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ABSTRACT 

High resolution population distribution data are vital for successfully addressing critical issues ranging 
from energy and socio-environmental research to public health to human security.  Commonly available 
population data from Census is constrained both in space and time and does not capture population 
dynamics as functions of space and time.  This imposes a significant limitation on the fidelity of event-
based simulation models with sensitive space-time resolution.  This paper describes ongoing development 
of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, 
through spatial data integration and modeling with behavioral or activity-based mobility datasets for 
representing temporal dynamics of population.  The model is resolved at 1 km resolution globally and 
describes the U.S. population for nighttime and daytime at 90m. Integration of such population data 
provides the opportunity to develop simulations and applications in critical infrastructure management 
from local to global scales. 

1 INTRODUCTION 

High resolution population distribution data are essential for successfully addressing critical issues 
ranging from socio-environmental research to public health to homeland security (Dobson et al. 2000; 
Bhaduri et al. 2002, 2005, 2007; Chen 2002; Hay et al. 2005; Sutton et al. 2001).  Typically population 
data are reported by administrative or accounting units.  For example, in the U.S., the source for 
population data is the U.S. Census Bureau, which reports population counts by census blocks (smallest 
polygonal unit), block groups (aggregated blocks), and tracts (aggregated block groups).   

From a spatial perspective, Census data are limited by Census accounting units (such as blocks), and  
there is often great uncertainty about the spatial distribution of residents within those accounting units.  
This is particularly apparent in suburban and rural areas, where the population is dispersed to a greater 
degree than urban areas.  At any resolution, a uniform population distribution is assumed and the 
population figures and demographic characteristics are typically associated with block (polygon) 
centroids.  In geographic analyses these points are considered representative of the population for census 
polygons and represent key initial conditions for models.  For example, calculation of travel time to health 
care providers considers these centroids as the starting points for travel.  For exposure and risk analyses, 
these centroids often serve as "receptor" points for calculating exposure or dosage from any dispersed 
agent.  Traditional spatial modeling approaches commonly include intersection of census data with 
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buffers of influence to quantify target population, using either inclusion-exclusion (of the centroids) or 
area-weighted population estimation methods.  However, it is well understood that uniform population 
distribution is the weakest assumption and by considering census polygon centroids as representative of 
population, all analytical approaches are very likely to overestimate or underestimate the analytical 
results.   

From a temporal perspective, Census counts represent “residential” or “nighttime” population and its 
usage in a daytime event simulation is illogical.  Because of this uncertainty, there is significant potential 
to misclassify people with respect to their location from, for example pollution sources, and consequently 
it becomes challenging to determine if certain sub-populations are actually more likely than others to get 
differential environmental exposure.   

2 BACKGROUND 

2.1 Spatial Decomposition of Census Data 

Decomposition of population distribution estimates has been recognized as a key issue in spatial research 
and applications.  A number of interpolation and decomposition methods have been developed to address 
this issue with census (polygonal) population data; namely area-weighted interpolation, pycnophylactic 
interpolation, dasymetric mapping, and various smart interpolation techniques.  Areal weighted 
interpolation is the simplest of the methods where a regular grid is intersected with the Census polygon 
and each grid cell is assigned a value based on the proportion of the polygon contained in each cell 
(Goodchild and Lam 1980, Goodchild, Anselin, and Deichmann 1993, Mennis 2003).  This method 
implies an assumption of uniform distribution of population which is not a realistic solution for 
decomposition of population data.  Pycnophylactic interpolation extends areal weighting methodology by 
applying a smoothing function to the raster cell values, with the weighted average of its nearest neighbors, 
iteratively while preserving the total population count of the polygon (Tobler1979).  This method creates 
a continuous surface which contradicts the obvious discontinuous nature of population distribution.  
Dasymetric modeling is analogous to areal interpolation but uses ancillary spatial data to aid in the 
interpolation process.  The ancillary spatial data is at a finer spatial resolution and the variability in its 
values enables an asymmetric allocation of population values.  Land cover/land use is the best example in 
this respect where different land cover or land use categories for each cell can be used as weighting 
functions for population distribution such that urban areas will have a higher weight than forested areas 
(Figure 1) (Mennis 2003, Wright 1936, Langford and Unwin 1994). 

