
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

AGGRESSIVENESS/RISK EFFECTS BASED SCHEDULING IN TIME WARP

Vittorio Cortellessa

Computer Science and Electrical Engineering
CEMR, West Virginia University

Morgantown, WV 26506-6109, U.S.A.

Francesco Quaglia

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, ITALY

e
is

n
fo
t
o
n
n
s

e

s
o
o
ts

w

ily
e
ly
n

fo
n

s
-
n
s
e

),
d

i-
nd
-
s

ts
the
e

el
r

e,
ly

w
ir
ts
r-
s

ge
e
it

o-
ul-

S
y

y
the
.
g

he

l

ABSTRACT

The Time Warp synchronization protocol for parallel discret
event simulation is characterized by aggressiveness and r
The former property refers to greediness in the executio
of unsafe events. The latter one refers to greediness
the notification of new events produced by aggressive eve
execution. Both these properties are potential sources
rollback occurrence/spreading. In this paper we presen
scheduling algorithm for the selection of the next LP t
be run on a processor which tends to keep low the joi
impact of these two properties on the experienced amou
of rollback. Reduction of negative effects of aggressivene
and risk is achieved by giving higher priority to the LPs
whose next event has low probability to be undone du
to rollback and has low fan-out that is, notifies few new
events. Our algorithm differs from most previous solution
in that they miss a direct control on the effects due t
risk. These solutions could originate poor performance f
applications with high variance of the number of new even
notified which is an indicator of the risk associated with
event execution.

1 INTRODUCTION

“Optimism” underlying the Time Warp synchronization pro-
tocol for parallel discrete event simulation (Jefferson 1985
has been defined, see (Reynolds 1988), as the union of t
distinct properties:aggressivenessandrisk. Aggressiveness
is the property by which the logical processes (LPs) greed
execute simulation events without taking into account th
event safety. Risk is the property by which the LPs greedi
notify new events produced by aggressive (unsafe) eve
execution. Both these properties are potential sources
causality errors, therefore they directly determine the amou
of rollback, and thus the final performance perceived.

A primary way to bound the effects of aggressivenes
and risk on rollback consists of a direct control on opti
mism. This includes throttling (Ferscha 1995, Ferscha a
Luthi 1995, Srinivasan and Reynolds 1998), time window
(Lubachevsky, Weiss and Shwartz 1989, Sokol, Brisco
40
k.
n
in
t
r
a

t
t

s

r

)
o

t
r
t

d

and Wieland 1988, Steinman 1993, Turner and Xu 1992
risk free synchronization (Dickens and Reynolds 1990) an
others (Ball and Hoyt 1990, Madisetti, Hardaker and Fuj
moto 1993). Interested readers can refer to (Srinivasan a
Reynolds 1998) for a recent classification of control strate
gies. However, for simulations of large/complex system
it is extremely likely that multiple LPs are hosted by the
same processor, therefore a form of control on the effec
of aggressiveness/risk should be implemented also at
level of the scheduling algorithm for the selection of th
next LP to be run on a processor.

Controlling the effects of aggressiveness at the lev
of the scheduling algorithm means scheduling with highe
priority the LPs whose next event is recognized to hav
based on some criterion, lower probability to be eventual
rolled back. Controlling the effects of risk means taking
a scheduling decision as a function of the number of ne
events to be notified, namely the fan-out, and also of the
timestamps. Specifically, an event producing new even
with lower timestamps should be executed promptly; othe
wise, upon the delivery of the new events their timestamp
get more likely to be lower than the local virtual time (LVT)
of the recipient LPs, thus causingprimary rollbacks. On
the other hand, the execution of an event producing a lar
number of new events that is, with large fan-out, should b
thwart by the scheduling algorithm; otherwise, in case
is undone, there is high likelihood ofsecondaryrollbacks
due to a large number of antimessages.

In this paper we introduce an adaptive scheduling alg
rithm, namely Aggressiveness/Risk Effects based Sched
ing (ARES), aimed at keeping low the joint impact of
aggressiveness and risk on the amount of rollback. ARE
first selects a set of candidate LPs to be run, in the wa
that their next event shows low probability to be eventuall
undone; then it chooses an LP among the candidates in
way to minimize the number of new events to be notified
Adaptiveness relies in that the first step of the schedulin
decision is performed using performance feedback from t
simulation.

ARES is designed as a modification of the classica
Lowest-Timestamp-First algorithm (LTF) with aim at re-
9

Cortellessa and Quaglia

a
o
e
s
e
av
n

e
e

s,
as
e
g
f
d
o

nt
st

n
low

ld
f
re
on
pe
m

es

S
a
a

s.
l-
.

e

on
).

in
ne
t

l-

.
-

n

l
In
e

r
ir

).
r
w
e
y
he
s
st

-
at

e

t
e

h
e

g
d
y,
t
s
h

as

i-
l-

d
n-
e
te
s

ducing the effects of risk. Adaptiveness guarantees th
ARES shows performance which is at least equal to that
LTF. The know-how to apply ARES consists of knowledg
of the fan-out of each event type. In most simulation
this can be obtained off-line by the event code structur
Nevertheless, for the case of code branching or loops h
ing an impact on the fan-out, a light run-time predictio
mechanism could be coupled with ARES.

