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ABSTRACT

Under certain conditions on the integrand, quasi-Mon
Carlo methods for estimating integrals (expectations) co
verge faster asymptotically than Monte Carlo methods. M
tivated by this result we consider the generation of quas
random vectors with given marginals and given correlatio
matrix. We extend the “Normal To Anything” (NORTA)
method, introduced by Cario and Nelson, to this contex
and term the extension the “Quasi-Random to Anything
(QUARTA) method.

1 INTRODUCTION

We present a new approach for computing integrals (e
pectations) of the formEg(X), for some functiong, and a
class of random vectorsX. This problem arises in a host
of applications. For example, in stochastic linear program
ming, X represents certain random input data to a line
program, and the functiong gives the optimal objective
value of the linear program (Infanger 1994). In stochast
activity networks,X represents the random task duration
on the arcs of the network, andg reflects the length of the
longest path between two specified nodes.

In both of these applications,X takes the form of a
d-dimensional vector of real-valued random variables.
i.i.d. replicates ofX can be generated, then the Monte Carl
method may be used to estimateEg(X).

If the d components ofX are modeled as independen
random variables, then univariate generation techniques m
be applied to each of the components independently to gen
ateX. However, the assumption of independent componen
may be an unreasonable one for many applications (Infang
1994, Cario and Nelson 1997).

There are many models for specifying multivariate ran
dom vectors with correlated components and marginal dist
butions from a single parametric family; see Devroye (1986
and Johnson (1987) for surveys. There are fewer metho
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for dealing with the case where the marginal distribution
do not come from a common family.

Specifying the distributions of such random vectors ca
be an onerous task, let alone developing variate generat
algorithms. It is natural then, to simply specify the margina
distributions of the components ofX, together with their
covariance matrix. This approach does not necessar
uniquely specify the distribution ofX. However, it is far
easier to specify this data than to specify a full multivaria
distribution. Furthermore, there are methods for generati
random vectors with specified marginals and covarian
matrix.

The extremal distributions method of Hill and Reilly
(1994) can be applied in this case, but practically speakin
it appears to be limited in applicability to low-dimensiona
(d ≤ 4 say) random vectors.

Cario and Nelson (1997) describe the “Normal t
Anything” (NORTA) method, which easily scales to high
dimensional random vectors. The basic idea is to beg
with a random vectorZ with a multivariate normal distri-
bution, and transformZ to yield a random vectorX with
the desired marginals and correlation structure. Cario a
Nelson (1997) gave structural results that establish the fea
bility of a numerical approach to determining the correlatio
structure ofZ which induces the required correlation struc
ture ofX. They traced the origins of the NORTA method
back to Mardia (1970) who looked at transformations o
bivariate normal random variables, and Li and Hammon
(1975), who looked at random vectors where all margina
have densities (with respect to Lebesgue measure). Im
et al (1981) and Iman and Conover (1982) implemente
a joint normal transform procedure, where the variable
Z andX have the same rank correlation structure. The
approach is essentially the NORTA method with a differe
method for choosing the correlation matrix ofZ. Clemen
and Reilly (1999) use the NORTA method, attempting t
ensure a given rank correlation in the output. They emplo
an explicit formula for the rank correlations of multivari-
7
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ate normal random variables to determine the appropr
correlation structure ofZ.

It might be conceived that the NORTA method cou
be used to generate random vectors with arbitrary margin
and an arbitraryfeasiblecovariance matrix (feasible in the
sense that a random vector with the specified margin
and covariance matrix exists). Unfortunately, this is not t
case, as Ghosh and Henderson (2000) show that there
sets of marginals with feasible covariance matrix that can
be generated with the NORTA procedure. This fact w
noted, although not rigorously established, in both Li a
Hammond (1975) and Clemen and Reilly (1999). Howev
the method can be adjusted to generate a random vectoX

with the required marginals, and a covariance matrix th
is “close” to the desired covariance matrix. Clemen a
Reilly (1999) give one such adjustment, and Ghosh a
Henderson (2000) give another. We outline how Ghosh a
Henderson (2000) do this in Section 2.

