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ABSTRACT  
 
A special type of scheduling called backfilling is presented 
using a parallel system upon which multiple jobs can be 
executed simultaneously. Jobs consist of parallel tasks 
scheduled to execute concurrently on processor partitions, 
where each task starts at the same time and computes at the 
same pace. The impact of I/O scheduling on system 
performance is also examined. The goal is to achieve high 
system performance and maintain fairness in terms of 
individual job execution. The performance of different 
backfilling schemes and different I/O scheduling strategies 
is compared over various processor service time 
coefficients of variation and for various degrees of 
multiprogramming. Simulation results demonstrate that 
backfilling improves system performance while preserving 
job sequencing. Also, the results show that when there is 
contention for the disk resources, trends in system can 
differ from those appearing in the research literature if I/O 
behavior is negligible or it is not explicitly considered. 
 
1 INTRODUCTION 
 
The efficient scheduling of multiprogrammed parallel 
systems has been a major research and development goal 
for many years. On one hand, users expect their individual 
jobs to achieve excellent performance.  On the other hand, 
system resources must be judiciously allocated to satisfy 
the demands of jobs and produce the best overall 
performance. These objectives raise a number of 
scheduling policy issues with respect to large parallel 
computing environments (Dowdy et al. 1999, Feitelson 
1994, Feitelson and  Rudolph 1995, Karatza 1998).  

Our work considers a shared memory system with 128 
processors. We use a scalable, coherent shared address 
space (SAS) multiprocessing since it has been the focus of 
research in many other studies. Over the last decade, a 
number of hardware cache-coherent, non-uniform memory 
access architectures (so-called hardware-DSM or CC-
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NUMA machines) have been built and shown to perform 
well at the moderate scale of about 32 processors. In fact, 
such machines are fast becoming the dominant forms of 
tightly coupled multiprocessors built by commercial 
vendors. An open question is how scalable these arch-
itecture configurations are to larger processor counts. Jiang 
and Singh (1998) studied the performance of a wide range 
of SAS parallel applications on a 128-processor hardware 
cache-coherent machine (the SGI Origin2000). They 
showed that scalable performance is indeed be achieved 
with this programming model over a wide range of 
applications, including the challenging of kernels like FFT.  

Most research in this area has focused only on the 
scheduling of processors. However, improvements in 
processor speed and main memory size have exposed I/O 
subsystems as a significant bottleneck that keeps 
applications from achieving full system utilization. This 
problem is more serious in multiprocessing systems where 
multiple processors must share the I/O subsystem. 
Therefore, I/O scheduling should be examined along with  
parallel job scheduling. 

This study considers a partitionable parallel processing 
system where the partitions are subsystems allocated to 
independent jobs. Jobs consist of parallel tasks that are 
scheduled to execute concurrently on a set of processors. 
The parallel tasks need to start at essentially the same time, 
co-ordinate their execution, and compute at the same pace. 
This type of resource management is called �coscheduling� 
or �gang scheduling� and has been extensively studied in 
the literature of distributed and shared memory systems 
(Feitelson and Jette 1997, Feitelson and Rudolph 1995, 
Karatza 1999a, Karatza 1999b, Setia 1997, Wang, 
Papaefthymiou, and Squillante 1997). 

Jobs start to execute only if enough idle processors are 
available to handle them. However, a scheduling policy is 
needed to determine which parallel program is to be 
mapped to the available processors. Job sequencing needs 
to be preserved as much as possible in order to achieve 
fairness in job execution.  
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In multiprogrammed parallel systems, processor 
partitions are usually allocated on a FCFS basis. This 
approach can result in severe fragmentation, because 
processors that cannot fulfill demands of the next job in the 
queue remain idle until the needed resources are freed. To 
avoid fragmentation, a non-FCFS policy for queuing 
waiting jobs on a partitionable system should be used.  

When several small jobs running and a job that 
requires the entire system is at the head of the scheduling 
queue, a FCFS scheduler will reserve freed processors until 
the entire system is available, keeping processors idle until 
the final running job has terminated. A non-FCFS 
scheduler can execute small jobs from the back of the 
queue until the last job finishes, thus improving the total 
utilization of the system. Such an approach is called 
backfilling or aggressive backfilling. Idle processors are 
assigned small jobs at the back of the queue on the 
condition they do not delay the large job in the first queue 
position. Clearly, such a system should also be cautiously 
designed avoid starving large jobs. In reality, backfilling is 
just a natural extension of FCFS scheduling.  

