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ABSTRACT (1983), Landry et al. (1983), Sargent (1992), Balci (1994)
and Robinson (1999).
There is much interest in how to ensure that the results Another approach is to consider the critical success
obtained from a simulation model are accurate. This paperfactors in a simulation study. Raju (1982), Bean et al.
considers this from the perspective of three main sources 0f(1989), Law and McComas (1990) and Law (1993) all
inaccuracy: the modelling, the data and the discuss this issue, providing a list of critical success
experimentation. For each of these sources the causes ofactors. Although there are some variations in these lists,
inaccuracy are discussed and some advice is given on howmany common factors arise, among them are: support from
to overcome them. An illustrative model is used to senior management, the skills of the modeller, the
guantify some of the effects of inaccuracies in the data andrelationship between the modeller and the end-user,

the experimentation. involving the end-user, correct formulation of the problem,
the accuracy of the data, using the right simulation
1 INTRODUCTION software, the soundness/credibility of the model,

communication and timeliness of the work. The papers
The validity of a simulation model is typically defined as above all discuss the critical success factors from the
the model being ‘sufficiently accurate for the purpose at modeller's perspective. Robinson and Pidd (1998)
hand’ (Carson 1986). This suggests that the modeller andinterview the customers of simulation studies in order to
the decision-maker have some clear objective for understand their opinions on the factors critical to the
developing and using the model, and that there is a level of success of a simulation study.
accuracy that is required from the model if it is to achieve Meanwhile, others adopt the opposite approach, that
this objective. Because many simulation studies are is, understanding the reasons why simulation studies fail.
carried out to predict the performance of a real world Keller et al. (1991) argue that there are three main reasons
system, the level of accuracy required is often relatively why simulation projects fail: firstly, poor salesmanship
high, say 90% or more. The level of accuracy may be lesswhen introducing the idea to an organisation; secondly,
stringent when the model is primarily used for improving lack of knowledge and skills particularly in statistics,
the understanding of the real world system. experimental design, the system being modelled and the

This raises the question of how simulation modellers ability to think logically; and thirdly, lack of time to

can assure the accuracy of their models. Some haveperform a study properly. McHaney (1997) performs a
attempted to answer this question by giving advice to survey of simulation users and concludes that failed studies
modellers on how to go about developing and using are characterised by high costs and problems with the size
simulation models, for instance, Shannon (1975), and speed of the model. Law and McComas (1989) argue
Szymankiewicz et al. (1988), Sadowski (1989), Hoover that too much emphasis is placed on simulation software
and Perry (1990), Law and Kelton (1991), Ulgen (1991), selection and model coding in the belief that simulation
Dietz (1992), Musselman (1992), Nordgren (1995) and projects are merely a complex exercise in computer
Banks et al. (1996). Gogg and Mott (1992) and Robinson programming. In a similar way to above, three sets of
(1994) give detailed descriptions of each stage in the life- authors provide lists of reasons for simulation failure
cycle of a simulation study. Others discuss the question of (Annino and Russell 1979; McLeod 1982; Law and
assuring accuracy by concentrating on the requirements forMcComas 1989). To all intents and purposes, these lists
model verification and validation. Among these are Gass
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are simply the inverse of the critical success factors listed |ne-anival time

above. negative exponential distribution
This paper adopts the last approach by describing three  mean=1/0.7 minutes Teller 1

sources of simulation inaccuracy. Figure 1 provides a

simple outline of the modelling process, showing three key —

elements. The process mibdellinginvolves the modeller Qece

in understanding the problem to be tackled, the Teller 2

development of a conceptual (mental) model, and the

coding of a computer modelData are extracted from the

real world and are used in the mod@&xperimentations Senvice tire

then performed with the model to develop solutions to the negative exponential dstribution
real world problem and/or to increase the decision maker’s mean =2 minutes
understanding of the real world. It is failures in these three Figure 2: Simple Bank Queue Model

processes that are discussed in this paper. The discussion

not only centres on the causes of failure but also provides For an M/M/2 system, such as the one in Figure 2, queuing
some advice on how to overcome them. Before discussingmodels can be used to calculate performance measures as
these failures an example model is described that is usedfollows:

for illustrating their effect. Probability that there are no customers in the system:
Modelling P = 1
o (Alw?( 2u

1+A T p+—"— ———

2 2U-A

Average number of customers in the queue:
Data Simulation
Real world > odel L= w2

(2u-1)2

Average waiting time in the queue:

Experimentation
Lq
Wq = T
Figure 1: The Simulation Modelling Process (Simple
Outline) Where:
2 EXAMPLE MODEL FOR ILLUSTRATIVE A = arrival rate
PURPOSES u = service rate for eachservice point

For illustrative purposes, the results from a simulation

. . For the bank example these performance measures are
model and a queuing model of a simple bank queue are

compared. Details of the model are shown in Figure 2. as follows:

The queuing model has the advantage that it is able to give A=07,u=05

exact results on the performance of the system. By

introducing various errors into the simulation model and Fy=018Lg =135\ = 192

comparing the results to those obtained from the queuing

model, it is possible to quantify the effect of the errors on The average waiting time (V is used here for

the results for the bank example. Such comparisons arecomparing the simulation and queuing model results. After
made in sections 4 and 5. Obviously the effect of a performing 100 replications with the simulation model, each
modelling error is very much dependent on the specific of 6 hours of simulated time, there is a close agreement
model. Consequently, the results presented in this paperbetween the two modelling approaches, the simulation
should be taken as illustrations and not as general giving an average waiting time result of 1.88 minutes. This
statements about the size of errors caused by differentrepresents an error of only -1.8% which is not unexpected
modelling failures. since the simulation relies upon random sampling. Details
of these results can be found in section 5.1.
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Three Sources of Simulation Inaccuracy (and How to Overcome Them)

3 SOURCE 1: MODELLING
One of the main skills of an expert simulationist is his/her
ability to understand the problem to be tackled and
correctly identify the model that is required. It is also one
of the least understood skills (Willemain 1994; 1995).
Three problems that arise at this stage are now discussed.
First, if the problem situation is poorly understood
then a model of the wrong problem is likely to be
developed. Balci (1994) refers to this as a Type llI error.

caused by an inadequate sample size meaning that it is not
possible to make accurate inferences about the full
population of the data. Alternatively, the data may simply
not be available for collection because the real world
system does not yet exist, or because there is insufficient
time or money to obtain a significantly large enough
sample within the constraints of the project. In these cases,
the data are typically estimated, leading to uncertainties
concerning the accuracy of the estimates.

To illustrate the effect of inaccurate data the service

In order to avoid such an error the modeller needs to work time in the simple bank model is reduced and increased by

closely with the client organisation to develop a good
understanding of the problem situation. Various problem
structuring methods could be employed, for instance,
cognitive mapping (Eden et al. 1992) or soft systems
methodology (Checkland 1981). Meanwhile, Balci and
Nance (1985) describe a means for verifying the
formulated problem.

A second problem occurs when the wrong model is
developed for the problem situation. This is a result of poor

10%, giving values ofp 0.556 andp 0.455
respectively. The results from 100 replications are shown
in Figures 3 and 4. Figure 3(a) shows the estimated mean
waiting time, calculated as a cumulative average across the
replications, when the service time is underestimated by
10%. The high and low range of a 95% confidence
interval is shown by the dashed line. The expected value
of the mean, calculated from the queuing model with
accurate data (i.¢4 = 0.5), is also shown. What becomes

conceptual modelling. The conceptual model is a software immediately apparent is that there is a significant error in
independent description of the model that is to be constructed.the results obtained from the simulation model, the
This may either be a mental model or a model that is explicitly expected value of the mean not even falling within the
expressed possibly using a diagramming technique such as amange of the confidence interval after the first few

activity cycle diagram (Pidd, 1998). The development of

conceptual models is again poorly understood, albeit vital for

effective simulation modelling. Validation of the conceptual

replications.
Figure 3(b) shows the percentage error between the
results of the simulation model (cumulative mean queuing

model acts as an aid to ensuring that the conceptual model igsime) and the expected value of the mean calculated from
adequate. Such validation is discussed by Sargent (1992)the queuing model. This shows that for the simple bank

Balci (1994) and Robinson (1999).

Finally, having developed a conceptual model it is then
converted into a computer model by implementing it within
a simulation software package or coding it from scratch.

Failures can occur in this process of conversion leading to 10% overestimate in the service time.

errors in the model. Model verification is the means by

model a 10% underestimate in the service time data has
lead to an underestimate of more than 30% in the results of
the model after 100 replications.

Figures 4(a) and 4(b) show similar information for a
Here the error is
even greater, giving an overestimate in the order of 60%

which the modeller aims to ensure that the model has beenafter 100 replications.

converted into a computer model satisfactorily. Simulation
verification is discussed by various authors, for instance,
Sargent (1992), Balci (1994) and Robinson (1999).