In this paper, we use the NORTA procedure as a to
to assist in computingEg(X). A Monte Carlo approach to
computingEg(X) generates i.i.d. replicatesX(1), . . . , X(n)
of X, and computes

αmc(n) = 1

n

n∑
i=1

g(X(i)).

If E[g(X)]2 <∞, thenαn satisfies the central limit theorem

√
n(αn − Eg(X)) ⇒ σN(0,1)

asn→∞, where ⇒ denotes weak convergence,N(0,1)
denotes a standard normal random variable, andσ 2 =
var(g(X)). Henceαn converges at raten−1/2 to Eg(X),
independent of the dimensiond of X.

Alternatively, numerical integration techniques may b
employed to estimateEg(X). We may write

Eg(X) =
∫
S

g(x)π(dx),

whereπ is the distribution ofX, andS ⊆ IRd is the support
of π . This integral can be transformed into one on th
unit hypercube ind dimensions with respect to Lebesgu
measure. Numerical integration techniques can then
applied to estimateEg(X). In particular, the (deterministic)
pointsu(1), u(2), . . . , u(n) within the unit hypercube might
be chosen, and an approximation ofEg(X) computed via

1

n

n∑
i=1

h(u(i)), (1)

where the functionh depends on the transformation of th
integral overS to one over the unit hypercube.
528
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It is known (Niederreiter 1992, p. 32) that under ce
tain conditions ong, sequencesu = u(1), u(2), . . . exist for
which the error in (1) decreases at most at raten−1(logn)d .
This rate is (asymptotically) faster than the raten−1/2 ex-
hibited by the Monte Carlo method.

Such sequences are termed quasi-random num
(QRN) sequences, and because they are designed to “
formly” fill the unit hypercube, we will say that they are
quasi-random numbers with a uniform distribution on th
unit hypercube. However, it should be noted that QR
sequences are specifically designed to be deterministic,
not share certain properties with an i.i.d. sequence (unl
pseudo-random numbers). Consequently some care m
be exercised when speaking about the distribution of su
a sequence of points.

It is then reasonable to ask whether it is possible
generate QRN sequences with a nonuniform distributio
Gentle (1998, Chapter 2) surveyed a number of methods u
to transform uniformly distributed univariate (quasi-)rando
number sequences to nonuniform distributions. Further,
issue of directly sampling (quasi-)random numbers fro
specific distributions including univariate and multivariat
distributions, as well as over geometric objects, has a
been explored (Gentle, 1998, Chapter 3). Chiera and Co
(2000) have recently extended this problem by looking
the generation of QRN sequences for Markov trees w
diagonal band copulae. A joint distribution is determined b
one-dimensional marginals and rank correlations on a t
whose nodes are the one dimensional marginals, toget
with a maximum entropy condition. This latter condition i
always consistent and ensures that realizations are Mark
that is, they possess a conditional independence struc
given by the tree, considered as an (undirected) belief
(Meeuwissen, 1993, Meeuwissen and Bedford 1997, Coo
1997).

But why are nonuniform QRN sequences of interes
The answer is that it is possible to estimateEg(X) using
an estimator of the form

αqmc(n) = 1

n

n∑
i=1

g(x(i)),

where the quasi-random sequence{x(i)} is chosen “to have
distributionπ ” (we will formalize the notion of the distri-
bution of a deterministic sequence of points in Section 3
There is certainly potential value in such an approach.

To see why, suppose thatg(x) = c, a constant. Then
clearly,Eg(X) = c. Using the estimatorαqmc yields the
exact solution with a single pointx(1). If the change of
variables technique mentioned earlier were to be used, t
in general, the integrand over[0,1)d will not be constant,
and a single integrand evaluation will not yield the exa
value of the expectation. While this example is highl
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artificial, it nevertheless motivates the use of quasi-rando
numbers with distributionπ .