Research on backfilling includes Feitelson and Weil 
(1998), Talby and Feitelson (1999). Feitelson and Weil 
(1998) show that a conservative approach, where small 
jobs move ahead only if they do not delay any job in the 
queue, produces the same utilization as aggressive 
backfilling, but it has the advantage that it does not 
normally cause unbounded queuing time. However, the 
conservative approach involves extra overhead in that it 
examines all jobs in the queue for possible delay.  

Talby and Feitelson (1999) apply a technique called 
slack-based backfilling where the scheduler gives each 
waiting job a slack (time delay) that determines how long it 
will wait before running: �Important� or �lengthy' jobs that 
have little slack in comparison to others. When a new job 
is submitted, all possible schedules are priced out 
according to utilization and priority considerations and so 
long as no job is delayed beyond its slack, the cheapest 
schedule is selected. 

This paper examines the aggressive backfilling 
method, and proposes a version of it where a job in the 
queue is scheduled if it will not delay the first job for more 
than a small time interval. We also examine the strict FCFS 
policy for comparison purposes.  

Generally, other papers found in the literature study 
processor scheduling only. They do not explicitly model 
the I/O processing, even though it can significantly 
influence the overall system performance. However, 
scheduling is not an isolated issue. It is only a single 
service provided by the operating system. Any solution to 
the scheduling problem must be integrated with other 
problem solutions, e.g. I/O management. Different parts of 
the system must work together to create a cohesive whole 
in such a way that it makes sense. The Rosti et al. (1998) 
study of large-scale parallel computer systems suggests 
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that the overlapping of I/O demands of some jobs with the 
computation demands of other jobs offer a potential 
improvement in performance.  

I/O scheduling is examined in Kwong and Majumdar 
(1999), Seltzer, Chen, and Ousterhout (1990), 
Worthington, Ganger, and Patt (1994). However these 
papers do not consider processor scheduling. Our previous 
papers Karatza (1998, 1999a, 1999b) examine processor 
scheduling, but only the FCFS scheduling policy is applied 
at the I/O unit. We employ three I/O scheduling algorithms 
� FCFS, Shortest Time First, and Weighted Shortest Time 
First. The last algorithm uses the standard Shortest Time 
First technique, but also applies an aging function to the 
times computed. The performance of these algorithms has 
been studied in conjunction with gang scheduling in a 
distributed system in Karatza (2000). In that paper, each 
processor is equipped with its own queue, each parallel 
task of a job is assigned to a different processor queue, and 
the scheduling method at the processor queues is different 
from each of the methods that we used in this research.  

The design choices considered in this paper include 
different ways to schedule jobs for service on the system 
processors and on the I/O subsystem. The performance of 
the different scheduling policies is compared for various 
coefficients of variation of the processor service times and 
for different degrees of multiprogramming. The author has 
not found a combined analysis of backfilling scheduling 
and I/O scheduling anywhere else in the research literature. 

This paper is theoretical in that the results are obtained 
from simulation studies instead of from the measurements 
of real systems. Nevertheless, the results presented are of 
practical value. All of the algorithms are practical in that 
they can be implemented. Although we do not derive ab-
solute performance values for specific systems and work-
loads, we do study the relative performance of the different 
algorithms across a broad range of workloads and analyze 
how changes in the workload can affect performance.  

Some simple idealized systems can be mathematically 
analyzed using techniques such as queuing theory to 
determine performance measures. In addition to 
exponential distribution for job processing times, our 
system includes Branching Erlang.  It also applies 
scheduling policies with different complexities. For 
complex systems, analytical modeling typically requires 
additional simplifying assumptions, and those assumptions 
frequently have unforeseeable influences on the results. 
Therefore, research efforts have been devoted to finding 
approximate analysis, developing tractable models for 
special cases, and conducting simulations. We chose 
simulations because it is possible to simulate the system 
under study in a direct manner, thus lending credibility to 
the results. Detailed simulation models help determine 
performance bottlenecks in architecture and assist in 
refining the system configuration.  
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The structure of this paper is as follows. Section 2.1 
specifies system and workload models, sections 2.2 and 2.3 
describe the processor and the I/O scheduling strategies, 
and section 2.4 presents the metrics employed while 
assessing the performance of the scheduling policies. 
Model implementation and input parameters are described 
in section 3.1 while the results of the simulation 
experiments are presented and analyzed in section 3.2. 
Section 4 is the conclusion and provides suggestions for 
further research, and the last section is references. 

