
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

A SIMULATION MODEL OF BACKFILLING AND I/O SCHEDULING
IN A PARTITIONABLE PARALLEL SYSTEM

Helen D. Karatza

Department of Informatics
Box 114

Aristotle University of Thessaloniki
54006 Thessaloniki, GREECE

ABSTRACT

A special type of scheduling called backfilling is presented
using a parallel system upon which multiple jobs can be
executed simultaneously. Jobs consist of parallel tasks
scheduled to execute concurrently on processor partitions,
where each task starts at the same time and computes at the
same pace. The impact of I/O scheduling on system
performance is also examined. The goal is to achieve high
system performance and maintain fairness in terms of
individual job execution. The performance of different
backfilling schemes and different I/O scheduling strategies
is compared over various processor service time
coefficients of variation and for various degrees of
multiprogramming. Simulation results demonstrate that
backfilling improves system performance while preserving
job sequencing. Also, the results show that when there is
contention for the disk resources, trends in system can
differ from those appearing in the research literature if I/O
behavior is negligible or it is not explicitly considered.

1 INTRODUCTION

The efficient scheduling of multiprogrammed parallel
systems has been a major research and development goal
for many years. On one hand, users expect their individual
jobs to achieve excellent performance. On the other hand,
system resources must be judiciously allocated to satisfy
the demands of jobs and produce the best overall
performance. These objectives raise a number of
scheduling policy issues with respect to large parallel
computing environments (Dowdy et al. 1999, Feitelson
1994, Feitelson and Rudolph 1995, Karatza 1998).

Our work considers a shared memory system with 128
processors. We use a scalable, coherent shared address
space (SAS) multiprocessing since it has been the focus of
research in many other studies. Over the last decade, a
number of hardware cache-coherent, non-uniform memory
access architectures (so-called hardware-DSM or CC-
49
NUMA machines) have been built and shown to perform
well at the moderate scale of about 32 processors. In fact,
such machines are fast becoming the dominant forms of
tightly coupled multiprocessors built by commercial
vendors. An open question is how scalable these arch-
itecture configurations are to larger processor counts. Jiang
and Singh (1998) studied the performance of a wide range
of SAS parallel applications on a 128-processor hardware
cache-coherent machine (the SGI Origin2000). They
showed that scalable performance is indeed be achieved
with this programming model over a wide range of
applications, including the challenging of kernels like FFT.

Most research in this area has focused only on the
scheduling of processors. However, improvements in
processor speed and main memory size have exposed I/O
subsystems as a significant bottleneck that keeps
applications from achieving full system utilization. This
problem is more serious in multiprocessing systems where
multiple processors must share the I/O subsystem.
Therefore, I/O scheduling should be examined along with
parallel job scheduling.

This study considers a partitionable parallel processing
system where the partitions are subsystems allocated to
independent jobs. Jobs consist of parallel tasks that are
scheduled to execute concurrently on a set of processors.
The parallel tasks need to start at essentially the same time,
co-ordinate their execution, and compute at the same pace.
This type of resource management is called �coscheduling�
or �gang scheduling� and has been extensively studied in
the literature of distributed and shared memory systems
(Feitelson and Jette 1997, Feitelson and Rudolph 1995,
Karatza 1999a, Karatza 1999b, Setia 1997, Wang,
Papaefthymiou, and Squillante 1997).

Jobs start to execute only if enough idle processors are
available to handle them. However, a scheduling policy is
needed to determine which parallel program is to be
mapped to the available processors. Job sequencing needs
to be preserved as much as possible in order to achieve
fairness in job execution.
6

Karatza
In multiprogrammed parallel systems, processor
partitions are usually allocated on a FCFS basis. This
approach can result in severe fragmentation, because
processors that cannot fulfill demands of the next job in the
queue remain idle until the needed resources are freed. To
avoid fragmentation, a non-FCFS policy for queuing
waiting jobs on a partitionable system should be used.

When several small jobs running and a job that
requires the entire system is at the head of the scheduling
queue, a FCFS scheduler will reserve freed processors until
the entire system is available, keeping processors idle until
the final running job has terminated. A non-FCFS
scheduler can execute small jobs from the back of the
queue until the last job finishes, thus improving the total
utilization of the system. Such an approach is called
backfilling or aggressive backfilling. Idle processors are
assigned small jobs at the back of the queue on the
condition they do not delay the large job in the first queue
position. Clearly, such a system should also be cautiously
designed avoid starving large jobs. In reality, backfilling is
just a natural extension of FCFS scheduling.