Given that we have an acceptable definition of quas
random numbers with a given distributionπ say, we then
need a method for generating them. To do so direct
appears to be a rather formidable task, as the support
the distributionπ and so forth must be taken into account
However, there are a host of methods for generating qua
random numbers in the unit hypercube (see Gentle, 199
for a survey of these methods). So instead we transfo
quasi-random numbers with a uniform distribution in th
unit hypercube to quasi-random numbers with the desir
distributionπ . Basically, some form of inversion method
needs to be applied, and the NORTA method is one su
method. Therefore, we propose to take quasi-random nu
bers, and transform them into the desired distribution usin
the NORTA method. We will refer to this process as th
“quasi-random to anything”, or QUARTA method. (It should
be noted that NORTA can only generate a restricted cla
of distributions, and is not a completely general method.

To demonstrate the potential of QUARTA, we will pro-
vide two elementary examples that show that improve
accuracy over pure Monte Carlo is possible with (approx
mately) the same amount of computation.

The remainder of this paper is structured as follow
In Section 2, we review the NORTA method. We discus
some of the properties of the method, and mention som
pertinent results from Ghosh and Henderson (2000).
Section 3 we define what we mean by quasi-random numb
with a given distribution. Then, in Section 4, we outline
the QUARTA method, which is basically a variant of the
NORTA method. Finally, in Section 5, we provide two
examples of the application of the QUARTA method fo
estimating expectations (integrals).

2 THE NORTA METHOD

Suppose that we wish to generate i.i.d. replicates of an IRd -
valued random vectorX = (X1, . . . , Xd), with marginal
distribution functions

Fi(·) = P(Xi ≤ ·), i = 1, . . . , d,

and correlation matrix

6X = (6X(i, j) : 1≤ i, j ≤ d),

with 6X(i, j) = cor(Xi,Xj ). We require thatE(X2
i ) <∞

for i = 1, . . . , d, so that the correlation matrix6X is
defined, but otherwise impose no conditions on the margin
distribution functionsFi , i = 1, . . . , d. We assume that6X
is feasiblefor the given marginals, in that a random vecto
exists with the specified marginals and correlation structur
52
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Cario and Nelson (1997) described the NORTA proce
dure for solving this problem, which works as follows.

1. Generate an IRd valued normal random vectorZ =
(Z1, . . . , Zd) with mean vector 0 and covariance
matrix 6Z = (6Z(i, j) : 1 ≤ i, j ≤ d), where
6Z(i, i) = 1 for i = 1, . . . , d. Then eachZi is
a standard normal random variate (mean 0 an
variance 1). We will further specify6Z shortly.

2. Compute the vectorX = (X1, . . . , Xd) via

Xi = F−1
i (8(Zi)), (2)

for i = 1, . . . , d, where8 is the distribution func-
tion of a standard normal random variable, and

F−1
i (u) = inf {x : Fi(x) ≥ u}. (3)

At the conclusion of this procedure,X will have the
prescribed marginal distributions, because8(Zi) is uni-
formly distributed on(0,1), and soF−1

i (8(Zi)) will have
the required marginal distribution. Note that this algorithm
requires the calculation of8(z) for many z. While this
is not possible in closed form, fast numerical algorithm
are available to perform the calculation to high accurac
(Abramowitz and Stegun, 1964, Chapter 26).

It is easy to generate multivariate normal random vec
tors. See p. 480 of Law and Kelton (2000), for example

In a preprocessing step, the correlation matrix6Z is
chosen in an attempt to ensure thatXwill have the prescribed
correlation matrix6X. Determining the matrix6Z is the
principal difficulty in applying the NORTA method, and we
now explain how this may be done.

As in Cario and Nelson (1997), define the function
cij (z) = cor(Xi,Xj ), whereXi andXj are defined via (2)
and cor(Zi, Zj ) = z. We would like to choose6Z(i, j) so
thatcij (6Z(i, j)) matches the desired correlation6X(i, j).
Cario and Nelson (1997) established the following structur
result for the functioncij .