 

 
Figure 1. A schematic explanation of dasymetric interpolation technique. 
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 Smart interpolation, in principle, is a multidimensional version of dasymetric model where the 
allocation refinement comes from more than one ancillary data sources which are at a finer resolution 
than the population polygon (Langford and Unwin 1994, Cohen and Small 1998).  Utility of such 
interpolation techniques at local scales are well documented. 

2.2 Temporal Decomposition of Population Data 

Modern censuses are designed for medium to long term planning purposes and account for nighttime 
residential population.  Temporal scales of these planning activities require a general geographic 
assessment of population described through their residential locations, and such assessments are adequate 
to address such planning processes.  In the U.S., block level temporal dynamics are captured at decadal 
scale while county level dynamics are assessed yearly.  Not much attention has been paid to the formal 
assessment of population dynamics at finer temporal scales ranging from seasonal to monthly to daily and 
hourly.  Movement of population during a day results directly from people traveling to their locations of 
daytime activities (employment, business, educational institutions, and recreational locations) away from 
their residences [3].  The patterns of such population displacements depend on the relative geographic 
distribution of residential and business areas.  In most modern societies, these two activity locations are 
distinctly separated in space, and employment or business locations contain fewer residences compared to 
businesses.  Consequently, a large number of people move into these areas while only a few leave 
resulting in a substantial swelling in the daytime population of that area.   Motivation to formalize the 
concept of non-residential and daytime population distribution roots predominantly in two areas.  First, it 
has been well-perceived that understanding of the daytime population distribution provides a very 
competitive economic advantage as businesses are enabled to target specific consumer bases depending 
on their locations and convenience of access during the majority of the 24-hour period when people are 
out of their residences.  In recent years, a stronger requirement for understanding daytime population has 
emerged from the emergency preparedness and response community to assess the at-risk population from 
the threats of technological and natural disasters, and deliberate attacks on human lives such as terrorist 
events. 
 Development of daytime population distribution models and databases is significantly more 
challenging as it requires further integration and modeling of activity based datasets into the residential 
population distribution model.  In 2004, the U.S. Census Bureau released the following three daytime 
population distribution data tables based on the 2000 Census (U.S. Census Bureau 2000): 

 
 1. Leading Places on Percent Change in Daytime Population, by Size  (202 highly populated cities) 
 2. The United States, States, Counties, Puerto Rico and Municipalities  
 3. Selected Places by State  (6524 communities) 
  
 However, these data sets only take into account commuting worker population in an area.  The best 
spatial resolution of these data is still at the community level (small cities) and thus is appropriate for 
general purpose planning. 

3 ESTIMATION OF HIGH RESOLUTION POPULATION DISTRIBUTION  

3.1 LandScan: A Data Driven Approach 

Geospatial data and models offer novel approaches to decompose aggregated Census data to finer spatial 
and temporal units.  Our approach, known as LandScan, involves multi-variable fusion of physical and 
social data that may or may not be in explicitly spatial formats to model and visualize relevant 
characteristics of human behavior, natural process evolution, and landscape changes over space and time.  
This has resulted in the finest global population distribution model and database ever produced using 
worldwide imagery and other spatial data (Dobson et al. 2003; Bhaduri et al. 2002).   
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 The LandScan population distribution model involves collection of the best available census counts 
(usually at sub-province level) for each country and four primary geospatial input datasets, namely land 
cover, land use, roads, slope, and other physiographic features that are key indicators of population 
distribution.  Dasymetric modeling uses ancillary spatial data at a finer spatial resolution to augment the 
interpolation process.  The spatial discontinuity and attribute variability in the ancillary data allows an 
asymmetric and discontinuous allocation of population (Eicher and Brewer, 2001; Mennis, 2003).  A 
number of ancillary databases, such as land cover and land use, roads, cultural landmarks, at spatial 
resolutions finer than Census blocks are spatially integrated in this allocation modeling approach to 
distribute the total number of population reported for a spatial enumeration unit, for example, a Census 
block.  Land cover/land use is one of the most relevant example in this respect (Monmonier and Schnell 
1984; Reibel and Agrawal 2006) where different land cover or land use categories for each cell can be 
used as weighting functions for population distribution.  For example, urban areas will have a higher 
weight than forested areas and hence higher population.  LandScan Global, at 30 arc-seconds or 
approximately 1 km cell size, is derived through advanced spatial data integration.  However, this model 
represents an ambient population or an average distribution over a 24-hour period and hence residential 
population is underestimated and some population is assessed at likely locations of daytime activities 
such as roads and commercial areas. 
 We have further developed this approach where a large number of disparate and misaligned spatial 
data sets can be spatiotemporally correlated and integrated in an activity-based modeling (ABM) 
framework to understand, model, and visualize the dynamics of population (Bhaduri 2007; Bhaduri et al. 
2007).  LandScan USA represents a model and database for the U.S. which separately describes 
population distribution at 90m spatial resolution for nighttime (residential) as well as daytime scenarios 
(Figure 2).  Locating daytime populations requires not only census data, but also other socio-economic 
data including places of work, journey to work, and other mobility factors such as daytime business and 
cultural attractions/populated places datasets.   