Research on backfilling includes Feitelson and Weil
(1998), Talby and Feitelson (1999). Feitelson and Weil
(1998) show that a conservative approach, where small
jobs move ahead only if they do not delay any job in the
queue, produces the same utilization as aggressive
backfilling, but it has the advantage that it does not
normally cause unbounded queuing time. However, the
conservative approach involves extra overhead in that it
examines all jobs in the queue for possible delay.

Talby and Feitelson (1999) apply a technique called
slack-based backfilling where the scheduler gives each
waiting job a slack (time delay) that determines how long it
will wait before running: �Important� or �lengthy' jobs that
have little slack in comparison to others. When a new job
is submitted, all possible schedules are priced out
according to utilization and priority considerations and so
long as no job is delayed beyond its slack, the cheapest
schedule is selected.

This paper examines the aggressive backfilling
method, and proposes a version of it where a job in the
queue is scheduled if it will not delay the first job for more
than a small time interval. We also examine the strict FCFS
policy for comparison purposes.

Generally, other papers found in the literature study
processor scheduling only. They do not explicitly model
the I/O processing, even though it can significantly
influence the overall system performance. However,
scheduling is not an isolated issue. It is only a single
service provided by the operating system. Any solution to
the scheduling problem must be integrated with other
problem solutions, e.g. I/O management. Different parts of
the system must work together to create a cohesive whole
in such a way that it makes sense. The Rosti et al. (1998)
study of large-scale parallel computer systems suggests
49

that the overlapping of I/O demands of some jobs with the
computation demands of other jobs offer a potential
improvement in performance.

I/O scheduling is examined in Kwong and Majumdar
(1999), Seltzer, Chen, and Ousterhout (1990),
Worthington, Ganger, and Patt (1994). However these
papers do not consider processor scheduling. Our previous
papers Karatza (1998, 1999a, 1999b) examine processor
scheduling, but only the FCFS scheduling policy is applied
at the I/O unit. We employ three I/O scheduling algorithms
� FCFS, Shortest Time First, and Weighted Shortest Time
First. The last algorithm uses the standard Shortest Time
First technique, but also applies an aging function to the
times computed. The performance of these algorithms has
been studied in conjunction with gang scheduling in a
distributed system in Karatza (2000). In that paper, each
processor is equipped with its own queue, each parallel
task of a job is assigned to a different processor queue, and
the scheduling method at the processor queues is different
from each of the methods that we used in this research.

The design choices considered in this paper include
different ways to schedule jobs for service on the system
processors and on the I/O subsystem. The performance of
the different scheduling policies is compared for various
coefficients of variation of the processor service times and
for different degrees of multiprogramming. The author has
not found a combined analysis of backfilling scheduling
and I/O scheduling anywhere else in the research literature.

This paper is theoretical in that the results are obtained
from simulation studies instead of from the measurements
of real systems. Nevertheless, the results presented are of
practical value. All of the algorithms are practical in that
they can be implemented. Although we do not derive ab-
solute performance values for specific systems and work-
loads, we do study the relative performance of the different
algorithms across a broad range of workloads and analyze
how changes in the workload can affect performance.

Some simple idealized systems can be mathematically
analyzed using techniques such as queuing theory to
determine performance measures. In addition to
exponential distribution for job processing times, our
system includes Branching Erlang. It also applies
scheduling policies with different complexities. For
complex systems, analytical modeling typically requires
additional simplifying assumptions, and those assumptions
frequently have unforeseeable influences on the results.
Therefore, research efforts have been devoted to finding
approximate analysis, developing tractable models for
special cases, and conducting simulations. We chose
simulations because it is possible to simulate the system
under study in a direct manner, thus lending credibility to
the results. Detailed simulation models help determine
performance bottlenecks in architecture and assist in
refining the system configuration.
7

Karatza
The structure of this paper is as follows. Section 2.1
specifies system and workload models, sections 2.2 and 2.3
describe the processor and the I/O scheduling strategies,
and section 2.4 presents the metrics employed while
assessing the performance of the scheduling policies.
Model implementation and input parameters are described
in section 3.1 while the results of the simulation
experiments are presented and analyzed in section 3.2.
Section 4 is the conclusion and provides suggestions for
further research, and the last section is references.