Theorem 1 The quantitycij [6Z(i, j)] is nonde-
creasing in6Z(i, j), and the minimum (resp. maximum)
possible correlation betweenXi and Xj (for the given
marginal distribution functionsFi and Fj ) is achieved by
taking 6Z(i, j) = −1 (resp.+1). Furthermore, if there
exists someε > 0 such that

E|XiXj |1+ε <∞

for all values−1≤ 6Z(i, j) ≤ 1, thencij is a continuous
function of6Z(i, j) ∈ [−1,1].

Theorem 1 allows one to perform an efficient numerica
search for values3Z(i, j) that yield

cij (3Z(i, j)) = 6X(i, j) for i < j. (4)
9
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We take3Z(i, i) = 1 for i = 1, . . . , d. The values3Z(i, j)
for i > j can then be chosen to ensure that the matrix3Z is
symmetric. Unless otherwise stated, we henceforth assu
that a solution to (4) exists.

Let the matrix3Z satisfy (4). If3Z is not positive
semidefinite, then it is not a valid correlation matrix, and
there is no normal random vectorZ with correlation matrix
3Z. In particular,3Z cannot be used within a NORTA
procedure to generateX.

However, it may still be possible to generateX via
a NORTA transformation. If (4) does not have a unique
solution, then a second matrix3′Z may exist that satisfies
(4) and that is positive semidefinite.

Theorem 2 below basically shows that a solution to (4) i
unique when all the marginals have densities (with respe
to Lebesgue measure) that are positive everywhere. W
conjecture that the solution is, in fact, unique for arbitrar
marginals. For a proof of this result, see the appendix.

Theorem 2 Suppose that fori = 1, . . . , d, Fi has
a densityfi that is positive everywhere, i.e.,fi(x) > 0 for
all x ∈ IR. If 3Z solves (4), then3Z is unique.

We immediately obtain the following corollary.
Corollary 3 Suppose that it is possible to generate a

random vectorX with prescribed marginals and correlation
matrix using a NORTA transformation. If the conditions o
Theorem 2 hold, then the matrix3Z found using a perfectly
accurate numerical search procedure will be symmetric an
positive semidefinite.

Proof: The assumption that a NORTA transformation
exists that yields the required correlations ensures that the
is a positive semidefinite correlation matrix3 that solves
(4). Under the conditions stated, the solution to (4) i
unique, and so3Z = 3 and is positive semidefinite.

The significance of this corollary is basically that if
NORTA can work, then it will work for the distributions
characterized in Theorem 2.

So then,canNORTA work, i.e. does a NORTA transfor-
mation exist for any set of marginals and feasible correlatio
matrix? Li and Hammond (1975) suggested the followin
counterexample to this important question.

Let X1, X2 andX3 be 3 uniformly distributed random
variables on(0,1) with correlation matrix

6X =
 1 −0.4 0.2
−0.4 1 0.8
0.2 0.8 1

 .
Li and Hammond quote the formula

3Z(i, j) = 2 sin(
π

6
6X(i, j)) (5)

for the (unique) matrix3Z that solves (4) (see Kruskal
1958 for a proof). The (unique) matrix3Z resulting from
these computations is not positive semidefinite.
530
e

t
e

e

Of course, this is only a counterexample if the rando
vectorX = (X1, X2, X3) exists. Li and Hammond (1975)
did not show this, but Ghosh and Henderson (2000) ha
since shown, using linear programming techniques, th
indeed such a random vector can be constructed. The
fore, there are sets of marginal distributions with a feasib
covariance matrix that NORTA cannot reproduce.

Suppose we take the position that we wish to use NORT
to generate a random vector with the prescribed margina
and a covariance matrix that is, at least approximately, t
required covariance matrix. Ghosh and Henderson (200
describe a semidefinite programming approach that can as
in this regard. The method may be summarized as follow

1. Use a numerical search procedure as described
Cario and Nelson (1997) to determine a symmetr
matrix 3Z such that (4) is satisfied.