Timestamps of events that have not yet been produc
(which are actually a risk index) are not considered in th
scheduling decision performed by ARES. In other word
risk associated with an event execution is quantified only
a function of the fan-out of the event. This design choic
derives from two reasons. First, the issue of reducin
the effects of risk on primary rollbacks as a function o
timestamps of future events has been already addresse
(Ronngren and Ayani 1994). Second, reducing the effects
risk on rollback giving higher priority to low fan-out event
is likely to produce an additional performance improveme
due to a possible reduction of the real communication co
Specifically, undoing an event with low fan-out implies
low waste of communication time because few notificatio
messages must be revoked, and, furthermore, we get
communication overhead due to antimessages.

Target applications for ARES are simulations that cou
heavily suffer from risk effects, such as simulations o
network protocols with broadcast/multi-cast queries whe
the number of new events notified by an event executi
could assume highly different values depending on the ty
of event executed. This class of protocols encompasses so
protocols for Web document retrieve among peer proxi
(Fan et al. 1998, Wessel and Claffy 1998).

The performance improvements achievable usingARE
are quantified through a performance study of a classic
synthetic benchmark on a cluster of PCs connected by
high speed Myrinet switch.

The remainder of the paper is organized as follow
Section 2 presents an overview of existing scheduling a
gorithms. In Section 3 the ARES algorithm is introduced
Performance data are reported in Section 4.

2 RELATED WORK

The standard solution for the scheduling problem is th
Lowest-Timestamp-First algorithm (LTF), which always
schedules the LP having as next event to be executed the
with the minimum timestamp (Lin and Lazowska 1991
LTF implicitly assumes that the event with the minimum
timestamp has the lowest probability to be rolled back
the future of the simulation execution as it is the closest o
to the Global-Virtual-Time (GVT) that is, the commitmen
horizon of the simulation.

Another scheduling algorithm, namely Lowest-Loca
Virtual-Time-First (LLVTF), gives higher priority to LPs
410
t
f

.
-

d

in
f

.

e

l

e

having lower LVTs (Preiss, Loucks and MacIntyre 1994)
In particular, LLVTF chooses for the execution the non
executed event of the LP with the lowest LVT value. As
the LVT of the LP moves up to the event timestamp upo
the execution, the objective of this scheduling algorithm
is to reduce the probability for any LP to remain back in
simulated time.

In (Palaniswamy and Wilsey 1994) an Adaptive Contro
based scheduling algorithm (AC) has been presented.
this solution, statistics on the past behavior of an LP ar
collected to establish the “useful work” of the LP (computed
as the frequency of committed events of the LP); highe
priority is assigned to the LPs having higher values of the
useful work.

A rather different solution, namely Service Oriented
scheduling (SO), is presented in (Ronngren andAyani 1994
The idea behind this solution is to try to produce and delive
as soon as possible events not yet produced that will have lo
timestamps. This is done in order to promptly deliver thes
events to the recipient LPs, thus reducing the probabilit
of timestamp order violations. Such an approach needs t
capability of the LPs to predict the timestamps of event
that have not yet been produced. SO gives the highe
scheduling priority to the LP whose next event will produce
the event with the minimum predicted timestamp.

A Probabilistic scheduling algorithm (P) has been pre
sented in (Som and Sargent 1998). The consideration
the basis of this algorithm is that low amount of rollback
can be obtained if the event selected for execution is th
one with the minimumreal probability to be rolled back in
the future; this event may be different from that with the
minimum timestamp. In this solution statistics on the pas
behavior of the LPs are maintained in order to estimate th
probability for the next event of any LP to be not rolled
back in the future. The event of the LP associated wit
the highest estimated probability value is selected for th
execution.

In (Quaglia 2000) a State Based scheduling algorithm
(SB) has been presented. In this algorithm, the schedulin
priority of any LP is computed using state information relate
to the LPs in its immediate predecessor set. Specificall
higher priority is assigned to the LPs, if any, whose nex
event could be rolled back only conditional a rollback occur
on an LP in their immediate predecessor sets. If no suc
an LP is detected at the scheduling time, then SB acts
the classical LTF.

Finally, in (Quaglia and Cortellessa 2000) a Grain Sens
tive scheduling algorithm (GS) has been presented. This a
gorithm gives higher priority to the LPs having non-execute
events with low timestamp values and small expected gra
ularity. This solution tends to delay the execution of larg
grain events that, if rolled back, could produce large was
of CPU time. Delaying the execution of these events make
lower their probabilities to be eventually undone.

Cortellessa and Quaglia

o

u
o

f
e
e
t
ls

t

e

e
n

n

s

o

o

r

r

y,

n-
es

s

s

,
to
ve

k
.
f

r

.

s-
Most of these algorithms, except SO, do not take int
account directly the effects of risk in the scheduling decision
SO takes these effects into account at some extent beca
the scheduling decision relies on predicted timestamps
new events that have not yet been notified. Differently from
SO, ARES quantifies the effects of risk as a function o
the event fan-out, instead of timestamp values. Therefor
ARES is expected to provide better performance for th
case of simulations with high fan-out variance for differen
event types. As pointed out before, simulations of protoco
for data retrieve on the Web could exhibit this feature.