2 MODEL AND METHODOLOGY

2.1 System and Workload Models

A closed queuing network model is considered that
consists of P = 128 parallel homogeneous processors and a
multiserver disk center. This allows files to be stripped
across a variable number of disks, and a natural way to
capture the effects of disk striping is via a fork-join system.
We considered that each I/O request forks sub-requests that
can be served by the parallel disk servers.

All processors share a single queue (memory). The
effects of the memory requirements and the
communication latencies are not represented explicitly in
the system model. Instead, they appear implicitly at job
execution time. By covering several different types of job
execution behaviors, we expect that various architectural
characteristics will be captured, as well.

Since we are interested in a system with balanced
program flow, we considered an I/O subsystem with the
same service capacity as the processing unit. The model is
considered closed since the degree of multiprogramming N
is constant. The configuration of the model is shown in
Figure 1.

P=128

N

m

m

m

CPU I/O

Figure 1: The Queuing Network Model

A technique used to evaluate the performance of the

scheduling disciplines is experimentation using a synthetic
workload simulation. In studies like this, one is usually
required to use synthetic workloads because real workloads
cannot be simulated efficiency enough and real systems
49

with actual workloads are not available for
experimentation. Also, useful analytic models are difficult
to derive because the subtleties between various disciplines
are difficult to model and because the workload model is
quite complex.

A partitionable parallel processing system is used
which dynamically allocates jobs to processor subsystems.
Jobs consist of a set of n ≥ 1 tasks where each task
executes on one processor. Processors are allocated at job
initiation and once they are committed to a job they cannot
be reallocated until the job terminates. The number of
processors required by job x is represented as p(x), and is
called the �size� of job x. A job is said to be �small� (or
�large�) if it requires a small (or large) number of
processors. The p(x) processors must be allocated
simultaneously to job x, and once they are allocated, they
are held by job x until its completion. Jobs x1, x2, ... xl can
be executed simultaneously if and only if the following
relation holds:

p(x1)+p(x2)+...+p(xl) ≤ P.

Each job begins execution only when enough idle

processors are available to meet its needs. When a job
terminates execution, all processors assigned to it are
reclaimed. Each time a job returns from I/O service to
parallel processors, it needs a different number of pro-
cessors for execution, that is its degree of parallelism is not
constant during a job's lifetime in the system. The sequence
that jobs in the queue are served depends on the scheduling
policy. Fairness is required across competing jobs.

The workload considered here is characterized by the
following four parameters: distribution of job sizes,
distribution of processor service times, distribution of I/O
service times, and the degree of multiprogramming. We
assume that there is no correlation between job size and
processor service demand. For example, a small job may
have a long processor service time. We also assume that
job sizes are uniformly distributed over the range [1..128].
The number of jobs that can be processed in parallel,
depends on job sizes and on the scheduling policy applied.

Numerous scheduling disciplines have been proposed
for multiprocessor systems, the evaluation of which, for the
most part, has been conducted on workloads with a
relatively small variability in job processing requirements.
However, high performance computer centers report that
their service time coefficient of variation can in fact be
greater than one.

We investigate the impact of varying processor service
times on system performance. A high variability in job
service demand implies that there is proportionately a high
number of service demands that are very small in
comparison to the mean processor service time, and a
comparatively low number of service demands that are
very large. When a job with a long service demand enters
8

Karatza

the processor system and begins execution, it will occupy a
number of processors for a long time and depending on the
scheduling policy applied, it may introduce inordinate
queuing delays for the other jobs waiting for service.

The parameter, which represents the variability in job
execution times, is the coefficient of variation of processor
service time (C). This is the ratio of the standard deviation
of processor service times to its mean. We examine the
following cases:

. Processor service times are independent and

identically distributed (IID) exponential random
variables with a mean m.

. Processor service times have a Branching Erlang
distribution (Bolch et al. 1998) with two stages
and are IID. The coefficient of variation is C,
where C > 1 and the mean is m.

After processor service, a job requests service from the

I/O subsystem.

. The I/O service times are exponentially

distributed with a mean k and are IID.