 
2 MODEL AND METHODOLOGY 
 
2.1 System and Workload Models 
 
A closed queuing network model is considered that 
consists of P = 128 parallel homogeneous processors and a 
multiserver disk center. This allows files to be stripped 
across a variable number of disks, and a natural way to 
capture the effects of disk striping is via a fork-join system. 
We considered that each I/O request forks sub-requests that 
can be served by the parallel disk servers.  

All processors share a single queue (memory). The 
effects of the memory requirements and the 
communication latencies are not represented explicitly in 
the system model. Instead, they appear implicitly at job 
execution time. By covering several different types of job 
execution behaviors, we expect that various architectural 
characteristics will be captured, as well. 

Since we are interested in a system with balanced 
program flow, we considered an I/O subsystem with the 
same service capacity as the processing unit. The model is 
considered closed since the degree of multiprogramming N 
is constant. The configuration of the model is shown in 
Figure 1. 

 

P=128

N

m

m

m

CPU I/O

 
Figure 1:  The Queuing Network Model 

 
A technique used to evaluate the performance of the 

scheduling disciplines is experimentation using a synthetic 
workload simulation. In studies like this, one is usually 
required to use synthetic workloads because real workloads 
cannot be simulated efficiency enough and real systems 
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with actual workloads are not available for 
experimentation. Also, useful analytic models are difficult 
to derive because the subtleties between various disciplines 
are difficult to model and because the workload model is 
quite complex. 

A partitionable parallel processing system is used 
which dynamically allocates jobs to processor subsystems. 
Jobs consist of a set of n ≥ 1 tasks where each task 
executes on one processor. Processors are allocated at job 
initiation and once they are committed to a job they cannot 
be reallocated until the job terminates. The number of 
processors required by job x is represented as p(x), and is 
called the �size� of job x. A job is said to be �small� (or 
�large�) if it requires a small (or large) number of 
processors. The p(x) processors must be allocated 
simultaneously to job x, and once they are allocated, they 
are held by job x until its completion. Jobs x1, x2, ... xl can 
be executed simultaneously if and only if the following 
relation holds: 

 
p(x1)+p(x2)+...+p(xl) ≤ P. 

 
Each job begins execution only when enough idle 

processors are available to meet its needs. When a job 
terminates execution, all processors assigned to it are 
reclaimed. Each time a job returns from I/O service to 
parallel processors, it needs a different number of pro-
cessors for execution, that is its degree of parallelism is not 
constant during a job's lifetime in the system. The sequence 
that jobs in the queue are served depends on the scheduling 
policy. Fairness is required across competing jobs. 

The workload considered here is characterized by the 
following four parameters: distribution of job sizes, 
distribution of processor service times, distribution of I/O 
service times, and the degree of multiprogramming. We 
assume that there is no correlation between job size and 
processor service demand. For example, a small job may 
have a long processor service time. We also assume that 
job sizes are uniformly distributed over the range [1..128]. 
The number of jobs that can be processed in parallel, 
depends on job sizes and on the scheduling policy applied.  

Numerous scheduling disciplines have been proposed 
for multiprocessor systems, the evaluation of which, for the 
most part, has been conducted on workloads with a 
relatively small variability in job processing requirements. 
However, high performance computer centers report that 
their service time coefficient of variation can in fact be 
greater than one. 

We investigate the impact of varying processor service 
times on system performance. A high variability in job 
service demand implies that there is proportionately a high 
number of service demands that are very small in 
comparison to the mean processor service time, and a 
comparatively low number of service demands that are 
very large. When a job with a long service demand enters 
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the processor system and begins execution, it will occupy a 
number of processors for a long time and depending on the 
scheduling policy applied, it may introduce inordinate 
queuing delays for the other jobs waiting for service.  

The parameter, which represents the variability in job 
execution times, is the coefficient of variation of processor 
service time (C). This is the ratio of the standard deviation 
of processor service times to its mean. We examine the 
following cases:  

 
. Processor service times are independent and 

identically distributed (IID) exponential random 
variables with a mean m.  

. Processor service times have a Branching Erlang 
distribution (Bolch et al. 1998) with two stages 
and are IID. The coefficient of variation is C, 
where C > 1 and the mean is m.   

 
After processor service, a job requests service from the 

I/O subsystem.  
 
. The I/O service times are exponentially 

distributed with a mean k and are IID. 
 
Next we describe the scheduling strategies employed 

in this work. As with most studies we assume that 
scheduling overhead is negligible.  

