given (larg
value ofc as approximately(1/2η∗) · (logc/c) · α(1 − α),
whereas Theorem 3.2’s optimal mean-square error loo
asymptotically like(ν/2) · (logc/c) · α(1 − α). Hence, the
improvement obtained by using outcome-dependent sa
pling rates is asymptotically in proportion toη∗/ν.

As for the implementation ofα3(c), heuristics need to
be applied, in order to circumvent the difficulties inheren
in η(·) being unknown. The Gaussian heuristic suggest
earlier in this section is one alternative.
1
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When compared with that of Section 2, the anal
sis of this section suggests that use of outcome-depend
sampling, while an improvement on outcome independe
sampling, tends not to lead to “orders of magnitude” im
provement in convergence rates. In particular, the

√
logc/c

convergence rate is characteristic of both types of estimat
when the mass functionp(·) is unknown to the simulationist
(and must be estimated computationally). In view of th
ease of applicability ofα1(c), as well as its very general
domain of applicability, we recommend the use of this es
mator in lieu of additional problem structure that may shi
the choice elsewhere.

4 NUMERICAL RESULTS

In this section, we will report the numerical results o
the algorithms proposed in the Section 2. The examp
we have used is as follows: Assume that the conditioni

random elementZ
D= binomial(10, 0.4) and that conditioned

on Z = z, X
D= N(z/2 − 2.3, 1). The exact value of

α
4= IP(IE(X|Z) ≤ 0) is given by

4∑
z=0

IP(Z = z) =
4∑

z=0

(
10

z

)
0.4z0.610−z = 0.6331.

The proposed algorithm presented in this paper w
programmed in ANSI-C.We replicate the estimator 20
times. Denote by{α̂i (c) : i = 1, . . . , 200} the values of
the 200 replicates of the estimatorα1(c), given that the
computational budget is equal toc. We estimate the mean,
standard error, bias, and MSE of the estimator as follow

mean: set ᾱ(c)
4= (1/200)

∑200
i=1 α̂i (c);

s.e.: setsα̂(c)
4=
√

(200− 1)−1
∑200

i=1(α̂i(c) − ᾱ(c))2;

bias: set bα̂(c)
4= ᾱ(c) − α, whereα is the exact

theoretical value;

MSE: set MSÊα(c)
4= (200)−1∑200

i=1(α̂i(c) − α)2.

We chooseν = 0.2 in this example and apply Algo-
rithm2.1. Table 1 summarizes the numerical results.

To deduce the rate of convergence of the estimator,
plot thelog(MSE(c)) vs. logc and the plot (Figure 1) turns
out to be linear.

This suggests that MSE(c) ∼ V cλ for some constants
V andλ. We can estimatelogV andλ by they-intercept
of the plot and its slope respectively. The theoretical slo
and intercept are equal to−(1 − 0.2) = −0.8 and 0.7680
resp.; whereas the empirical slope and intercept are equa
−0.78 and 1.29 respectively. The slope estimate matche
the theoretical value quite well.
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Table 1:  Numerical Results for Algorithm 2.1

c mean s.d. bias log(MSE)/c

1024 0.6454 0.1226 0.0123 -0.0041
2048 0.6475 0.0963 0.0144 -0.0023
4096 0.6454 0.0784 0.0123 -0.0012
8192 0.6386 0.0589 0.0055 -0.0007

16384 0.6383 0.0468 0.0052 -0.0004
32768 0.6347 0.0352 0.0016 -0.0002
65536 0.6332 0.0251 0.0001 -0.0001

131072 0.6332 0.0189 0.0001 -0.0001

6 7 8 9 10 11 12
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

log(c)

lo
g(

m
se

)

A plot of log(mse) vs. log(c)

Figure 1:  Distribution Function Estimator for the Discrete
Case Example

Out of the 200 experiments, we tested the number o
times, N , the confidence intervals covered the true value
The corresponding estimated coverage probability is then s

to p̂
4= N/200. The standard error of the estimated coverag

probability is given by
√

p̂(1 − p̂)/200 and is expressed
inside the parenthesis beside the corresponding probabil
in the Table 2. All coverage probabilities converge to the
correct values.

Table 2:  Confidence Interval Coverage Probabilities of th
Discrete Case Example

c 90% cov. 95% cov. 99% cov.
1024 0.89 (0.02) 0.91 (0.02) 0.97 (0.01)
2048 0.89 (0.02) 0.93 (0.02) 0.98 (0.01)
4096 0.89 (0.02) 0.91 (0.02) 0.99 (0.01)
8192 0.91 (0.02) 0.95 (0.02) 0.98 (0.01)

16384 0.88 (0.02) 0.94 (0.02) 0.98 (0.01)
32768 0.90 (0.02) 0.95 (0.02) 0.99 (0.01)
65536 0.90 (0.02) 0.97 (0.01) 0.99 (0.01)

131072 0.91 (0.02) 0.97 (0.01) 1.00 (0.00)
2
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APPENDIX

Lemma A-1 Assume that the following conditio
hold:

1. the r.v.’s(Xc,j : j = 1, 2, . . . , n(c), c > 0) is
i.i.d. wheren(c) ↗ +∞ as c ↗ +∞;

2. IEXc,1 = 0, σ 2
c

4= IEX2
c,1;

3. limc→∞ σ 2
c = σ 2 ∈ (0, ∞);

4. the family{X2
c,1 : c > 0} is uniformly inte-

grable.

Then, {X2
c,i : i = 1, . . . , n(c), c > 0} satisfies the Linde

berg-Feller condition; namely,

lim
c→∞

1

σ 2
c

∫
|Xc,1|≥ε

√
n(c) σc

X2
c,1 dIP = 0

for all ε > 0.
Proof. We need to show that if Conditions 1–3 ho

then for allε > 0 andη > 0, there existsC(ε, η) such tha
for all c ≥ C(ε, η),

1

σ 2
c

IE
[
X2

c,1; |Xc,1| ≥ ε
√

n(c) σc

]
< η.

By Condition 3, we know that there exists̄C such that for
all c > C̄, σ 2

c ∈ (σ 2/2, 3σ 2/2). Let ξ = σ/
√

2. Then, for
all c ≥ C̄, we have thatσ 2

c ≥ ξ2. Now, by Condition 4 and
the assumption thatn(c) ↗ +∞ asc ↗ +∞, there exists
C(ε, η) ≥ C̄ such that

IE
[
X2

c,1; |Xc,1| > ε
√

n(C(ε, η)) ξ
]

< ηξ2 ∀c > 0.

Then, for allc ≥ C(ε, η),

1

σ 2
c

IE
[
X2

c,1; |Xc,1| ≥ ε
√

n(c) σc

]

≤ 1

ξ2
IE
[
X2

c,1; |Xc,1| ≥ ε
√

n(c) σc

]

≤ 1

ξ2
IE
[
X2

c,1; |Xc,1| ≥ ε
√

n(c) ξ
]

sincec ≥ C̄

≤ 1

ξ2
IE
[
X2

c,1; |Xc,1| ≥ ε
√

n(C(ε, η)) ξ
]

<
1

ξ2
· ηξ2 = η.
16
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Sinceε > 0 and η > 0 are arbitrary, we have proved the
lemma.
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