Next we describe the scheduling strategies employed

in this work. As with most studies we assume that
scheduling overhead is negligible.

2.2 Processor Scheduling Policies

We assume that the scheduler has perfect information
when making decisions, i.e. it knows:

. The exact number of processors required by all
jobs in the queue.

. Job service demands.

We analyze performance of the following policies:

. First Come First Served (FCFS). When a job

leaves the system, the first job in the ready queue
is examined. If the job does not fit into any of the
available processors, it is not scheduled and
furthermore, no other jobs are scheduled. If the
first job does fit, it is scheduled, and while there
are more processors available, remaining jobs in
the ready queue are scheduled in the order they
arrived.

Unfortunately, with the FCFS policy, jobs
may be retained in the ready queue even when
there are a sufficient number of idle processors to
handle them. The following two methods can
eliminate this problem.
499
. Backfilling (BF). Backfilling is the process of
allowing small jobs to run, on the condition they
do not delay a large job that is waiting at the head
of the scheduling queue. This policy assumes that
a priori knowledge about a job is available in form
of a service demand. When such knowledge is
available, the time when a job will terminate
execution and release the processors needed by
the large job can be predicted. It should be noted,
however, that a priori information is not often
available and only an estimate of task execution
time is possible. In this study, the estimated job
execution time is uniformly distributed within ±
E% of the exact value.

. Loose Backfilling (LBF). A job in the scheduling
queue starts execution if its predicted service time
assures that the job will not delay the first job in
the queue for a time interval that is larger than
some value d. For d=0 this method is the same as
BF.

2.3 I/O Scheduling Policies

. First Come First Served (FCFS). This disk
scheduling policy often results in suboptimal
performance. Many scheduling algorithms have
been proposed that achieve higher performance by
taking into account information about individual
requests. Frequently, this policy is used as a
performance yardstick against which the other
policies are compared to determine whether the
job based I/O scheduling procedures produce any
performance benefits.

. Shortest Time First (STF). This policy chooses the
request which yields the shortest I/O time, and
includes both seek time and the rotational latency.
STF should yield the best throughput since the
fastest I/O service is always selected. The
algorithm scans the entire queue calculating the
time each request will consume. It then selects that
request with the shortest expected service time.
This policy is denoted as Shortest Positioning
Time First (SPTF) in Worthington, Ganger, and
Patt (1994). It is obvious that this method is not
fair to a job in the I/O queue with very large
service demand since it may be scheduled only
after a very long wait in the queue. In this paper,
however, we do not consider highly variable I/O
service times (C=1). For this reason we do not
encounter very large I/O service times that can
cause unbounded job delays in the I/O queue.

. Weighted Shortest Time First (WSTF). This
method is a version of the STF strategy and is
based on algorithms proposed by Seltzer, Chen,

Karatza
and Ousterhout (1990), Worthington, Ganger, and
Patt (1994). Priority is assigned to requests that
have been in the pending queue for excessive
periods of time. The priority may slowly increase
as the request ages, or a time limit may be set
after which requests are served on a FCFS basis.
This algorithm uses the standard shortest time first
technique, but it applies an aging function to the
times computed as follows:

1. First, we assume that the FCFS policy is

applied to jobs that are waiting in the queue
for a time interval greater than 10 * k, where
k is the mean I/O subsystem service time.
This means that these jobs are given the
highest priority, and that the expected number
of other jobs, which have bypassed them in
the I/O subsystem, cannot be greater than 10.

2. For each STF calculation, the actual I/O time
is multiplied by a weighting value W. W is
computed by calculating how much time is
left before this request will exceed the time
interval 10 * k. Thus, the weighted time can
be calculated in the following way.

Let:
 Tw be the Weighted Time,
 Treal be the actual I/O Time,
 M be equal to 10 * k,
 TE be the Elapsed Time since this
 request arrived.

Then:
 Tw = Treal * (M - TE)/M.

Implementation Issues: Although processor scheduling

policies that based on explicit knowledge of job
characteristics offer excellent performance potential, their
implementation has been difficult on general purpose
systems because it is hard to acquire such a priori
knowledge. In comparison to processor scheduling,
policies based on job characteristics are easier to
implement in the context of I/O scheduling. It is possible
for the operating system to keep track of the age of a job
and estimate I/O demand associated with a request.
Consequently, it is quite possible to implement policies
such as STF or WSTF on a real system. In this study, the
I/O estimated service time is uniformly distributed within ±
E% of the exact value.