 
2.2 Processor Scheduling Policies 
 
We assume that the scheduler has perfect information 
when making decisions, i.e. it knows: 
 

. The exact number of processors required by all 
jobs in the queue. 

. Job service demands.  
 

We analyze performance of the following policies: 
 
.  First Come First Served (FCFS). When a job 

leaves the system, the first job in the ready queue 
is examined. If the job does not fit into any of the 
available processors, it is not scheduled and 
furthermore, no other jobs are scheduled. If the 
first job does fit, it is scheduled, and while there 
are more processors available, remaining jobs in 
the ready queue are scheduled in the order they 
arrived.  

Unfortunately, with the FCFS policy, jobs 
may be retained in the ready queue even when 
there are a sufficient number of idle processors to 
handle them. The following two methods can 
eliminate this problem. 
499
.  Backfilling (BF). Backfilling is the process of 
allowing small jobs to run, on the condition they 
do not delay a large job that is waiting at the head 
of the scheduling queue. This policy assumes that 
a priori knowledge about a job is available in form 
of a service demand. When such knowledge is 
available, the time when a job will terminate 
execution and release the processors needed by 
the large job can be predicted. It should be noted, 
however, that a priori information is not often 
available and only an estimate of task execution 
time is possible. In this study, the estimated job 
execution time is uniformly distributed within ± 
E% of the exact value.  

.   Loose Backfilling (LBF). A job in the scheduling 
queue starts execution if its predicted service time 
assures that the job will not delay the first job in 
the queue for a time interval that is larger than 
some value d. For d=0 this method is the same as 
BF.    

 
2.3 I/O Scheduling Policies 
 

. First Come First Served (FCFS). This disk 
scheduling policy often results in suboptimal 
performance. Many scheduling algorithms have 
been proposed that achieve higher performance by 
taking into account information about individual 
requests. Frequently, this policy is used as a 
performance yardstick against which the other 
policies are compared to determine whether the 
job based I/O scheduling procedures produce any 
performance benefits. 

. Shortest Time First (STF). This policy chooses the 
request which yields the shortest I/O time, and 
includes both seek time and the rotational latency. 
STF should yield the best throughput since the 
fastest I/O service is always selected. The 
algorithm scans the entire queue calculating the 
time each request will consume. It then selects that 
request with the shortest expected service time. 
This policy is denoted as Shortest Positioning 
Time First (SPTF) in Worthington, Ganger, and 
Patt (1994). It is obvious that this method is not 
fair to a job in the I/O queue with very large 
service demand since it may be scheduled only 
after a very long wait in the queue. In this paper, 
however, we do not consider highly variable I/O 
service times (C=1). For this reason we do not 
encounter very large I/O service times that can 
cause unbounded job delays in the I/O queue.  

. Weighted Shortest Time First (WSTF). This 
method is a version of the STF strategy and is 
based on algorithms proposed by Seltzer, Chen, 
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and Ousterhout (1990), Worthington, Ganger, and 
Patt (1994). Priority is assigned to requests that 
have been in the pending queue for excessive 
periods of time. The priority may slowly increase 
as the request ages, or a time limit may be set 
after which requests are served on a FCFS basis. 
This algorithm uses the standard shortest time first 
technique, but it applies an aging function to the 
times computed as follows: 

 
1. First, we assume that the FCFS policy is 

applied to jobs that are waiting in the queue 
for a time interval greater than 10 * k, where 
k is the mean I/O subsystem service time. 
This means that these jobs are given the 
highest priority, and that the expected number 
of other jobs, which have bypassed them in 
the I/O subsystem, cannot be greater than 10.  

2. For each STF calculation, the actual I/O time 
is multiplied by a weighting value W. W is 
computed by calculating how much time is 
left before this request will exceed the time 
interval 10 * k. Thus, the weighted time can 
be calculated in the following way. 

 
Let: 
  Tw   be the Weighted Time, 
  Treal  be the actual I/O Time, 
  M  be equal to 10 * k, 
  TE    be the Elapsed Time since this  
    request arrived. 
 
Then: 
 Tw = Treal * (M - TE)/M. 

 
Implementation Issues: Although processor scheduling 

policies that based on explicit knowledge of job 
characteristics offer excellent performance potential, their 
implementation has been difficult on general purpose 
systems because it is hard to acquire such a priori 
knowledge. In comparison to processor scheduling, 
policies based on job characteristics are easier to 
implement in the context of I/O scheduling. It is possible 
for the operating system to keep track of the age of a job 
and estimate I/O demand associated with a request. 
Consequently, it is quite possible to implement policies 
such as STF or WSTF on a real system. In this study, the 
I/O estimated service time is uniformly distributed within ± 
E% of the exact value. 