3 AGGRESSIVENESS AND RISK
EFFECTS BASED SCHEDULING

In this section the ARES algorithm is described. We firs
discuss the mathematical background for the algorithm, the
we describe the algorithm structure. Finally we report som
considerations on long-term effects of ARES.

3.1 A Tradeoff Between Aggressiveness
and Risk Effects

In Figure 1 the event queues of four LPs hosted by th
same processor are shown, restricted to non-executed eve
Labeled circles represent events and arrows exiting circle
represent new events that will be produced by the eve
execution. As an example, eventa of LP1 produces three
new events, while eventf of LP4 produces only one new
event.

i
i

i

i i
i

�
s

�
sU

�
s

s
-

�
sU

LP1

LP2

a b

c

LP3

LP4

d e

f

simulated time

Figure 1: Event Queues of the LPs and Future Notification

Out of any scheduling policy, but satisfying causality
constraints (i.e. timestamp ordering at each LP), the set
events candidate to be executed isS = {a, c, d, f }. The
classical LTF algorithm would schedule LP2 for running,
becausec is the event with minimum timestamp and, in the
common belief, it should have the lowest probability to be
eventually undone. This choice has the direct objective t
bound the effects of aggressiveness on rollback.

Associated with each eventx ∈ S there is also risk,
whose effects on rollback are a function of the numbe
411
.
se
f

,

n

ts.
s
t

f

of new events produced, namely the fan-out, and of thei
timestamps. As stated in the Introduction, we limit our
approach by quantifying the effects of risk only as a function
of the fan-out. This solution aims at bounding the spreading
of secondary rollbacks due to antimessages and, additionall
shows the potential for reducing the real communication
cost.

For each event inS we can define the following simple
model for the effects due to risk. Let us denote withP(x)
the probability for an eventx ∈ S to be eventually undone
if selected for the execution and withf o(x) the fan-out of
the eventx. Then the model can be expressed as:

C(x) = P(x) · f o(x) (1)

In other words,C(x) measures the expected number of an-
timessages associated with the undoing of eventx. While
building the model we have implicitly assumed that the
strategy for sending antimessages is aggressive that is, a
timessages are sent as soon as the LP rolls back and undo
x. Correction factors could be introduced to cope with lazy
strategies. According to our perspective, in which times-
tamps are discarded in the evaluation of risk effects,C(x)

is actually a measure for the effects of risk.
Coming back to the example in Figure 1 we get that

the eventd has risk effectsC(d) = 0, although it could
contribute to rollback due to aggressiveness effects (thi
effect can be quantified asP(d)). Overall, according to the
common belief,c is the event whose aggressiveness effect
should be minimal, as it has the lowest timestamp; on the
other hand, as stated by the model in (1),d is the event
whose risk effects should be minimal. As a consequence
LP2 represents the best scheduling choice with respect
aggressiveness effects (as its next event is supposed to ha
the minimum probability to be eventually undone), while
LP3 represents the best scheduling choice in terms of ris
effects (as its next event does not notify any new event)
In the next section we show how to manage this tradeof
in practice.

3.2 Managing the Aggressiveness/Risk
Effects Tradeoff

In order to manage the tradeoff of previous section, we
exploit some ideas presented in the GS scheduling algorithm
in (Quaglia and Cortellessa 2000). Specifically, in that pape
a solution for constructing flexible scheduling decisions as a
function of the granularity of the events has been presented
This solution relies on a notion of Scheduling Interval (SI)
associated with a so-called Scheduling Window (SW).

Specifically, denoting withmin_ts the minimum times-
tamp value among all the events in the setS (recall that this set
contains the next events of the LPs hosted by the same proce
sor), the authors noted that events belonging toS and having

Cortellessa and Quaglia

d

t

k

n

i

s

e
-
o
e
l
d

e

e
e

4
p

th
e

th

ict)

t

ng
in
el
is
ds
ady
r

al
st
g
l,
of
ld

or

r

-
s a
a-
re
n
the
m

t it
oes
ct

l-
g
ro
ical
al
ase

e
e

timestamp in narrow time proximity tomin_ts are likely
to have about the same probability to be eventually rolle
back if selected for the execution. In other words, given
a simulated time interval SI= [min_ts, min_ts + SW], if
an adequate value for SW is selected then all the even
belonging toS and having timestamp within SI are likely to
have about the same probability to be eventually rolled bac
as the event with the minimum timestampmin_ts. This
intuition is supported by some empirical results reported i
(Quaglia and Cortellessa 2000).

In our context, the interval SI can be used to identify a
set of non-executed events such that the aggressive execut
of whichever event belonging to this set is likely to produce
the same aggressiveness effects on rollback as the no
executed event with the minimum timestamp. We call thi
set as Low Aggressiveness Effects Set (LAES). This set
can be formally defined as:

LAES = {x | (x ∈ S) ∧ (timestamp(x) ∈ SI)} (2)

LAES allows us to manage the previous tradeoff in practic
since it provides multiple events, originating low aggres
siveness effects, among which the event to be selected f
the execution should be determined in order to minimize th
effects of risk as modeled by equation (1). This is the fina
objective of the ARES scheduling algorithm to be presente
in the next section.