2. If3Z is positive semidefinite, then one can procee
directly with the NORTA procedure.

3. If not, then we wish to find another matrix6Z
that is “close” in some sense to3Z. So minimize
d(6Z,3Z) subject to the constraint that6Z is
positive semidefinite, whered is some measure of
distance.

4. Use the matrix6Z as the correlation matrix ofZ
within the NORTA procedure.

With a suitable choice of distance functiond, the opti-
mization in Step 3 above can be formulated as a semidefin
programming problem; see Ghosh and Henderson (200
for one choice ofd, or Alfakih and Wolkowicz (2000) for
another. Efficient algorithms are available for solving suc
problems; see Wolkowicz, Saigal, andVandenberghe (200
The random vectors generated with the NORTA procedu
using6Z will have the correct marginal distributions, bu
will most likely have a different covariance matrix from tha
desired. However, the continuity established in Theorem
suggests that the covariance matrix will differ only slightl
from that desired if6Z is “close” to3Z. The numerical
examples given in Ghosh and Henderson (2000) sugg
that this is usually the case.

3 QUASI-RANDOM VECTORS

We need to be somewhat careful in defining what is mea
by “dependent” QRN sequences, as unlike pseudo-rand
number sequences, QRN sequences are specifically desig
not to mimic the properties of i.i.d. sequences. Thus it do
not, apriori, make sense to refer to the “distribution” of
QRN sequence.

QRN sequences are explicitly designed not to exhib
the clustering and gaps that are representative of an i.
sequence. It is exactly this property that leads to fast
convergence than the Monte Carlo method in estimati
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integrals (expectations). To be able to measure this clu
tering/gap effect, one often speaks of thediscrepancyof
a particular point set. We begin with a discussion of th
classical notion of discrepancy on the unit hypercube, a
adapted from Niederreiter (1992).

Let u = {u(k)} be a sequence of vectors defined within
the unit hypercube[0,1)d in d dimensions. For a given set
B ⊆ IRd , let

An(B; u) 4=
n∑
k=1

I (u(k) ∈ B)

be the number of vectorsu(k) fromu(1), . . . , u(n) contained
in the setB. Let B be a nonempty family of Lebesgue
measurable subsets of IRd . A general definition of the
discrepancyDn of the firstn terms of the sequenceu is

Dn(B; u) 4= sup
B∈B

∣∣∣∣An(B; u)n
− λd(B)

∣∣∣∣ , (6)

whereλd(·) is Lebesgue measure on IRd .
If the class of setsB is taken to be all sets of the form

B =
d∏
i=1

[0, ai)

for ai ∈ [0,1), then the above definition yields thestar
discrepancyD∗n(u) of the sequenceu (p. 14, Niederreiter
1992). The significance of this definition lies in its use
in establishing a bound on the error in an estimate o
an integral using the sequence of pointsu. In particular,
the following well-known result is known as the Koksma-
Hlawka inequality.

Theorem 4 (Koksma-Hlwaka Inequality): Let
g be a real-valued function defined on[0,1]d and suppose
that g has bounded variationV (g) in the sense of Hardy
and Krause (see p. 19 of Niederreiter 1992 for a definition
Then for any sequence of vectorsu = {u(k)} in [0,1)d , we
have

|α(n)− α| ≤ V (g)D∗n(u),
where

α
4=
∫
[0,1]d

g(x) dx <∞,

and for a given sequence of pointsu = {u(k)} with u(k) ∈
[0,1)d ,

α(n) = 1

n

n∑
k=1

g(u(k)).
53
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It is known (p. 32, Niederreiter 1992) that sequence
u exist with the property that

D∗n(u) = O(n−1(logn)d),

so that the error inα(n) is at most of ordern−1(logn)d .
This is a faster asymptotic rate than that obtained by th
Monte Carlo method (n−1/2), which motivates the use of
quasi-random numbers for numerical integration. It shou
be noted however, that these asymptotic results may not
representative of the sample sizesn used in practice. In
other words, for moderaten, it may be that the Monte Carlo
method yields lower error than can be obtained through t
use of a quasi-random sequence; see Kocis and Whi
(1997). This effect is especially pronounced in highe
dimensionsd.