 
 

Figure 2: Diurnal dynamics of population distributions in Washington, DC, USA are modeled with 
LandScan USA high resolution population data. 
 
 An important aspect of daytime population distribution is the geospatial scale at which it is estimated.  
Theoretically, the finest spatial resolution achievable through the map algebra technique described above 
is directly tied to the finest scale of the available input data.  For example, the U.S. Census Bureau 
collects worker commuting data at the census tract level and reports national daytime population 
distribution at the county level.  It also reports estimates of daytime population for key cities in each state.  
Similar city-level estimates of daytime population from government and commercial sources are available 
for Japan (Japanese Statistics Bureau 2000), Canada, and the U.S.  All these data sets appear to be heavily 

845



Bhaduri, Bright, Rose, Liu, Urban, and Stewart 
 
focused on worker population movement during the day and the data is presented through vector data 
models (points and polygons).  For example, daytime population fluxes are restricted to individual county 
and city boundary polygons.  Some commercial databases represent individual activity locations as points 
which potentially offer high spatial accuracy, but mostly account for worker population at individual 
business locations.  In reality, the datasets necessary to comprehensively estimate daytime population 
exist in the forms of points and polygons which makes it challenging to create a high resolution 
population distribution through simple map algebra analysis.  It requires integration of disparate spatial 
data and advanced geospatial modeling where the spatial model enables decomposition of the input data 
into finer spatial resolutions and represented through a uniform raster or gridded dataset.  Development of 
daytime population distribution has been discussed in detail by Bhaduri (2008). 

4 ASSESSING POPULATION DYNAMICS AT HIGH TEMPORAL RESOLUTION 

Beyond an average daytime representation, as with the case of LandScan USA, there is considerable 
interest in understanding time variant population distributions at finer temporal scales ranging from 
minutes to hours.  Facility or land use based approach in LandScan USA allocates population strictly 
within critical infrastructures and activity structures and fails to account for mobile population or 
population in transition along the transportation infrastructures.  A couple of approaches are prevalent in 
simulating population dynamics at finer temporal scales.  

4.1 Interpolation and Occupancy Based Approach 

Interpolation based methodology for visualizing and analyzing diurnal population change for 
metropolitan areas has been developed as early as the early 1980s (Goodchild and Janelle 1984). 
Inherently, enhancing the temporal resolution is achieved through a high-resolution spatial representation 
of human activities, which in turn requires exact locations of facilities or critical infrastructures coupled 
with representative representation of human usage of those facilities.  Kobayashi et al. (2009) utilized 
areal interpolation within a geographic information system to create twenty-four (one per hour) 
population surfaces for the larger metropolitan area of Salt Lake County, Utah from population data at the 
transportation analysis zone level in fifteen-minute increments available from the U.S. Department of 
Transportation. The resulting surfaces represent diurnal population change for an average workday and 
are easily combined to produce an animation that illustrates population dynamics throughout the day.  In 
this context, we utilize the concept of “facility occupancy curves” that represent the number of people 
occupying those facilities over time (Figure 3).   
 

 
Figure 3. Conceptual representation of occupancy curves for two different activity locations or facilities. 
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 Utilizing a time-driven simulation approach, the state of every cell is recomputed at regular intervals 
of time. This is done by sweeping through the cell space and applying each cell’s transition rules.  In the 
case of LandScan USA, baseline nighttime population of every 90m cell could be extrapolated with a 
population buildup function and reaching the maximum value during the daytime, followed by a 
depopulation function that brings the population back to the nighttime baseline level.     