Finally we underline that the notion of SI allows also
the simplification of the model in (1) when restricting the
model itself to the events belonging toLAES. Specifically,
the probability valuesP(x) associated with all the events
x belonging toLAES can be approximated with a single
probability value that we denote asP . Therefore, for any
eventx belonging toLAES, the model can be rewritten as:

C(x) = P · f o(x) (3)

We refer to the model in (3) as theapproximated model. The
validity of this model obviously derives from the adequacy
of the value of SW determining the interval SI which, in
its turn, defines the setLAES.

3.3 The Algorithm Structure

From considerations in previous section it comes out tha
the structure of ARES should be: (i) to compute for any
event belonging toLAES the value of the cost function
in equation (3) and then (ii) to select for the execution
the event associated with the minimum cost. Note that th
approximated model in (3) is such that the identification
of the event inLAES associated with the minimum cost
means in practice identifying the event associated with th
minimum fan-out, therefore we can derive the final structur
of ARES as shown in Figure 2.
412
s

on

n-

r

t

There exists the possibility that multiple events inLAES
have minimum fan-out. It this case, the selection in line
of the algorithm should resolve ties according to timestam
values. Specifically, among multiple events, the one wi
the minimum timestamp should be selected following th
classical approach underlying the LTF algorithm.

Two points still remain to be touched. The first is how
to select the length of the interval SI (that is, the leng
of the scheduling window SW); this point will be shortly
discussed below. The second is how to compute (pred
the fan-out of the events inLAES, which is needed in line
4 of the algorithm; this point will be discussed in the nex
subsection.

For what concerns SW, and therefore the scheduli
interval SI, it is intuitively true that the value to be selected
order to ensure the validity of the approximated cost mod
in (3) could change while the simulation progresses. Th
is because the rollback behavior of the simulation depen
on several parameters that do not necessarily reach a ste
state. While for a given real time interval it would be bette
keeping a narrow SW, during a different real time interv
it could be kept larger. Tuning dynamically SW to the be
suited value contributes to high flexibility of the schedulin
decision without invalidating the approximated cost mode
and thus without leading to an increase of the effects
aggressiveness on rollback. Large values for SW cou
lead ARES to select for the execution an eventx whose
timestamp is sensitively larger thanmin_ts. Depending
on the instant this happens, it could actually impact (
not) the validity of the approximated model sinceP(x)
could be sensitively larger (or not) than the probability fo
the event inLAES having the minimum timestamp to be
eventually rolled back. Adequate dynamical tuning of SW
should overcome this problem.

Similarly to the GS algorithm in (Quaglia and Cortel
lessa 2000), the length of SW can be recalculated a
function of the variations of a reference performance p
rameter, whose value can be monitored on-line. Mo
precisely, an initial value of zero is selected for SW; the
SW is increased/decreased depending on variations of
performance parameter. The authors of the GS algorith
discussed how SW must be a global parameter in tha
must have the same value on all the processors. If this d
not happen, then no effective monitoring of the real impa
of its value on performance can be implemented.

This type of tuning allows ARES to adapt the schedu
ing decision to the (dynamic) behavior of the overlayin
application. In addition, if the tuning leads the value ze
to be selected for SW, then ARES behaves as the class
LTF algorithm. This points out how ARES has the potenti
to recover towards a standard scheduling behavior in c
performance loss is noted.

In our implementation of ARES we have selected th
event rate, namely committed events per time unit, as th

Cortellessa and Quaglia
1 if S 6= ∅
2 then
3 <compute the setLAES = {x | (x ∈ S) ∧ (timestamp(x) ∈ SI)} >;
4 <select for execution an evente ∈ LAES such that∀e′ ∈ LAES f o(e) ≤ f o(e′) >
5 else<no action>

Figure 2: ARES Structure
th
e
od
is

te
e

te
e
of

et
e

is

),
ed
s

a
ns
ng

tio
d
d

n-

te
c

th
u
ll,
in
be
no

at
e

ct
ed
e
of
y,
.

ts
e

en
ge
d

e
s
a
e

to
reference performance parameter for the adaptation of
length of SW, which is realized as follows. We suppos
the simulation execution as divided in periods, each peri
consisting of a fixed number of executed events. SW
initially set to zero (therefore ARES initially behaves like
LTF). At the end of every period statistics on the event ra
are collected from each processor. If the event rate do
not decrease, then SW is increased by a fixed quantityαinc.
Otherwise, there is evidence that the value of SW adop
in the last period may be too large thus invalidating th
approximated model in (3) and originating an increase
aggressiveness effects. In this case SW is decreased
αdec = h× αinc with h > 0 (in case SW is less thanαdec,
it is set to zero). The step for the decrease withh > 1
allows quick recovery towards a classical simulation ass
namely LTF scheduling, if successive decreases of the ev
rate are noted. In our implementation we select forh the
value 2. The idea behind the dynamical recalculation
to try to provide large values for SW (that should allow
more flexible decisions as a function of the effects of risk
provided that the assumption underlying the approximat
model in (3) is verified (i.e. no increase of aggressivene
effects originating performance loss is noted).