If a sequenceu of vectors has a star discrepancy tha
converges to 0 asn→∞, then we can view the sequence
of vectors as an analogue of a sample from the unifor
distribution on[0,1)d . It is very natural to generalize the
notion of discrepancy to a non-uniform distribution on mor
general domains. Indeed, more general distributions on t
unit hypercube have already been considered in the literatu
(Niederreiter, Tichy and Turnwald 1990).

Letπ be a probability distribution on some setS ⊆ IRd .
Let B denote a class ofπ -measurable sets inS. For a given
sequence of pointsu = {u(k)} with u(k) ∈ IRd , define the
π -discrepancy ofu to be

Dπn (B; u) = sup
B∈B

∣∣∣∣An(B; u)n
− π(B)

∣∣∣∣ . (7)

Note the similarity of (7) to (6). In particular, the goal
of this definition is to characterize the property that th
sequenceu is an analogue of the probability distributionπ
on S. Niederreiter, Tichy and Turnwald (1990) studied a
more general version of this definition where weights cou
be assigned to each of the points in the sequenceu, but
restricted the domainS to be the unit hypercube.

We will say that u is a quasi-random sequence o
numbers with distributionπ if

Dπn (B; u)→ 0

asn→∞, whereB is the class of all sets of the form

n∏
i=1

(ai, bi),

where−∞ ≤ ai < bi ≤ ∞, i = 1, . . . , d.
Our goal is to use such sequences to estimate expec

tions of the formEg(X), whereX is distributed according
to π .
1
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So how can a sequence for which theπ -discrepancy
rapidly converges to 0 be computed? Our goal in the ne
section is to show how, for the class of distributions th
can be obtained through a NORTA transformation, to use
quasi-random sequence of points in[0,1)d to obtain a quasi-
random sequence of points with the desired distribution

4 THE QUARTA METHOD

We would like to be able to generate quasi-random vect
with given marginals and given feasible correlation matr
(where the exact meaning of this statement is given in t
previous section). We do so by extending the NORT
method, and term the method QUARTA, which is intende
to be mnemonic for “quasi-random to anything”.

Suppose that(u(n) : n ≥ 1) is a quasi-random sequenc
of d-dimensional vectors in the unit hypercube[0,1)d with
independent components (recall from the previous sect
that there is an appropriate notion of “independence”
this setting where the vectors are actually deterministi
We wish to transform these vectors into a quasi-rando
sequence(x(n) : n ≥ 1) of d-dimensional random vectors
with marginalsFi and feasible correlation matrix6X. We
will transform u(i) into x(i) for i ≥ 1. Note that in the
following procedure the indexi on theu(i)’s and x(i)’s
has been dropped for ease of readability.

1. Identify a correlation matrix6Z that yields (at
least approximately) the appropriate correlatio
matrix 6X exactly as in the Monte Carlo ver-
sion of NORTA. ComputeR, a Cholesky factor of
6Z, so that6Z = RT R.

2. Transformu into y, wherey has normal marginals,
via yj = 8−1(uj ).

3. Set z = Ry, so that z is standard multivariate
normal with correlation matrix6Z.

4. Computex via a NORTA transformation ofz, i.e.,
setxj = F−1

j (8(zj )) for j = 1, . . . , d.

The time-consuming Step 1 above need only be do
once, and then the required dependent quasi-random vec
can be rapidly generated (Step 2 can be performed v
quickly; see Marsaglia, Zaman and Marsaglia 1994). The
quasi-random vectors are analogous to i.i.d. random vect
with a distributionπ say, with the required marginals and
(at least approximately) the required covariance matrix.

When all of the marginal distribution functionsFi have
densitiesfi with respect to Lebesgue measure, it is a simp
matter to specify the distributionπ using the “change of
variables technique”; see p. 408 of Apostol (1969) fo
example. When this is not the case, one can of course
specifyπ , but not in such a nice form.

