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and Wieland 1988, Steinman 1993, Turner and Xu 1992),
risk free synchronization (Dickens and Reynolds 1990) and
others (Ball and Hoyt 1990, Madisetti, Hardaker and Fuiji-

event simulation is characterized by aggressiveness and risk.moto 1993). Interested readers can refer to (Srinivasan and
The former property refers to greediness in the execution Reynolds 1998) for a recent classification of control strate-
of unsafe events. The latter one refers to greediness in gies. However, for simulations of large/complex systems
the notification of new events produced by aggressive event it is extremely likely that multiple LPs are hosted by the
execution. Both these properties are potential sources for same processor, therefore a form of control on the effects
rollback occurrence/spreading. In this paper we present a of aggressiveness/risk should be implemented also at the

scheduling algorithm for the selection of the next LP to
be run on a processor which tends to keep low the joint

impact of these two properties on the experienced amount

level of the scheduling algorithm for the selection of the
next LP to be run on a processor.
Controlling the effects of aggressiveness at the level

of rollback. Reduction of negative effects of aggressiveness of the scheduling algorithm means scheduling with higher

and risk is achieved by giving higher priority to the LPs

whose next event has low probability to be undone due
to rollback and has low fan-out that is, notifies few new
events. Our algorithm differs from most previous solutions
in that they miss a direct control on the effects due to
risk. These solutions could originate poor performance for
applications with high variance of the number of new events
notified which is an indicator of the risk associated with

event execution.

1 INTRODUCTION

“Optimism” underlying the Time Warp synchronization pro-
tocol for parallel discrete event simulation (Jefferson 1985)

priority the LPs whose next event is recognized to have,
based on some criterion, lower probability to be eventually
rolled back. Controlling the effects of risk means taking
a scheduling decision as a function of the number of new
events to be notified, namely the fan-out, and also of their
timestamps. Specifically, an event producing new events
with lower timestamps should be executed promptly; other-
wise, upon the delivery of the new events their timestamps
get more likely to be lower than the local virtual time (LVT)
of the recipient LPs, thus causimgimary rollbacks. On

the other hand, the execution of an event producing a large
number of new events that is, with large fan-out, should be
thwart by the scheduling algorithm; otherwise, in case it
is undone, there is high likelihood @skcondaryrollbacks

has been defined, see (Reynolds 1988), as the union of twodue to a large number of antimessages.

distinct propertiesaggressivenesndrisk. Aggressiveness

In this paper we introduce an adaptive scheduling algo-

is the property by which the logical processes (LPs) greedily rithm, namely Aggressiveness/Risk Effects based Schedul-
execute simulation events without taking into account the ing (ARES), aimed at keeping low the joint impact of
event safety. Risk is the property by which the LPs greedily aggressiveness and risk on the amount of rollback. ARES
notify new events produced by aggressive (unsafe) event first selects a set of candidate LPs to be run, in the way
execution. Both these properties are potential sources for that their next event shows low probability to be eventually
causality errors, therefore they directly determine the amount undone; then it chooses an LP among the candidates in the
of rollback, and thus the final performance perceived. way to minimize the number of new events to be notified.
A primary way to bound the effects of aggressiveness Adaptiveness relies in that the first step of the scheduling
and risk on rollback consists of a direct control on opti- decision is performed using performance feedback from the
mism. This includes throttling (Ferscha 1995, Ferscha and simulation.
Luthi 1995, Srinivasan and Reynolds 1998), time windows ARES is designed as a modification of the classical
(Lubachevsky, Weiss and Shwartz 1989, Sokol, Briscoe Lowest-Timestamp-First algorithm (LTF) with aim at re-
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ducing the effects of risk. Adaptiveness guarantees that having lower LVTs (Preiss, Loucks and Maclntyre 1994).