For what concerns the value ofαinc, it could be selected
as a function of several application specific features such
event density, timestamp increment distribution functio
and so on. In (Quaglia and Cortellessa 2000) the followi
general rule has been introduced:αinc = T/10 with T
being the average value among the means of the distribu
functions for the timestamp increment. More sophisticate
application-tailored solutions could be however envisage

3.3.1 Computing the Fan-Out

Line 4 of the algorithm requires the knowledge of the fa
out of the events belonging toLAES. In most simulations
it is usual to have multiple event types, each one associa
with a given code. All the events belonging to a specifi
event type have the same expected fan-out value. If
code of an event type is deterministic, then the fan-o
value for the events of that type is deterministic as we
and it can be determined off-line by the code designer,
a totally transparent way to the user. This value can
used by ARES. The same thing happens for the case of
413
e

s

d

by

,
nt

s

s

n
,
.

d

e
t

n

deterministic code containing branches and/or loops th
have no effects on the fan-out. Instead for the case of cod
structure with branches or loops that can have a real effe
on the fan-out of the associated event type, the expect
fan-out must be estimated on-line. This could be don
using samples related to the recently executed portion
the simulation. The estimate can be computed infrequentl
in order to not produce probing effects on the simulation

3.4 Considerations on Long-Term Effects of ARES

Any event undone by rollback could originate arollback
tree. In Figure 3 two possible rollback trees due to the
undoing of the eventsc and f , depicted in the example
in Figure 1, are shown. Each tree contains all the even
that have been undone consequently to the undoing of th
event at the root of the tree. For example,tree(c) shows
that, afterc has been undone, two LPs roll back due to
antimessage receipt. These LPs undo, respectively, sev
and four events. Some of these events require antimessa
sending that, in its turn, produces rollback on other LPs an
so on. Undoing the eventf generates a similar rollback
tree (also this tree is shown in Figure 3).

b b b b b b b
b
�
��
 ?

?

?

f

tree(f)

b
b b b bb b b b b b b��= SSw

�
��

�
��
 ?

C
CCW??

..
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

...................
................

�
.. W

... ?
..

U
...

c

tree(c)

Figure 3: Rollback Trees

It is straightforward that the real rollback tree can be
drawn only after the rollback occurrence. This is becaus
rollback spreading depends on relative positions of the LVT
of the LPs. In other words, an antimessage produces
rollback (or not) depending on its timestamp and on the valu
of the LVT of the recipient LP at the time the antimessage
is received.

However, independently of LVT positions, the fan-out
associated with an event determines then-arity of the root
of the rollback tree since as many antimessages have

Cortellessa and Quaglia

n
h

l
t

i
,

r
n

io
n

d

a
y
r
n

i

h

is
h
n
y

n
n

r
is

es-
M
rd

ng
ons
p
cal
t
ng
ry
of

s.
ries
ion
ni

he
y
d
ng
nd
stic
or
D
in
ize
it
r

of
Cs
s,

of

nt
w
B

f
p

an
s.
s
re
ge
he
ges
r

be sent as the fan-out value. The depth of a rollback tre
with a large rootn-arity is likely to be larger than the one
of a tree with a small rootn-arity. This is because many
antimessages are more likely to let the rollback survive tha
few antimessages. The larger the difference between t
n-arities, the higher the probability that this presumption
reveals true. This is a support to the idea that ARES shou
be likely to reduce rollback for applications with high fan-ou
variance among distinct event types.

Finally we outline that ARES tends to eraseentire
rollback trees. Specifically, delaying any risky eventx has
the effect to makex more likely to be committed because its
timestamp distance from the GVT does not increase (this
due to the monotonic increase of the GVT). In other words
a throttling effect on the eventx is originated. This means
a reduction of the probabilityP(x) for x to be eventually
undone that, according to the cost model in (1), will furthe
reduce the effects of risk on rollback and on communicatio
cost.

4 PERFORMANCE DATA

In this section we report a performance study of ARES
conducted using a parameterized synthetic benchmark. Pr
to presenting the results, we describe the testing environme
the benchmark itself and the performance parameters w
have observed.

4.1 Testing Environment

The experiments reported in this paper were all performe
on a cluster of 4 PCs Pentium II 300 MHz (128 MB RAM)
running LINUX as operating system, interconnected by
high speed Myrinet switch based on wormhole technolog
This type of architecture is actually an emerging one fo
parallel applications due to cost vs performance reasons a
also to expansibility/modifiability.