When we use priorities and a tie occurs, FCFS is used
to break the tie. Next, when we use a notation of the form:
�policy a � policy b� we mean that �policy a� is a
processor scheduling policy, while �policy b� is an I/O
scheduling policy. For example, BF-STF means that we
use BF processor scheduling and STF I/O scheduling.
5

2.4 Performance Metrics

Consider the following definitions:

Response time of a job is the time interval from the
arrival of that job at the processor queue to the service
completion time for that job (i.e., time spent in the
processor queue plus job service time).

Cycle time of a job is the elapsed time between two
successive service requests for a job on the processors.
This includes processor queuing and service times, plus I/O
queuing and service times.

Parameters used in simulations computations
(presented later) are shown in Table 1.

Table 1: Notations

RT Mean response time
K Mean cycle time
R System throughput
Uproc Mean processor utilization
UI/O Mean I/O unit utilization
N Degree of multiprogramming
m Mean processor service time
k Mean I/O service time
E Estimation error in service time

System throughput (system performance) and mean

cycle time (program performance) determine the overall
performance of the model.

3 SIMULATION RESULTS

AND DISCUSSION

3.1 Model Implementation and

Input Parameters

The queuing network model was simulated with discrete
event simulation models (Law and Kelton 1991) using the
independent replication method. For every mean value, a
95% confidence interval was computed. All confidence
intervals were within 5% of the mean values.

A balanced system with m=1.0 and k = 0.504 was
considered. The value k=0.504 was chosen for balanced
program flow because the processors average 64.5 tasks
per job. When all processors are busy, an average of
1.9845 jobs are served each unit of time. This implies that
I/O mean service time must be equal to 1/1.9845 = 0.504 if
the I/O unit is to have the same service capacity.

The system was examined in cases of job execution
times with exponential distribution (C = 1), and Branching
Erlang for C = 2, 4. The degree of multiprogramming N
was 8, 12, 16, 20, and 24. The reason for examining
00

Karatza

different degrees of multiprogramming is that it is a critical
parameter in determining system load.

In the LBF case d was taken as 0.1, 0.2, 0.3. This is a
reasonable assumption taken into account that the mean
processor service time is equal to 1. In the cases where
estimation of service time is required we have also
examined estimation errors ±10% and ±30%.

3.2 Performance Analysis

Due to space limitations only the following results are
presented:

. Tables 2-3. Performance parameters for the
FCFS-STF, and BF-STF cases for C=1.

. Figures 2-7. FCFS, BF and LBF processor
scheduling policies are combined with the FCFS,
and the STF I/O scheduling methods.

. Figures 8-13. The performance of the FCFS and
BF processor scheduling policies are shown when
they are combined with each one of the three I/O
scheduling policies.

. Figure 14. Throughput in the BF-STF, C=4 case
for E=0%, 10%, 20%, 30%.

Table 2: C=1, FCFS-STF Case

N Uproc UI/O RT K R

 8 0.69 0.69 4.55 5.81 1.38
 12 0.70 0.70 7.32 8.65 1.39
 16 0.70 0.70 10.19 11.53 1.39
 20 0.70 0.70 13.07 14.41 1.39
24 0.70 0.70 15.94 17.30 1.39

Table 3: C=1, BF-STF Case

N Uproc UI/O RT K R

 8 0.73 0.73 4.22 5.51 1.45
 12 0.74 0.74 6.76 8.14 1.47
 16 0.74 0.74 9.39 10.79 1.48
 20 0.75 0.75 11.87 13.36 1.50
24 0.75 0.75 14.63 16.07 1.49

501
∗

∗
∗

∗ ∗

∃

∃
∃

∃ ∃

#

#
#

#

∀

∀
∀ ∀

∀

!

!
! ! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS BF
LBF(d=0.1) LBF(d=0.2)
LBF(d=0.3)

! ∀
∃
∗

Figure 2: R versus N, C=1, FCFS I/O Scheduling

∗
∗∗ ∗ ∗

∃
∃∃ ∃ ∃

#
∀

∀
∀ ∀

∀

! !! ! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS BF
LBF(d=0.1) LBF(d=0.2)
LBF(d=0.3)

! ∀
∃
∗

Figure 3: R versus N, C=1, STF I/O Scheduling

∗

∗
∗

∗
∗

∃

∃
∃

∃ ∃

#

#
#

#

∀

∀
∀

∀ ∀

!