ARES shows performance which is at least equal to that of
LTF. The know-how to apply ARES consists of knowledge
of the fan-out of each event type. In most simulations

In particular, LLVTF chooses for the execution the non-
executed event of the LP with the lowest LVT value. As
the LVT of the LP moves up to the event timestamp upon

this can be obtained off-line by the event code structure. the execution, the objective of this scheduling algorithm
Nevertheless, for the case of code branching or loops hav- is to reduce the probability for any LP to remain back in
ing an impact on the fan-out, a light run-time prediction simulated time.
mechanism could be coupled with ARES. In (Palaniswamy and Wilsey 1994) an Adaptive Control
Timestamps of events that have not yet been produced based scheduling algorithm (AC) has been presented. In
(which are actually a risk index) are not considered in the this solution, statistics on the past behavior of an LP are
scheduling decision performed by ARES. In other words, collected to establish the “useful work” of the LP (computed
risk associated with an event execution is quantified only as as the frequency of committed events of the LP); higher
a function of the fan-out of the event. This design choice priority is assigned to the LPs having higher values of their
derives from two reasons. First, the issue of reducing useful work.
the effects of risk on primary rollbacks as a function of A rather different solution, namely Service Oriented
timestamps of future events has been already addressed inscheduling (SO), is presented in (Ronngren and Ayani 1994).
(Ronngren and Ayani 1994). Second, reducing the effects of The idea behind this solution is to try to produce and deliver

risk on rollback giving higher priority to low fan-out event
is likely to produce an additional performance improvement
due to a possible reduction of the real communication cost.
Specifically, undoing an event with low fan-out implies
low waste of communication time because few notification

as soon as possible events not yet produced that will have low
timestamps. This is done in order to promptly deliver these
events to the recipient LPs, thus reducing the probability
of timestamp order violations. Such an approach needs the
capability of the LPs to predict the timestamps of events

messages must be revoked, and, furthermore, we get low that have not yet been produced. SO gives the highest

communication overhead due to antimessages.

Target applications for ARES are simulations that could
heavily suffer from risk effects, such as simulations of
network protocols with broadcast/multi-cast queries where
the number of new events notified by an event execution
could assume highly different values depending on the type

scheduling priority to the LP whose next event will produce
the event with the minimum predicted timestamp.

A Probabilistic scheduling algorithm (P) has been pre-
sented in (Som and Sargent 1998). The consideration at
the basis of this algorithm is that low amount of rollback
can be obtained if the event selected for execution is the

of event executed. This class of protocols encompasses someone with the minimunreal probability to be rolled back in

protocols for Web document retrieve among peer proxies
(Fan et al. 1998, Wessel and Claffy 1998).

The performance improvements achievable using ARES
are quantified through a performance study of a classical

the future; this event may be different from that with the
minimum timestamp. In this solution statistics on the past
behavior of the LPs are maintained in order to estimate the
probability for the next event of any LP to be not rolled

synthetic benchmark on a cluster of PCs connected by a back in the future. The event of the LP associated with

high speed Myrinet switch.

The remainder of the paper is organized as follows.
Section 2 presents an overview of existing scheduling al-
gorithms. In Section 3 the ARES algorithm is introduced.
Performance data are reported in Section 4.

2 RELATED WORK

The standard solution for the scheduling problem is the
Lowest-Timestamp-First algorithm (LTF), which always

the highest estimated probability value is selected for the
execution.

In (Quaglia 2000) a State Based scheduling algorithm
(SB) has been presented. In this algorithm, the scheduling
priority of any LP is computed using state information related
to the LPs in its immediate predecessor set. Specifically,
higher priority is assigned to the LPs, if any, whose next
event could be rolled back only conditional a rollback occurs
on an LP in their immediate predecessor sets. If no such
an LP is detected at the scheduling time, then SB acts as

schedules the LP having as next event to be executed the onethe classical LTF.

with the minimum timestamp (Lin and Lazowska 1991).
LTF implicitly assumes that the event with the minimum
timestamp has the lowest probability to be rolled back in
the future of the simulation execution as it is the closest one
to the Global-Virtual-Time (GVT) that is, the commitment
horizon of the simulation.