Any PC is connected to the Myrinet switch through
an interface implemented on a card consisting of a LANa
processor equipped with local memory and supports fo
DMA. The LANai’s memory is mapped into the address
space of the host PC, therefore it can be accessed eit
directly or using DMA. The LANai processor runs acontrol
program that performs send and receive operations. Th
program can be designed according to requirements of t
specific application. Depending on the structure of the co
trol program and of the associated message passing la
run at the host PC, messages at the receiver side can
buffered into the host PC memory or into the memory o
board of the interface card and then transferred on dema
into the host memory. We have developed a high spee
layer, namely Minimal Fast Messages (MFM), tailored fo
optimizing the delivery delay of small size messages. Th
layer results therefore well suited for parallel simulation
414
e

e

d

s

r
t,
e

.

d

r

er

e
-
er
be

d
d

applications where the amount of data associated with m
sages/antimessages transmission is typically small. In MF
the buffering at the receiver side is done into the on boa
memory of the interface card.

In our Time Warp system, message exchange amo
LPs hosted by the same machine does not involve operati
of the MFM layer. There is an instance of the Time War
kernel on each processor. The kernel manages the lo
event list (resulting as the logical collection of the inpu
queues of the local LPs) and schedules LPs for runni
according to the selected scheduling algorithm. Memo
space for new entries into the input and output queues
the LPs is allocated dynamically using classicalmalloc()
calls. Therefore there is no pool of pre-allocated buffer
The same dynamical approach has been used for ent
of the stack storing saved state vectors. The cancellat
phase is implemented following the aggressive policy (Gaf
1985). Fossil collection is executed periodically.

4.2 Benchmark and Performance Parameters

In order to test the effectiveness of ARES, we have used t
synthetic benchmark known as PHOLD model, originall
presented in (Fujimoto 1990). PHOLD consists of a fixe
number of LPs and of a set of jobs (messages) circulati
among the LPs. Both the routing of jobs among the LPs a
the timestamp increments are taken from some stocha
distributions. Although a set of standard benchmarks f
parallel discrete event simulation does not exist, PHOL
is in practice one of the most used ones for two main ma
reasons: (i) its parameters (e.g. event execution time, s
of the state vectors, etc.) can be easily modified, (ii)
usually shows a rollback behavior similar to many othe
synthetic benchmarks and to several real world models.

The PHOLD model we have considered is composed
32 homogeneous LPs evenly distributed among the 4 P
of the cluster. There are two distinct job (message) type
namely A and B. When an event associated with a job
type A is executed, the effect is the production ofn new jobs
such that: (i) one new job is of type A, (ii) the remaining
n−1 jobs are of type B. Instead, the execution of an eve
associated with a job of type B does not produce any ne
event. Therefore, events associated with jobs of type
have fan-out equal to zero, whilen indicates the fan-out
of the events associated with jobs of type A. This kind o
event generation rules are depicted in Figure 4. Timestam
increments associated with new jobs are selected from
exponential distribution with mean 10 simulated time unit

Any value ofn ranging from one to several dozens i
likely to produce stable system behavior in that buffers a
likely to not overflow and, at the same time, the messa
population (i.e. the amount of messages circulating in t
system) does never get lower than the amount of messa
of type A initially inserted in the system. Obviously large

Cortellessa and Quaglia

f
a

,

e
n
d

f

n
e

n
e

s

e

n
n

s
i
t

r

s
nt

s
s

nt

ed

S
ith

t

k

ty
t
y
e

e

r
n

ial
e

a

-HHHjS
S
S
Sw

-

:
:

A A

B

B no new job
B

n-1

Figure 4: Job Generation Rules

values forn determine larger variance for the fan-out o
simulation events. In our experiments we have selected
initial job population of 1 job of type A per LP and we have
variedn from 1 to 9. Given previous job generation rules
whenn = 1 only jobs of type A circulate in the system.

As respect to job (message) routing, we have selected
uniform approach, that is any new job is equally likely to b
sent to any LP independently of the job type. The processi
time for any event has been fixed at about 140 microsecon
State saving is performed before the execution of any ne
event and the cost to copy the state vector has been fix
at about 70 microseconds.

We report measures related to the following performanc
parameters:

• The rollback frequencythat is, the ratio between
the number of rollbacks and the total number o
executed events, and theaverage rollback length
that is, the average number of undone events b
each rollback occurrence. These two paramete
allow us to point out whether (and how) different
scheduling algorithms determine changes in th
final rollback pattern and thus in the amount o
rollback.

• The antimessages frequencythat is, the number
of antimessages per time unit. This paramete
points out the possible saving of communicatio
cost of one scheduling algorithm vs another. W
decided to consider this parameter in the analys
because ARES could actually produce a reductio
of the amount of antimessages that have to be se
This parameter allows us to quantify this possibl
reduction.

• The event ratethat is, the number of committed
events per time unit. This parameter indicate
how fast is the simulation execution with a given
scheduling algorithm, it is therefore representativ
of the final performance perceived.

As stated before, the event rate acts also as a refere
performance parameter for the tuning of the scheduling wi
dow SW in ARES. For the present experiments, the perio
for the recalculation of SW is fixed at 10000 executed even
per processor. When the period expires at a given proces
that we identify as the master for the recalculation, th
processor collects statistics on the performance parame
s.

41
n

an

g
s.
w
ed

e

f

y
rs

e

r

is
n
t.

ce
-
d
ts
or

s
er,

recalculates the value of SW and notifies it to the othe
processors.