4 SOURCE 2: THE DATA

4.1 The Data as a Cause of Inaccuracy

There are two main ways in which the data for a simulation

4.1.2  Poor Data Analysis

Poor analysis of the data that have been collected is a
second cause of modelling inaccuracies. Apart from
simple mathematical errors in the data analysis, a key area
of concern is whether the correct probability distributions
are used in the model. The effect of using the wrong
probability distributions is demonstrated by changing the

study can lead to inaccuracies in the results obtained fromservice time distributions to a gamma and normal

a model. The potential effects of failures in both these

areas are demonstrated with reference to the simple bankminutes.

example.

4.1.1 Inaccurate Data

The data that have been collected may in themselves be

inaccurate. This could be a result of poor data collection
methods leading to errors in the data.
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It could also be

distribution while maintaining a mean service time of 2
The gamma distribution represents a less
significant error than the normal distribution because it is
closer in shape to a negative exponential distribution, that
is, it is skewed to the left. The results are shown in Figures
5 and 6 respectively.

Figure 5(b) shows that there is an error of
approximately 25% caused by the use of the gamma
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Three Sources of Simulation Inaccuracy (and How to Overcome Them)

distribution, while the error from the use of the normal that are not available are no longer required for the
distribution is in the region of 45% (Figure 6(b)). In both simulation model.

cases the simulation is underestimating the mean waiting Ensuring that the correct statistical distributions are
time, suggesting that the operation of the bank will be employed in the model in part depends on the quality of the
better than it will in practice. The reduction in mean data that are available. Beyond that, various techniques
waiting time is a result of the selected gamma and normal exist which can help identify the best fitting distributions,
distributions reducing the variance in the service time over for instance, P-P plots, Q-Q plots and the chi-square test.

that obtained from the negative exponential distribution. These are embodied in a number of simulation analysis
packages, such as, ExpertFit (Averil M. Law and

4.2 Overcoming Inaccuracies Caused associates) and Stat::Fit (Geer Mountain Software). |If
by the Data there is some uncertainty over the correct distribution to

employ, then sensitivity analysis can prove a useful means
The results presented above suggest that inaccuracies in théor understanding the effect of using different statistical
data can lead to serious errors in the model’s results. It isdistributions.
vital, therefore, that every effort is made to ensure that the For more detailed discussions on data collection and
data are accurate. analysis, and distribution fitting, see Law and Kelton
If data have already been collected and are given to the (1991), Robinson (1994) and Banks et al. (1996).
modeller then it is important that the source of that data is
investigated with particular reference to the possibility of 5 SOURCE 3: THE EXPERIMENTATION
errors entering the information. The modeller should
ascertain who collected the data, how they were collected 5.1 The Experimentation as a Cause of Inaccuracy
and for what purpose. It is useful to draw graphs of the
data, such as scatter charts and histograms, to look for anyFour ways in which the experimentation can lead to
unusual patterns or outliers. The modeller must ensure thatinaccuracies in the results and conclusions drawn from a
the data are in the right format for the simulation and as simulation model are identified here.
such needs to be aware of how the simulation software
interprets any data that are entered. 5.1.1 Ignoring the Initial Transient Period
Where the data need to be collected careful
consideration should be given to the data collection Many simulation models pass through an initial transient
exercise. Samples should be carefully selected and anperiod before reaching steady-state (Law and Kelton
adequate sample size obtained. Efforts should be made tal991). It should be noted that other behaviours do exist,
ensure that errors in the data collected are avoided, or atparticularly transient models that never reach a steady-
least identified when they occur. One possibility is to cross state. Where a model does reach a steady-state the analysis
check the data against a second source. Again, the formashould ignore the transient period in order to avoid any
of the data required for the simulation software must be bias in the results. The modeller has two options for
taken into account. achieving this. One is to run the model for a warm-up
For those data that cannot be collected one option is to period before collecting any results. The other is to place
estimate the data. As the results above show, however,the model in a realistic starting condition at the beginning
small errors in these estimates can lead to larger errors inof the run, completely removing the transient period.
the results. It is important, therefore, to perform a To illustrate the potential effects of ignoring the initial
sensitivity analysis by varying estimated data to ascertain atransient period, the bank model has been run with a
measure of their effect on the final results. The results may starting condition of five customers in the queue. After
be insensitive to the accuracy of the estimates, in which 100 replications the mean waiting time result is 1.97
case no further action need be taken. Alternatively, they minutes. The result without the starting condition included
may be highly sensitive, in which case efforts should be is 1.88 minutes (see section 2) representing an error of -
made to obtain more accurate estimates, or the results 0f4.57%.
the sensitivity analysis should be reported so the decision
maker can assess the risk involved in various courses 0f5.1.2 Insufficient Run-Length or Replications
action. Another approach is to regard these data as
experimental factors and ask the question: what values doA second inaccuracy occurs in experimentation when the
these data need to attain to achieve the desired result? Thisun-length is too short or there are insufficient replications.
is appropriate where the decision maker has some controlWhen the author was involved in modelling an engine
over the values of these data. If neither of these assembly line the results indicated a significant shortfall in
approaches should suffice then it may be necessary tothroughput based on a simulation run of one week of
reduce the scope of the simulation study such that the dataproduction. It was not until the model was run for a much
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longer period that it was realised that the random sampling 5.1.3 Insufficient Searching of the Solution Space
in the model was leading to particularly poor results for the
first week, and that the average throughput was much Simulation experimentation entails changing the levels of
higher than indicated by the one week run. the experimental factors in order to obtain a better
Again the modeller is faced with two options for understanding of the model's behaviour and to seek out
overcoming this problem. The first is to run the model for target or optimum levels of performance. If only a limited
longer, the second is to perform multiple replications (re- number of experiments are performed then the quality of
running the model with different random number streams). the findings will be limited. In other words the modeller
In general multiple replications are preferred since the runs will only gain a partial understanding of the model's
are independent and so confidence intervals can be easilybehaviour, and there is a risk of finding just local optima,
calculated. Long runs do have the key advantage, or reaching the target performance, but without the
however, that the warm-up period need only be run once optimum combination of levels for the experimental
for each experimental scenario, saving on experimentation factors. By not searching the solution space sufficiently,
time. Long runs also have an intuitive appeal in that the the conclusions drawn from the experimentation with the
operations that are being simulated work similarly on a model are likely to be erroneous, which in itself is a source
rolling basis; a week cannot be replicated in practice! of inaccuracy.
Figure 7 illustrates the effect of performing different