When we use priorities and a tie occurs, FCFS is used 
to break the tie. Next, when we use a notation of the form: 
�policy a � policy b� we mean that �policy a� is a 
processor scheduling policy, while �policy b� is an I/O 
scheduling policy. For example, BF-STF means that we 
use BF processor scheduling and STF I/O scheduling.  
5

 
2.4 Performance Metrics 
 
Consider the following definitions: 
 

Response time of a job is the time interval from the 
arrival of that job at the processor queue to the service 
completion time for that job (i.e., time spent in the 
processor queue plus job service time).  

Cycle time of a job is the elapsed time between two 
successive service requests for a job on the processors. 
This includes processor queuing and service times, plus I/O 
queuing and service times. 

Parameters used in simulations computations 
(presented later) are shown in Table 1. 

 
Table 1: Notations 

RT  Mean response time 
K   Mean cycle time 
R System throughput  
Uproc Mean processor utilization 
UI/O Mean I/O unit utilization 
N Degree of multiprogramming 
m Mean processor service time 
k Mean I/O service time 
E Estimation error in service time 

 
System throughput (system performance) and mean 

cycle time (program performance) determine the overall 
performance of the model.  

 
3 SIMULATION RESULTS  

AND DISCUSSION 
 
3.1 Model Implementation and  

Input Parameters 
 
The queuing network model was simulated with discrete 
event simulation models (Law and Kelton 1991) using the 
independent replication method. For every mean value, a 
95% confidence interval was computed. All confidence 
intervals were within 5% of the mean values. 

A balanced system with m=1.0 and k = 0.504 was 
considered. The value k=0.504 was chosen for balanced 
program flow because the processors average 64.5 tasks 
per job. When all processors are busy, an average of 
1.9845 jobs are served each unit of time. This implies that 
I/O mean service time must be equal to 1/1.9845 = 0.504 if 
the I/O unit is to have the same service capacity.  

The system was examined in cases of job execution 
times with exponential distribution (C = 1), and Branching 
Erlang for C = 2, 4. The degree of multiprogramming N 
was 8, 12, 16, 20, and 24. The reason for examining 
00
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different degrees of multiprogramming is that it is a critical 
parameter in determining system load.  

In the LBF case d was taken as 0.1, 0.2, 0.3. This is a 
reasonable assumption taken into account that the mean 
processor service time is equal to 1. In the cases where 
estimation of service time is required we have also 
examined estimation errors ±10% and ±30%. 

 
3.2 Performance Analysis 
 
Due to space limitations only the following results are 
presented: 
 

. Tables 2-3. Performance parameters for the 
FCFS-STF, and BF-STF cases for C=1.   

. Figures 2-7. FCFS, BF and LBF processor 
scheduling policies are combined with the FCFS, 
and the STF I/O scheduling methods. 

. Figures 8-13. The performance of the FCFS and 
BF processor scheduling policies are shown when 
they are combined with each one of the three I/O 
scheduling policies. 

. Figure 14. Throughput in the BF-STF, C=4 case 
for E=0%, 10%, 20%, 30%.  

 
Table 2: C=1, FCFS-STF Case 

N Uproc UI/O RT K R 

 8 0.69 0.69 4.55 5.81 1.38 
 12 0.70 0.70 7.32 8.65 1.39 
 16 0.70 0.70 10.19 11.53 1.39 
 20 0.70 0.70 13.07 14.41 1.39 
24 0.70 0.70 15.94 17.30 1.39 

 
Table 3: C=1, BF-STF Case 

N Uproc UI/O RT K R 

 8 0.73 0.73   4.22   5.51 1.45 
 12 0.74 0.74   6.76   8.14 1.47 
 16 0.74 0.74   9.39 10.79 1.48 
 20 0.75 0.75 11.87 13.36 1.50 
24 0.75 0.75 14.63 16.07 1.49 
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Figure 12:  R versus N, C=2, BF Processor Scheduling 
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Figure 13:  R versus N, C=4, BF Processor Scheduling 
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Figure 14:  R versus N, C=4, BF-STF (E: Estimation Error) 
 
The results demonstrate the following: 
As far as overall performance is concerned, the LBF 

method performs almost the same as BF for all d. Actually, 
in most cases LBF performed only slightly better than BF.  