We report the average observed values of previou
parameters, computed over 20 runs all done with differe
seeds for the random number generation. At least 2× 106

committed events have been simulated in each run. A
reference scheduling algorithm to point out the effectivenes
of ARES we have selected LTF.

4.3 Results

The obtained results, reported in Figures 5 through 8, poi
out that when the value ofn is set to 1, LTF and ARES
produce exactly the same performance. This is an expect
behavior sincen = 1 means that only jobs of type A (with
fan-out equal to 1) circulate in the system. Therefore ARE
always selects for the execution the non-executed event w
the lowest timestamp.

From the results in Figure 5 and in Figure 6 we have tha
for any value ofn larger than 1, LTF shows lower rollback
frequency, up to 26%, but exhibits longer average rollbac
length, up to 30%. Multiplying the rollback frequency by
the average rollback length we get the so calledefficiency
of the simulation. This parameter represents the probabili
for whichever event to be not eventually rolled back; i
is therefore representative of the amount of rollback. B
the obtained results we get that ARES allows slightly mor
efficient execution.

0 1 2 3 4 5 6 7 8 9 10
n (fan-out jobs of type A)

0.040

0.050

0.060

0.070

0.080

0.090

0.100

0.110

0.120

ro
llb

ac
k

fr
eq

ue
nc

y

LTF
ARES

Figure 5: Rollback Frequency vsn

Beyond rollback behavior in terms of efficiency, a rel-
evant result comes out from the strong reduction of th
number of antimessages under ARES whenn is larger than
1. In particular, plots in Figure 7 show that the numbe
of antimessages per time unit is reduced up to 20% whe
ARES is used. As already discussed this has the potent
for a strong reduction of the real communication cost du
to a reduction of the antimessage overhead and also to
reduction of the amount of revoked notification message
5

Cortellessa and Quaglia

e
It

r
se
of
e

on
s
e

al
e
s

h

-
ng

-

0 1 2 3 4 5 6 7 8 9 10
n (fan-out jobs of type A)

1.0

1.5

2.0

2.5

3.0

av
er

ag
e

ro
llb

ac
k

le
ng

th LTF
ARES

Figure 6: Average Rollback Length vsn

0 1 2 3 4 5 6 7 8 9 10
n (fan-out jobs of type A)

800.0

1000.0

1200.0

1400.0

1600.0

an
tim

es
sa

ge
s

fr
eq

ue
nc

y

LTF
ARES

Figure 7: Antimessages Frequency vsn

The slightly higher efficiency, together with the strong
reduction of the communication cost whenn is larger than
1 point out how ARES actually produces better schedulin
decisions (in terms of real effects of aggressiveness an
risk on performance) when there exists at least minimum
variance for the fan-out of the events. Plots in Figure 8
show the maximum performance gain of ARES is abou
10% and is noted forn = 6 andn = 9.

As last consideration we note that whilen increases
up to 6, the event rate under both algorithms grows due
an increase in the efficiency. Instead, for larger values o
n the efficiency remains stable therefore we get a sensib
decrease of the event rate due to higher cost of the eve
list management originated by larger job population.

5 SUMMARY

In this paper we have presented a scheduling algorithm f
the selection of the next LP to be run on a processor i
Time Warp simulations. The algorithm aims at reducing th
effects of both aggressiveness and risk on performance.
41
g
d

t

to
f
le
nt

or
n

0 1 2 3 4 5 6 7 8 9 10
n (fan-out jobs of type A)

10000.0

11000.0

12000.0

13000.0

14000.0

ev
en

t r
at

e

LTF
ARES

Figure 8: Event Rate vsn

differs from most previous solutions in that they conside
exclusively the effects of aggressiveness and discard tho
associated with risk. We have tested the effectiveness
the algorithm using a classical synthetic benchmark. Th
obtained results point out the viability of our solution in the
reduction of the amount of rollback of the simulation (due
to both aggressiveness and risk) and the real communicati
cost associated with risk. The impact of this reduction i
an increase of the speed of the simulation execution. Th
performance gain is relevant for the cases of non-minim
variance of the amount of new events to be notified by th
execution of different event types. This algorithm result
therefore suited for all those simulations exhibiting this
feature.

REFERENCES

Ball, D. and S. Hoyt. 1990. The adaptive Time-Warp
concurrency control algorithm. InProceedings of the
SCS Multiconference on Distributed Simulation, 174-
177.

Dickens, P.M. and P.F. Reynolds Jr. 1990. SRADS wit
local rollback. InProceedings of the SCS Multiconfer-
ence on Distributed Simulation, 161-164.

Fan, L., P. Cao, J. Almeida and A.Z. Broden. 1998. Sum
mary cache: a scalable wide-area web cache shari
protocol. In Proceedings of the ACM Sigcomm’98,
254-265.

Ferscha, A. 1995. Probabilistic adaptive direct optimism
control in Time Warp. InProceedings of the 9th Work-
shop on Parallel and Distributed Simulation (PADS’95),
120-129.