!
!

! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS BF
LBF(d=0.1) LBF(d=0.2)
LBF(d=0.3)

! ∀
∃
∗

Figure 4: R versus N, C=2, FCFS I/O Scheduling

Karatza

∗
∗∗ ∗ ∗

∃
∃∃ ∃ ∃

#
#

∀

∀
∀ ∀ ∀

!
!! ! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS BF
LBF(d=0.1) LBF(d=0.2)
LBF(d=0.3)

! ∀
∃
∗

Figure 5: R versus N, C=2, STF I/O Scheduling

∗

∗

∗
∗

∗

∃

∃

∃
∃

∃

#

#

#
#

#

∀

∀

∀
∀ ∀

!

!

!
!

!

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS BF
LBF(d=0.1) LBF(d=0.2)
LBF(d=0.3)

! ∀
∃
∗

Figure 6: R versus N, C=4, FCFS I/O Scheduling

∗

∗

∗
∗ ∗

∃

∃

∃
∃

∃

#

#

#
#

#

∀

∀

∀
∀ ∀

!

!
! ! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS BF
LBF(d=0.1) LBF(d=0.2)
LBF(d=0.3)

! ∀
∃
∗

Figure 7: R versus N, C=4, STF I/O Scheduling

50

#
#

#∀ ∀∀ ∀ ∀

!

!
! ! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS STF WSTF! ∀ #

Figure 8: R versus N, C=1, FCFS Processor Scheduling

#

#
#

∀
∀∀ ∀ ∀

!

!
!

! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS STF WSTF! ∀ #

Figure 9: R versus N, C=2, FCFS Processor Scheduling

#

#
#

#∀

∀
∀ ∀ ∀

!

!

!
!

!

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS STF WSTF! ∀ #

Figure 10: R versus N, C=4, FCFS Processor Scheduling
2

Karatza
#

#
#

#

∀

∀
∀ ∀

∀

!

!

! !
!

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS STF WSTF! ∀ #

Figure 11: R versus N, C=1, BF Processor Scheduling

#

#

#
#

∀

∀
∀ ∀ ∀

!

!
!

! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS STF WSTF! ∀ #

Figure 12: R versus N, C=2, BF Processor Scheduling

#

#

#
#

∀

∀

∀
∀ ∀

!

!

!
! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

FCFS STF WSTF! ∀ #

Figure 13: R versus N, C=4, BF Processor Scheduling

5

∃

∃

∃
∃ ∃

#

#

#
#

∀

∀

∀
∀ ∀

!

!

!
! !

8 12 16 20 24
N

1.04

1.14

1.24

1.34

1.44

1.54
R

E=0 E=10 E=20 E=30! ∀ # ∃

Figure 14: R versus N, C=4, BF-STF (E: Estimation Error)

The results demonstrate the following:
As far as overall performance is concerned, the LBF

method performs almost the same as BF for all d. Actually,
in most cases LBF performed only slightly better than BF.

The worst system performance is encountered with the
FCFS method. This is because FCFS yields higher RT than
the other methods, resulting in higher mean cycle time and
lower system throughput. Utilization is also lower in the
FCFS case than it is in BF and LBF cases.

For all N and C the difference in performance between
the FCFS processor scheduling policy and each one of BF,
and LBF policies varies between 6.5% to 10.5% (relative
increase). This result held true for any of the I/O
scheduling policies that we employed.

Regarding I/O scheduling, the WSTF I/O method
performed almost the same as the FCFS I/O scheduling.
Therefore, considering the FCFS and the WSTF methods at
the I/O subsystem, the FCFS method is preferable since it
is easier to implement it in practice, incurs less overhead,
and is the fairest of the other I/O methods.

The STF method performs better than the other two
I/O policies. This I/O method demonstrates higher
superiority at low degrees of multiprogramming. This is
due to the fact that all three processor-scheduling methods
examined are conservative in job scheduling, as they seek
to preserve job sequence. Jobs tend to be kept in processor
queues when they might be scheduled if a different
scheduling method were applied. The blocking of jobs is
higher at high N. Therefore, no matter which scheduling
method is applied at the I/O unit, the delay of jobs in the
processor queues is a factor that restricts performance.