The worst system performance is encountered with the 
FCFS method. This is because FCFS yields higher RT than 
the other methods, resulting in higher mean cycle time and 
lower system throughput. Utilization is also lower in the 
FCFS case than it is in BF and LBF cases.   

For all N and C the difference in performance between 
the FCFS processor scheduling policy and each one of BF, 
and LBF policies varies between 6.5% to 10.5% (relative 
increase). This result held true for any of the I/O 
scheduling policies that we employed.  

Regarding I/O scheduling, the WSTF I/O method 
performed almost the same as the FCFS I/O scheduling. 
Therefore, considering the FCFS and the WSTF methods at 
the I/O subsystem, the FCFS method is preferable since it 
is easier to implement it in practice, incurs less overhead, 
and is the fairest of the other I/O methods.  

The STF method performs better than the other two 
I/O policies. This I/O method demonstrates higher 
superiority at low degrees of multiprogramming. This is 
due to the fact that all three processor-scheduling methods 
examined are conservative in job scheduling, as they seek 
to preserve job sequence. Jobs tend to be kept in processor 
queues when they might be scheduled if a different 
scheduling method were applied. The blocking of jobs is 
higher at high N. Therefore, no matter which scheduling 
method is applied at the I/O unit, the delay of jobs in the 
processor queues is a factor that restricts performance.       

The level of the superiority of STF over FCFS I/O 
scheduling was different for the various cases examined. 
For example, when STF is combined with the FCFS 
processor scheduling policy (FCFS-STF case), the largest 
superiority of it over FCFS-FCFS was 3%, 4.2% and 6.7% 
for the C=1, 2, 4 cases respectively. When STF is 
combined with the BF method the largest superiority of 
BF-STF over BF-FCFS was 2%, 4%, and 5.4% for C=1, 2, 
and 4 respectively.  
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Generally, simulation results reveal that the effect of 
I/O scheduling on system performance is more significant 
at C=4 than at C<4. This is due to the fact that at C>1 job 
service times present high variability. In this case, the 
majority of jobs have small service times and are served 
very fast by the processors, but then they have to wait at 
the I/O subsystem. This is the reason that the STF I/O 
method potential is better exploited at C=4. 

Additional simulation experiments were conducted to 
assess the impact of service time estimation error on the 
performance of the scheduling methods that require a priori 
knowledge of service times. Figure 14 shows the effect of 
service time estimation error on system throughput for the 
BF-STF, C=4 case. The estimation error in this figure is set 
at ±0%, ±10%, ±20%, and ±30%. The graph shows that the 
estimation error in processor and I/O service times 
marginally affect system performance. Therefore, no profit 
can be gained from the a priori knowledge of exact service 
times. 

All policies have their merit:   
Regarding processor scheduling policies, FCFS is 

easier to implement and results in less overhead than 
backfilling. BF, and LBF methods assume a priori 
knowledge of an approximate job execution time, but these 
methods can perform better than the FCFS strategy. BF 
performs almost the same as LBF and is fairer than LBF 
because it preserves job sequence.  

Regarding I/O scheduling, STF needs advance 
information about I/O service time. This method achieves 
performance improvement only in certain cases. On the 
other hand WSTF performs very close to FCFS and results 
in more overhead than the STF method.  

The above observations indicate that the BF-STF is 
best for C=4. For C<4, the BF-STF method should be used 
only for low N, while for high N the BF-FCFS method is 
more appropriate.  

 
4 CONCLUSIONS AND FURTHER RESEARCH 
 
This research studies backfilling in conjunction with I/O 
scheduling in a partitionable parallel processing system. 
We use simulation as the means of generating results used 
to compare different configurations. 

Three processor scheduling policies were considered 
(FCFS and two backfilling methods � BF and LBF) as well 
as three I/O scheduling methods (FCFS, STF, and WSTF). 
Their performance was simulated and then compared for 
various degrees of multiprogramming N and coefficients of 
variation C of processor service times.  

The simulation results reveal the following: 
 
. The BF policy as compared with the other 

methods exhibits good system performance and 
fairness. 
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. Among the three I/O scheduling methods, for C = 

4 the STF method is recommended. For C < 4 
STF should be used for low N and FCFS should 
be used for high N since it is easier to implement, 
fair, and it performs close to STF.  

. Backfilling and I/O scheduling can tolerate 
estimation errors in job service time. 

 
 This work is a case study. It can be extended as 
follows:  
 

. Different job size distributions could be 
considered. 

. Different distributions of I/O service times could 
be examined. 

. The overhead involved with backfilling could be 
more accurately taken into account. 
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