Ferscha, A. and J. Luthi. 1995. Estimating rollback over
head for optimism control inTimeWarp. InProceedings
of the 28th Annual Simulation Symposium, 2-12.
6

Cortellessa and Quaglia

c

.

g

s
e
r

o

r

u

t
t

:
nt
e

e.
-

of

n

e

1
r-

in
.

m-
d
ci-
r
d-

llel
g.
ces

m-
a
an
”
i-

n-
g,
of
ree
as
d
d

Fujimoto, R.M. 1990. Performance of Time Warp unde
synthetic workloads. InProceedings of the SCS Mul-
ticonference on Distributed Simulation, 22(1).

Gafni, A. 1985. Space management and cancellation me
anisms for Time Warp.Tech. Rep. TR-85-341, Uni-
versity of Southern California, Los Angeles (Ca,USA)

Jefferson, D. 1985. Virtual time.ACM Transactions on
Programming Languages and Systems, 7(3):404-425.

Lin, Y.B. and E.D. Lazowska. 1991. Processor schedulin
for Time Warp parallel simulation. InAdvances in
Parallel and Distributed Simulation, pp.11-14.

Lubachevsky, B., A. Weiss and A. Shwartz. 1989. Rollbac
sometimes works ... if filtered. InProceedings of the
1989 Winter Simulation Conference, 630-639.

Madisetti, V.K., D.A. Hardaker and R.M. Fujimoto. 1993.
The MIMDIX environment for parallel simulation.
Journal of Parallel and Distributed Computing, 18:473-
483.

Palaniswamy. A.C. and P.A. Wilsey. 1994. Schedulin
Time Warp processes using adaptive control technique
In Proceedings of the 1994 Winter Simulation Confer
ence, 731-738.

Preiss, B.R., W.M. Loucks and D. MacIntyre. 1994. Effect
of the checkpoint interval on time and space in Tim
Warp. ACM Transactions on Modeling and Compute
Simulation, 4(3):223-253.

Quaglia, F. 2000. A state-based scheduling algorithm f
Time Warp synchronization. InProceedings of the 33rd
Annual Simulation Symposium, 14-21.

Quaglia, F. and V. Cortellessa. 2000. Grain sensitiv
event scheduling in Time Warp parallel discrete even
simulation. InProceedings of the 14th Workshop on
Parallel and Distributed Simulation (PADS’00), 173-
180.

Reynolds, P.F. Jr. 1988. A spectrum of options for pa
allel simulation. InProceedings of the 1988 Winter
Simulation Conference, 325-332.

Ronngren, R. and R.Ayani. 1994. Service oriented sched
ing in Time Warp. InProceedings of the 1994 Winter
Simulation Conference, 1340-1346.

Som, T.K. and R.G. Sargent. 1998. A probabilistic even
scheduling policy for optimistic parallel discrete even
simulation. InProceedings of the 12th Workshop on
Parallel and Distributed Simulation (PADS’98), 56-63.

Sokol, L.M., D.P. Briscoe and P.A. Wieland. 1988. MTW
a strategy for scheduling discrete events for concurre
execution. InProceedings of the SCS Multiconferenc
on Distributed Simulation, 34-42.

Srinivasan, S. and P.F. Reynolds Jr. 1998. Elastic tim
ACM Transactions on Modeling and Computer Simu
lation 8(2):103-139.

Steinman, J. 1993. Breathing Time Warp. InProceedings of
the 7thWorkshop on Parallel and Distributed Simulation
(PADS’93), 109-118.
41
r

h-

g

k

s.
-

r

e
t

-

l-

Turner, S.J. and M.Q. Xu. 1992. Performance evaluation
the bounded Time Warp algorithm. InProceedings of
the 6thWorkshop on Parallel and Distributed Simulatio
(PADS’92), 117-126.

Wessel, D. and K. Claffy. 1998. Internet cach
protocol (ICP). Version 2, 1998. <http://ds.
internic.net/rfc/rfc2186.txt> .

AUTHOR BIOGRAPHIES

VITTORIO CORTELLESSA received his Laurea degree
in Computer Science from University of Salerno in 199
and his Ph.D. degree in Computer Engineering from Unive
sity of Rome “Tor Vergata” in 1995. He has been visiting
research associate at CERC (West Virginia University)
1994, and post-doc fellow at ESA (Esrin, Rome) in 1996
He is currently research assistant professor with the Co
puter Science Department of West Virginia University an
research associate with the Department of Computer S
ence Systems and Production of University of Rome “To
Vergata”. His research interests include performance mo
eling and evaluation of software/hardware systems, para
simulation, software requirement specifications engineerin
He serves as a referee for several international conferen
and journals.

FRANCESCO QUAGLIA received the Laurea degree in
electronic engineering in 1995 and the Ph.D. degree in co
puter engineering in 1999 from the University of Rome “L
Sapienza”. From summer 1999 to summer 2000 he held
appointment at CNR (“Consiglio Nazionale delle Ricerche
- Italy). Currently he is an assistant professor at the Un
versity of Rome “La Sapienza”. His research interests i
clude parallel discrete event simulation, parallel computin
fault-tolerant programming and performance evaluation
software/hardware systems. He regularly serves as a refe
for several international conferences and journals. He w
invited to serve on the program committee of the 14th an
15th editions of the Workshop on Parallel and Distribute
Simulation (PADS).
7

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