Another scheduling algorithm, namely Lowest-Local-
Virtual-Time-First (LLVTF), gives higher priority to LPs

410

Finally, in (Quaglia and Cortellessa 2000) a Grain Sensi-
tive scheduling algorithm (GS) has been presented. This al-
gorithm gives higher priority to the LPs having non-executed
events with low timestamp values and small expected gran-
ularity. This solution tends to delay the execution of large
grain events that, if rolled back, could produce large waste
of CPU time. Delaying the execution of these events makes
lower their probabilities to be eventually undone.
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Most of these algorithms, except SO, do not take into
account directly the effects of risk in the scheduling decision.

of new events produced, namely the fan-out, and of their
timestamps. As stated in the Introduction, we limit our

SO takes these effects into account at some extent becausepproach by quantifying the effects of risk only as a function

the scheduling decision relies on predicted timestamps of
new events that have not yet been notified. Differently from

SO, ARES quantifies the effects of risk as a function of

the event fan-out, instead of timestamp values. Therefore,
ARES is expected to provide better performance for the
case of simulations with high fan-out variance for different

event types. As pointed out before, simulations of protocols
for data retrieve on the Web could exhibit this feature.

3 AGGRESSIVENESS AND RISK
EFFECTS BASED SCHEDULING

In this section the ARES algorithm is described. We first
discuss the mathematical background for the algorithm, then
we describe the algorithm structure. Finally we report some
considerations on long-term effects of ARES.

3.1 A Tradeoff Between Aggressiveness
and Risk Effects

In Figure 1 the event queues of four LPs hosted by the

same processor are shown, restricted to non-executed events.

Labeled circles represent events and arrows exiting circles
represent new events that will be produced by the event
execution. As an example, evemtof LP1 produces three
new events, while event of LP4 produces only one new
event.
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Figure 1: Event Queues of the LPs and Future Notifications

Out of any scheduling policy, but satisfying causality
constraints (i.e. timestamp ordering at each LP), the set of
events candidate to be executedSis= {a,c,d, f}. The
classical LTF algorithm would schedule LP2 for running,
because is the event with minimum timestamp and, in the
common belief, it should have the lowest probability to be
eventually undone. This choice has the direct objective to
bound the effects of aggressiveness on rollback.

Associated with each event € S there is also risk,
whose effects on rollback are a function of the number
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of the fan-out. This solution aims at bounding the spreading
of secondary rollbacks due to antimessages and, additionally,
shows the potential for reducing the real communication
cost.
For each event if we can define the following simple
model for the effects due to risk. Let us denote witlw)
the probability for an event € S to be eventually undone
if selected for the execution and witfv(x) the fan-out of
the eventx. Then the model can be expressed as:
C(x) = Px)- folx) (1)
In other words,C(x) measures the expected number of an-
timessages associated with the undoing of ewertvhile
building the model we have implicitly assumed that the
strategy for sending antimessages is aggressive that is, an-
timessages are sent as soon as the LP rolls back and undoes
x. Correction factors could be introduced to cope with lazy
strategies. According to our perspective, in which times-
tamps are discarded in the evaluation of risk effe€tsy)
is actually a measure for the effects of risk.
Coming back to the example in Figure 1 we get that
the eventd has risk effectsC(d) = 0, although it could
contribute to rollback due to aggressiveness effects (this
effect can be quantified &(d)). Overall, according to the
common belief¢ is the event whose aggressiveness effects
should be minimal, as it has the lowest timestamp; on the
other hand, as stated by the model in (d)is the event
whose risk effects should be minimal. As a consequence,
LP2 represents the best scheduling choice with respect to
aggressiveness effects (as its next event is supposed to have
the minimum probability to be eventually undone), while
LP3 represents the best scheduling choice in terms of risk
effects (as its next event does not notify any new event).
In the next section we show how to manage this tradeoff
in practice.

3.2 Managing the Aggressiveness/Risk
Effects Tradeoff

In order to manage the tradeoff of previous section, we
exploit some ideas presented in the GS scheduling algorithm
in (Quaglia and Cortellessa 2000). Specifically, in that paper
a solution for constructing flexible scheduling decisions as a
function of the granularity of the events has been presented.
This solution relies on a notion of Scheduling Interval (Sl)
associated with a so-called Scheduling Window (SW).
Specifically, denoting witlmin_zs the minimum times-
tamp value among all the events in thesétecall that this set
contains the next events of the LPs hosted by the same proces-
sor), the authors noted that events belonging &md having
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timestamp in narrow time proximity tein_ts are likely There exists the possibility that multiple event&iA E S