numbers of replications with the bank model. Here the model 5.1.4 Not Testing the Sensitivity of the Results
parameters are set to the correct levels. What this shows is
that if the modeller only performed one or two replications The need to test the sensitivity of the results to data about
then the results would be more than 30% inaccurate. Aswhich there are uncertainties is discussed in section 4.2.
expected, when the number of replications is increased, so theBeyond this, the robustness of the solution should also be
trend is a reduction in the inaccuracy. After 100 replications tested. This entails changing the data in the model and
the simulation gives a mean waiting time result of 1.88 determining at what points the proposed solution (the
minutes which represents an error of only -1.8%. levels of the experimental factors) is likely to alter. It may
be that the solution is very robust and is applicable across a
wide range of values for the data. On the other hand, only
i small perturbations in the data may lead to shifts in the

R proposed solution. Such analysis is necessary because
there are always uncertainties in the real world. As a
result, any proposed course of action identified by a
simulation model should as far as possible be robust, or at
least the potential effects of uncertainties should be
understood as much as possible.

»

Mean waiting time (mins)
O O P P NN W W

58856888885

b T L L L
O 2 P 404 H © MV & D 1052 Overcoming Inaccuracies Caused
Nunier of regications by the Experimentation

o)

(8) Mean Waiting Time and Expected Mean The inaccuracies described above can largely be overcome
by adopting sound experimental procedures. Various
methods exist for identifying the initial transient period.
Welch's method (Welch 1983; Law and Kelton 1991) is a
popular one.

The run length of a model is in some cases determined
by a natural end point such as the end of the day in service
systems or the end of the week when a weekly production

B N
8 8 8

% error il’ll estimate
B
8

20 schedule is being tested. Such simulations are referred to
0O as ‘terminating’. For the situation where no natural end
000 H--H- - H A point exists (a ‘non-terminating’ simulation), Robinson
0 D VP O L O BV H D 10/(1995) describes a method for determining a suitable run-
NLer of replicatiors length.
The number of replications required is normally
(b) Error in Mean Waiting Time determined by continuing to perform replications until a

_ o sufficiently narrow confidence interval is obtained. Law
Figure 7: Effect of the Number of Replications on the and Kelton (1991) and Robinson (1994) discuss the use of
Accuracy of the Results
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confidence intervals for selecting the number of modellers and simulation consumers alike on the need to

replications required. make every effort possible to minimise all potential
A series of experimental design techniques exist that sources of inaccuracy.

aid in the efficient searching of the solution space. They

can also help in performing sensitivity analysis. A useful REFERENCES
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