The level of the superiority of STF over FCFS I/O
scheduling was different for the various cases examined.
For example, when STF is combined with the FCFS
processor scheduling policy (FCFS-STF case), the largest
superiority of it over FCFS-FCFS was 3%, 4.2% and 6.7%
for the C=1, 2, 4 cases respectively. When STF is
combined with the BF method the largest superiority of
BF-STF over BF-FCFS was 2%, 4%, and 5.4% for C=1, 2,
and 4 respectively.
03

Karatza
Generally, simulation results reveal that the effect of
I/O scheduling on system performance is more significant
at C=4 than at C<4. This is due to the fact that at C>1 job
service times present high variability. In this case, the
majority of jobs have small service times and are served
very fast by the processors, but then they have to wait at
the I/O subsystem. This is the reason that the STF I/O
method potential is better exploited at C=4.

Additional simulation experiments were conducted to
assess the impact of service time estimation error on the
performance of the scheduling methods that require a priori
knowledge of service times. Figure 14 shows the effect of
service time estimation error on system throughput for the
BF-STF, C=4 case. The estimation error in this figure is set
at ±0%, ±10%, ±20%, and ±30%. The graph shows that the
estimation error in processor and I/O service times
marginally affect system performance. Therefore, no profit
can be gained from the a priori knowledge of exact service
times.

All policies have their merit:
Regarding processor scheduling policies, FCFS is

easier to implement and results in less overhead than
backfilling. BF, and LBF methods assume a priori
knowledge of an approximate job execution time, but these
methods can perform better than the FCFS strategy. BF
performs almost the same as LBF and is fairer than LBF
because it preserves job sequence.

Regarding I/O scheduling, STF needs advance
information about I/O service time. This method achieves
performance improvement only in certain cases. On the
other hand WSTF performs very close to FCFS and results
in more overhead than the STF method.

The above observations indicate that the BF-STF is
best for C=4. For C<4, the BF-STF method should be used
only for low N, while for high N the BF-FCFS method is
more appropriate.

4 CONCLUSIONS AND FURTHER RESEARCH

This research studies backfilling in conjunction with I/O
scheduling in a partitionable parallel processing system.
We use simulation as the means of generating results used
to compare different configurations.

Three processor scheduling policies were considered
(FCFS and two backfilling methods � BF and LBF) as well
as three I/O scheduling methods (FCFS, STF, and WSTF).
Their performance was simulated and then compared for
various degrees of multiprogramming N and coefficients of
variation C of processor service times.

The simulation results reveal the following:

. The BF policy as compared with the other

methods exhibits good system performance and
fairness.
50

. Among the three I/O scheduling methods, for C =

4 the STF method is recommended. For C < 4
STF should be used for low N and FCFS should
be used for high N since it is easier to implement,
fair, and it performs close to STF.

. Backfilling and I/O scheduling can tolerate
estimation errors in job service time.

 This work is a case study. It can be extended as
follows:

. Different job size distributions could be
considered.

. Different distributions of I/O service times could
be examined.

. The overhead involved with backfilling could be
more accurately taken into account.

REFERENCES

Bolch, G., S. Greiner, H. de Meer, and K. S. Trivedi. 1998.

Queuing networks and Markov chains. New York: J.
Wiley & Sons, Inc.

Dowdy, L.W., E. Rosti, G. Serazzi, and E. Smirni. 1999.
Scheduling issues in high-performance computing.
Performance Evaluation Review 26 (4): 60-69.

Feitelson, D.G. 1994. A Survey of scheduling in
multiprogrammed parallel systems. Research Report
RC 19790 (87657), IBM T.J. Watson Research Center,
Yorktown Heights, New York.

Feitelson, D.G., and M.A. Jette. 1997. Improved utilization
and responsiveness with gang scheduling. In Job
Scheduling Strategies for Parallel Processing, Lecture
Notes in Computer Science, ed. D.G. Feitelson, and L.
Rudolph, 1291: 238-261. Berlin: Springer-Verlang.