to have about the same probability to be eventually rolled have minimum fan-out. It this case, the selection in line 4
back if selected for the execution. In other words, given of the algorithm should resolve ties according to timestamp
a simulated time interval Sk [min_ts, min_ts + SW], if values. Specifically, among multiple events, the one with
an adequate value for SW is selected then all the events the minimum timestamp should be selected following the

belonging toS and having timestamp within Sl are likely to
have about the same probability to be eventually rolled back
as the event with the minimum timestamgn_ts. This

classical approach underlying the LTF algorithm.
Two points still remain to be touched. The first is how
to select the length of the interval Sl (that is, the length

intuition is supported by some empirical results reported in of the scheduling window SW); this point will be shortly
(Quaglia and Cortellessa 2000). discussed below. The second is how to compute (predict)
In our context, the interval Sl can be used to identify a the fan-out of the events iIhAE S, which is heeded in line
set of non-executed events such that the aggressive executiord of the algorithm; this point will be discussed in the next
of whichever event belonging to this set is likely to produce subsection.
the same aggressiveness effects on rollback as the non- For what concerns SW, and therefore the scheduling
executed event with the minimum timestamp. We call this interval Sl, itis intuitively true that the value to be selected in
set as Low Aggressiveness Effects SEHES). This set order to ensure the validity of the approximated cost model
can be formally defined as: in (3) could change while the simulation progresses. This
is because the rollback behavior of the simulation depends
on several parameters that do not necessarily reach a steady
state. While for a given real time interval it would be better
LAES allows us to manage the previous tradeoff in practice keeping a narrow SW, during a different real time interval
since it provides multiple events, originating low aggres- it could be kept larger. Tuning dynamically SW to the best
siveness effects, among which the event to be selected for suited value contributes to high flexibility of the scheduling
the execution should be determined in order to minimize the decision without invalidating the approximated cost model,
effects of risk as modeled by equation (1). This is the final and thus without leading to an increase of the effects of
objective of the ARES scheduling algorithm to be presented aggressiveness on rollback. Large values for SW could

LAES = {x | (x € §) A (timestamp(x) € S}  (2)

in the next section.

Finally we underline that the notion of Sl allows also
the simplification of the model in (1) when restricting the
model itself to the events belonging kA E S. Specifically,
the probability valuesP (x) associated with all the events
x belonging toLAES can be approximated with a single
probability value that we denote & Therefore, for any
eventx belonging toLAE S, the model can be rewritten as:

Cx)=P- folx) 3)
We refer to the model in (3) as tla@proximated modelThe
validity of this model obviously derives from the adequacy
of the value of SW determining the interval SI which, in
its turn, defines the sdtAES.

3.3 The Algorithm Structure

From considerations in previous section it comes out that
the structure of ARES should be: (i) to compute for any
event belonging taLAES the value of the cost function

in equation (3) and then (ii) to select for the execution
the event associated with the minimum cost. Note that the
approximated model in (3) is such that the identification
of the event inLAES associated with the minimum cost
means in practice identifying the event associated with the
minimum fan-out, therefore we can derive the final structure
of ARES as shown in Figure 2.
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lead ARES to select for the execution an evenivhose
timestamp is sensitively larger thanin_ts. Depending
on the instant this happens, it could actually impact (or
not) the validity of the approximated model sinéqx)
could be sensitively larger (or not) than the probability for
the event inLAE S having the minimum timestamp to be
eventually rolled back. Adequate dynamical tuning of SW
should overcome this problem.

Similarly to the GS algorithm in (Quaglia and Cortel-
lessa 2000), the length of SW can be recalculated as a
function of the variations of a reference performance pa-
rameter, whose value can be monitored on-line. More
precisely, an initial value of zero is selected for SW; then
SW is increased/decreased depending on variations of the
performance parameter. The authors of the GS algorithm
discussed how SW must be a global parameter in that it
must have the same value on all the processors. If this does
not happen, then no effective monitoring of the real impact
of its value on performance can be implemented.

This type of tuning allows ARES to adapt the schedul-
ing decision to the (dynamic) behavior of the overlaying
application. In addition, if the tuning leads the value zero
to be selected for SW, then ARES behaves as the classical
LTF algorithm. This points out how ARES has the potential
to recover towards a standard scheduling behavior in case
performance loss is noted.