4.2 Transportation Simulation Based Approach 

Transportation modeling and simulation approaches can be utilized to describe and visualize movement 
of population along transportation networks. These approaches also represent the general methodological 
principles of moving vehicles along transportation networks. In particular, micro-simulations of traffic, 
vehicular and pedestrian, can generate very fine temporal resolution population distribution data.  A 
number of existing transportation simulation models characterize the interaction between the human 
dynamics and transportation infrastructure, and require the integration of three distinct components, 
namely, data, models, and computation.  These include detailed physical models of transportation 
engineering, such as are found in CORSIM (U.S. DOT 1997), TRANSIMS (Smith et al. 1995, Fisher 
2000), VISSIM (Bloomberg and Dale 2000), and OREMS (Bhaduri, Liu, and Franzese 2006, Franzese 
and Han 2002).  LandScan data has been successfully integrated with transportation micro-simulations, 
via a vehicle occupancy ratio, to realistically emulate movement of population.  Commuting patterns for 
individual demographic groups (such as school children) can be simulated in finer temporal resolutions to 
assess potential impact from atmospheric pollution to commuting school children (Shankar et al. 2005; 
Xue et al. 2008).  A popular scenario is evacuation modeling which can be considered as a special 
situation where the movement of people is expected to have certain specific directionality since the 
objective is to move population residing inside a geographic area across and outside its boundary 
(Bhaduri et al. 2009). 

5 LIMITATIONS AND FUTURE RESEARCH 

High resolution, data driven development of population distribution and dynamics models across 
geographic scales is an emerging frontier for geospatial modeling and simulation. High resolution 
population databases, such as LandScan USA, are imminently expected to enhance the current fidelity of 
spatial analysis, modeling, and decision support activities in application domains across the areas of 
homeland security, emergency preparedness and response, socio-environmental studies, and public health, 
and consequently allow evaluation of existing policy.  Qualitative and quantitative verification and 
validation of the modeling parameters and quality assessment analysis demonstrate a high degree of 
precision and locational accuracy for the LandScan USA model and database.  As discussed earlier, 
relative distribution of the population in and around activity locations are rather subjective and based on a 
number of logical assumptions made by the analysts.  This clearly introduces some level of subjective 
variability and uncertainty to the reported population for individual cells.  Currently the LandScan USA 
database does not provide any measure of such variability or uncertainty and we acknowledge this to be a 
critical issue.  Geospatial and temporal dynamics of population are complex social processes.  
Consequently, effective characterization of such population dynamics requires development of high 
resolution spatial and temporal models that adequately capture social complexity and its influence on 
human movement patterns.  As the resolution of available spatial data increases (for example parcel level 
data are now being collected and distributed by most state and local governments), it is logically possible 
to increase the resolution of population distribution models to the corresponding resolution.  Model 
validation, however, is the most burdensome, but also the most critical and least explored, aspect of 
population dynamics modeling. Lack of consistent data about the movement of population at a suitable 
resolution in both time and space has been the single greatest barrier to validation, but recent advances in 
technology are poised to overcome this problem. Location services have become ubiquitous in mobile 
phones, personal digital assistants, and in vehicles themselves. This data, if it were available to the 
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community of modelers, could be used routinely for validation in the context of typical, day-to-day 
population flow.  Over a period of several years, this validation activity and the consequent refinement of 
models will significantly reduce the discrepancies in the outcomes of different simulation tools. 
 For interpolation based approaches, the mathematical nature of these facility occupancy functions 
(shape of these occupancy curves) could be theoretically modeled, however, developing them empirically 
from available data is desirable but requires a significant volume of observation data.  Increasing 
availability of observation-based geographic data along with volunteered geographic information through 
social media platforms, such as Twitter, presents an opportunity for empirical development and 
characterization of population occupancy curves.  Research efforts are underway to explore optimal 
approaches for utilizing conventional observation and measurement data, and unconventional sources 
(social media) for assessing and quantifying uncertainty in such population distribution databases to be 
reported in the future. 
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