Feitelson, D.G., and L. Rudolph. 1995. Parallel job
scheduling: issues and approaches. In Job Scheduling
Strategies for Parallel Processing, Lecture Notes in
Computer Science, ed. D.G. Feitelson, and L.
Rudolph, 949: 1-18. Berlin: Springer-Verlang.

Feitelson, D.G., and L. Rudolph. 1995. Coscheduling
based on runtime identification of activity working
sets. International Journal of Parallel Programming
23 (2): 135-160.

Feitelson, D.G., and A.M. Weil. 1998. Utilization and
predictability in scheduling the IBM SP2 with
backfilling. In Proceedings of the 12th International
Parallel Processing Symposium, 542-546. IEEE
Computer Society, Los Alamitos, California.

Jiang, D., and J. Pal Singh. 1998. Scaling application
performance on cache-coherent multiprocessors.
Performance Evaluation Review 26 (1): 171-181.

Karatza, H.D. 1998. Eager scheduling versus lazy
scheduling with resequencing. In Proceedings of 1998
4

Karatza

Symposium on Performance Evaluation of Computer
and Telecommunication Systems, ed. M.S. Obaidat,
and H. Khalid, 261-267. The Society for Computer
Simulation International, San Diego, California.

Karatza, H.D. 1999a. A Simulation-based performance
analysis of gang scheduling in a distributed system. In
Proceedings of 32nd Annual Simulation Symposium, 26-
33. IEEE Computer Society, Los Alamitos, California.

Karatza, H.D. 1999b. Coscheduling in a partitionable
parallel processing system. In Proceedings of 7th
Hellenic Conference on Informatics, ed. D.I. Fotiadis,
and S.D. Nikolopoulos, IV: 29-37. University of
Ioannina Press, Ioannina, Greece.

Karatza, H.D. 2000. Gang scheduling and I/O scheduling in a
multiprocessor system. In Proceedings of 2000
Symposium on Performance Evaluation of Computer and
Telecommunication Systems, ed. M.S. Obaidat, F. Davoli,
and M.A. Marsan, 245-252. The Society for Computer
Simulation International, San Diego, California.

Kwong, P., and S. Majumdar. 1999. Scheduling of I/O in
multiprogrammed parallel systems. Informatica 23:
67-76.

Law, A., and D. Kelton. 1991. Simulation modeling and
analysis. 2d ed. New York: McGraw-Hill, Inc.

Rosti, E., G. Serazzi, E. Smirni, and M. Squillante. 1998.
The impact of I/O on program behavior and parallel
scheduling. Performance Evaluation Review 26 (1):
56-65.

Seltzer, M., P. Chen, and J. Ousterhout. 1990. Disk sche-
duling revisited. In Proceedings of the 1990 Winter
Usenix, 313-324. Usenix Association, Berkeley,
California.

Setia, S.K. 1997. Trace-driven analysis of migration-based
gang scheduling policies for parallel computers. In
Proceedings of the International Conference on Parallel
Processing, 489-492. IEEE Computer Society, Los
Alamitos, California.

Talby, D., and D.G. Feitelson. 1999. Supporting priorities
and improved utilization of the IBM SP2 scheduler
using slack-based backfilling. In Proceedings of the 13th
International Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing.
513-517. IEEE Computer Society, Los Alamitos,
California.

Wang, F., M. Papaefthymiou, and M.S. Squillante. 1997.
Performance evaluation of gang scheduling for parallel
and distributed systems. In Job Scheduling Strategies
for Parallel Processing, Lecture Notes in Computer
Science, ed. D.G. Feitelson, and L. Rudolph, 1291:
184-195. Berlin: Springer-Verlang.

Worthington, B.L., G.R. Ganger, and Y.N. Patt. 1994.
Scheduling algorithms for modern disk drives. In
Proceedings of the ACM Sigmetrics Conference, 241-
251. The Association for Computing Machinery, New
York.
50
AUTHOR BIOGRAPHY

HELEN D. KARATZA is an Assistant Professor at the
Department of Informatics at the Aristotle University of
Thessaloniki, Greece. Her research interests mainly include
Performance Evaluation of Parallel and Distributed
Systems, Multiprocessor Scheduling and Simulation. Her
email and web address are <karatza@csd.auth.gr>
and <www.csd.auth.gr/~karatza>.
5

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