In our implementation of ARES we have selected the
event rate namely committed events per time unit, as the
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if S£0
then

<compute the seLAES = {x | (x € §) A (timestamp(x) € Sl)} >;

<select for execution an eveate LAES such thatve’ € LAES fo(e) < fo(e') >
else <no action-

b wWwNPE

Figure 2: ARES Structure

reference performance parameter for the adaptation of the deterministic code containing branches and/or loops that
length of SW, which is realized as follows. We suppose have no effects on the fan-out. Instead for the case of code
the simulation execution as divided in periods, each period structure with branches or loops that can have a real effect
consisting of a fixed number of executed events. SW is on the fan-out of the associated event type, the expected
initially set to zero (therefore ARES initially behaves like fan-out must be estimated on-line. This could be done
LTF). At the end of every period statistics on the event rate using samples related to the recently executed portion of
are collected from each processor. If the event rate does the simulation. The estimate can be computed infrequently,
not decrease, then SW is increased by a fixed quadtjty in order to not produce probing effects on the simulation.
Otherwise, there is evidence that the value of SW adopted

in the last period may be too large thus invalidating the 3.4 Considerations on Long-Term Effects of ARES
approximated model in (3) and originating an increase of

aggressiveness effects. In this case SW is decreased byAny event undone by rollback could originaterallback

Ugec = I X atjne With & > 0 (in case SW is less thawy,., tree In Figure 3 two possible rollback trees due to the
it is set to zero). The step for the decrease with- 1 undoing of the events and f, depicted in the example
allows quick recovery towards a classical simulation asset, in Figure 1, are shown. Each tree contains all the events
namely LTF scheduling, if successive decreases of the eventthat have been undone consequently to the undoing of the
rate are noted. In our implementation we select/dhe event at the root of the tree. For exampliee(c) shows
value 2. The idea behind the dynamical recalculation is that, afterc has been undone, two LPs roll back due to
to try to provide large values for SW (that should allow antimessage receipt. These LPs undo, respectively, seven
more flexible decisions as a function of the effects of risk), and four events. Some of these events require antimessage
provided that the assumption underlying the approximated sending that, in its turn, produces rollback on other LPs and
model in (3) is verified (i.e. no increase of aggressiveness so on. Undoing the event generates a similar rollback

effects originating performance loss is noted). tree (also this tree is shown in Figure 3).
For what concerns the value @f,., it could be selected
as a function of several application specific features such as ¢
event density, timestamp increment distribution functions /\
and so on. In (Quaglia and Cortellessa 2000) the following 000000] [0000]
general rule has been introduced;,. = 7/10 with T
being the average value among the means of the distribution | —
functions for the timestamp increment. More sophisticated, Lﬁ ree(?)
application-tailored solutions could be however envisaged. /

tree(c)

3.3.1 Computing the Fan-Out Figure 3: Rollback Trees
Line 4 of the algorithm requires the knowledge of the fan-
out of the events belonging tbAES. In most simulations

it is usual to have multiple event types, each one associated
with a given code. All the events belonging to a specific
event type have the same expected fan-out value. If the
code of an event type is deterministic, then the fan-out
value for the events of that type is deterministic as well,
and it can be determined off-line by the code designer, in
a totally transparent way to the user. This value can be
used by ARES. The same thing happens for the case of non
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It is straightforward that the real rollback tree can be
drawn only after the rollback occurrence. This is because
rollback spreading depends on relative positions of the LVTs
of the LPs. In other words, an antimessage produces a
rollback (or not) depending on its timestamp and on the value
of the LVT of the recipient LP at the time the antimessage
is received.

However, independently of LVT positions, the fan-out
associated with an event determines tharity of the root
of the rollback tree since as many antimessages have to
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be sent as the fan-out value. The depth of a rollback tree applications where the amount of data associated with mes-
with a large rootz-arity is likely to be larger than the one  sages/antimessages transmission is typically small. In MFM
of a tree with a small root-arity. This is because many the buffering at the receiver side is done into the on board
antimessages are more likely to let the rollback survive than memory of the interface card.

few antimessages. The larger the difference between the In our Time Warp system, message exchange among
n-arities, the higher the probability that this presumption LPs hosted by the same machine does not involve operations
reveals true. This is a support to the idea that ARES should of the MFM layer. There is an instance of the Time Warp
be likely to reduce rollback for applications with high fan-out  kernel on each processor. The kernel manages the local

variance among distinct event types. event list (resulting as the logical collection of the input
Finally we outline that ARES tends to erasatire gueues of the local LPs) and schedules LPs for running
rollback trees. Specifically, delaying any risky evertas according to the selected scheduling algorithm. Memory

the effect to make more likely to be committed because its  space for new entries into the input and output queues of
timestamp distance from the GVT does not increase (this is the LPs is allocated dynamically using classicallloc()
due to the monotonic increase of the GVT). In other words, calls. Therefore there is no pool of pre-allocated buffers.
a throttling effect on the event is originated. This means  The same dynamical approach has been used for entries
a reduction of the probability? (x) for x to be eventually of the stack storing saved state vectors. The cancellation
undone that, according to the cost model in (1), will further phase is implemented following the aggressive policy (Gafni
reduce the effects of risk on rollback and on communication 1985). Fossil collection is executed periodically.
cost.

4.2 Benchmark and Performance Parameters
4 PERFORMANCE DATA

In order to test the effectiveness of ARES, we have used the
In this section we report a performance study of ARES synthetic benchmark known as PHOLD model, originally
conducted using a parameterized synthetic benchmark. Prior presented in (Fujimoto 1990). PHOLD consists of a fixed
to presenting the results, we describe the testing environment, number of LPs and of a set of jobs (messages) circulating
the benchmark itself and the performance parameters we among the LPs. Both the routing of jobs among the LPs and

have observed. the timestamp increments are taken from some stochastic
distributions. Although a set of standard benchmarks for
4.1 Testing Environment parallel discrete event simulation does not exist, PHOLD

is in practice one of the most used ones for two main main

The experiments reported in this paper were all performed reasons: (i) its parameters (e.g. event execution time, size
on a cluster of 4 PCs Pentium 11 300 MHz (128 MB RAM)  of the state vectors, etc.) can be easily modified, (ii) it
running LINUX as operating system, interconnected by a usually shows a rollback behavior similar to many other
high speed Myrinet switch based on wormhole technology. synthetic benchmarks and to several real world models.
This type of architecture is actually an emerging one for The PHOLD model we have considered is composed of
parallel applications due to cost vs performance reasons and32 homogeneous LPs evenly distributed among the 4 PCs
also to expansibility/modifiability. of the cluster. There are two distinct job (message) types,

Any PC is connected to the Myrinet switch through namely A and B. When an event associated with a job of
an interface implemented on a card consisting of a LANai type A is executed, the effect is the productiomafew jobs
processor equipped with local memory and supports for such that: (i) one new job is of type A, (ii) the remaining
DMA. The LANai's memory is mapped into the address n — 1 jobs are of type B. Instead, the execution of an event
space of the host PC, therefore it can be accessed eitherassociated with a job of type B does not produce any new
directly or using DMA. The LANai processor rungantrol event. Therefore, events associated with jobs of type B
program that performs send and receive operations. This have fan-out equal to zero, while indicates the fan-out
program can be designed according to requirements of the of the events associated with jobs of type A. This kind of
specific application. Depending on the structure of the con- event generation rules are depicted in Figure 4. Timestamp
trol program and of the associated message passing layerincrements associated with new jobs are selected from an
run at the host PC, messages at the receiver side can beexponential distribution with mean 10 simulated time units.
buffered into the host PC memory or into the memory on Any value ofn ranging from one to several dozens is
board of the interface card and then transferred on demand likely to produce stable system behavior in that buffers are
into the host memory. We have developed a high speed likely to not overflow and, at the same time, the message
layer, namely Minimal Fast Messages (MFM), tailored for population (i.e. the amount of messages circulating in the
optimizing the delivery delay of small size messages. This system) does never get lower than the amount of messages
layer results therefore well suited for parallel simulation of type A initially inserted in the system. Obviously larger
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recalculates the value of SW and notifies it to the other
processors.

B We report the average observed values of previous
: J n-1

B

A A B —— no new job

parameters, computed over 20 runs all done with different
seeds for the random number generation. At least1®f
Figure 4: Job Generation Rules committed events have been simulated in each run. As
reference scheduling algorithm to point out the effectiveness
values forn determine larger variance for the fan-out of of ARES we have selected LTF.
simulation events. In our experiments we have selected an
initial job population of 1 job of type A per LP and we have 4.3 Results
variedn from 1 to 9. Given previous job generation rules,
whenn = 1 only jobs of type A circulate in the system. The obtained results, reported in Figures 5 through 8, point
As respect to job (message) routing, we have selected anout that when the value of is set to 1, LTF and ARES
uniform approach, that is any new job is equally likely to be produce exactly the same performance. This is an expected
sentto any LP independently of the job type. The processing behavior since: = 1 means that only jobs of type A (with
time for any event has been fixed at about 140 microseconds. fan-out equal to 1) circulate in the system. Therefore ARES
State saving is performed before the execution of any new always selects for the execution the non-executed event with
event and the cost to copy the state vector has been fixedthe lowest timestamp.

at about 70 microseconds. From the results in Figure 5 and in Figure 6 we have that
We report measures related to the following performance for any value ofn larger than 1, LTF shows lower rollback
parameters: frequency, up to 26%, but exhibits longer average rollback

length, up to 30%. Multiplying the rollback frequency by

» Therollback frequencythat is, the ratio between  the average rollback length we get the so cakdfitiency
the number of rollbacks and the total number of of the simulation. This parameter represents the probability
executed events, and tlaerage rollback length for whichever event to be not eventually rolled back; it
that is, the average number of undone events by is therefore representative of the amount of rollback. By
each rollback occurrence. These two parameters the obtained results we get that ARES allows slightly more
allow us to point out whether (and how) different  efficient execution.
scheduling algorithms determine changes in the
final rollback pattern and thus in the amount of 0.120
rollback. 0110 L i

» The antimessages frequendhat is, the number o—OLTF
of antimessages per time unit. This parameter 0100 1 @O ARES
points out the possible saving of communication
cost of one scheduling algorithm vs another. We
decided to consider this parameter in the analysis
because ARES could actually produce a reduction
of the amount of antimessages that have to be sent. 0.060 | 8
This parameter allows us to quantify this possible
reduction.

» The event ratethat is, the number of committed 0040 . s s 7 8 o 10
events per time unit. This parameter indicates n (fan-out jobs of type A)
how fast is the simulation execution with a given
scheduling algorithm, it is therefore representative Figure 5: Rollback Frequency vs
of the final performance perceived.

0.090 - 1

0.080 - 1

0.070 - 1

rollback frequency

0.050 - 1

Beyond rollback behavior in terms of efficiency, a rel-
As stated before, the event rate acts also as a referencegyant result comes out from the strong reduction of the

performance parameter for the tuning of the scheduling win- hymber of antimessages under ARES whea larger than
dow SW in ARES. For the present experiments, the period 1. |n particular, plots in Figure 7 show that the number
per processor. When the period expires at a given processoraARES s used. As already discussed this has the potential
that we identify as the master for the recalculation, this for a strong reduction of the real communication cost due
processor collects statistics on the performance parameter,to a reduction of the antimessage overhead and also to a
reduction of the amount of revoked notification messages.
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1600.0 differs from most previous solutions in that they consider
exclusively the effects of aggressiveness and discard those
o oure associatgd with _risk. We hgve tested Fhe effectiveness of
1400.0 r &—© ARES 1 the algorithm using a classical synthetic benchmark. The
obtained results point out the viability of our solution in the
reduction of the amount of rollback of the simulation (due
to both aggressiveness and risk) and the real communication
cost associated with risk. The impact of this reduction is
an increase of the speed of the simulation execution. The
performance gain is relevant for the cases of non-minimal
variance of the amount of new events to be notified by the
execution of different event types. This algorithm results

1200.0 - 1

antimessages frequency

1000.0 - 1

800.0 Ly
ot 2z 3 4 5 6 7 8 9 10 therefore suited for all those simulations exhibiting this
n (fan-out jobs of type A)
feature.
Figure 7: Antimessages Frequencyws
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