The primary use for vectors distributed according toπ is
in numerical integration, and more specifically, in calculatin
5
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an expected value with respect to the distributionπ . In

particular, one can approximateα
4= ∫IRd g(x)π(dx) via

αn
4= 1

n

n∑
i=1

g(x(i)),

where each vectorX(i) is generated according to the pro
cedure outlined above. We will give two examples of suc
a calculation in Section 5.

5 NUMERICAL EXAMPLES

In this section we present two examples where we wish

computeα
4=Eg(X) for some functiong and some random

vectorX. Both examples are contrived, but serve to demo
strate the potential applicability of the ideas presented
this paper. We will compare the error of an estimatorαmc
based on a pure Monte Carlo approach to one obtain
using our proposed QMC methodologyαqmc. It is easy
to assess the error in a pure Monte Carlo experiment us
the sample variance. However, it is more difficult to asse
the error using QMC methods.

In both of our examples, we will use an approac
suggested by Cranley and Patterson (1976) for assess
the error in the QMC approach. In the QMC method,Eg(X)

is estimated vian−1∑n
k=1 g(x(k)) for some deterministic

sequence of points{x(k)}. The sequence{x(k)} is, in turn,
based upon a deterministic sequence{u(k)} of points in the
d-dimensional unit hypercube[0,1)d . The error may be
assessed by randomly shifting the sequence{u(k)} several
times, each time computing an estimate ofEg(X). The
resulting estimates are i.i.d. and unbiased, and conseque
the error may be assessed. The procedure is as follows

1. Select a run lengthm, and for eachi = 1, ..., m
perform Steps 2, 3 and 4 below.

2. Generate a random vectorU that is uniformly
distributed in[0,1)d .

3. Compute ũ(k)
4= (u(k) + U) mod 1, where the

mod operation is performed componentwise,k =
1, . . . , n.

4. Compute

Yi = n−1
n∑
k=1

g(x̃(k)),

where thẽx(k)’s are obtained from thẽu(k)’s using
a NORTA transformation.

5. Compute the sample meanαqmc and sample vari-
ancevm of (Y1, . . . , Ym).

6. Compute a confidence interval forα, given by
αqmc± z√vm/m, wherez is chosen from normal
tables to ensure the required confidence level.
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An assessment of the error in the estimatorαqmc is
the confidence interval halfwidthz

√
vm/m.

To enable a fair comparison, the pure Monte Car
estimatorαmc should be based on the same number
function evaluations, namelymn.

We used Sobol’ sequences as implemented in Pres
al. (1992) to generate the required quasi-random sequen
for both examples.

Our first example is low-dimensional, and in such si
uations, other methods for numerical integration such
quadrature schemes are typically preferred to either Mo
Carlo or quasi-Monte Carlo approaches. However, the e
ample serves as a useful first demonstration that there
potentially value in the quasi-Monte Carlo approach.

Example 1 Suppose thatX = (X1, X2), where
eachXi is exponentially distributed with mean 1, and th
correlation betweenX1 andX2 is 0.4. We wish to compute
E(X1+X2) using both standard Monte Carlo methods, an
quasi-Monte Carlo methods. It is useful, for compariso
purposes, to note that the exact answer is 2.

The ARTAGEN software package (Cario and Nelso
1997) was used to determine the appropriate normal corre
tion (0.4464) required in the NORTA procedure to arrive
a correlation of 0.4 between 2 exponential random variabl
In our experiments, we first tookn = 128 (a quasi-random
sequence of length 128), andm = 100.

The resulting confidence interval forE(X1+X2) was
2.000± 0.007. In contrast, a confidence interval generat
using the standard Monte Carlo method (again generat
the Xi ’s using NORTA) with 12800 realizations gave
confidence interval of 2.02±0.03. Thus, the quasi-random
approach reduces variance by a factor of(0.03/0.007)2 ≈ 18
over standard Monte Carlo. (This variance reduction fac
was recomputed several times, and each time was of
same order of magnitude, namely approximately 20.) It
of course, important to also consider the time required
achieve these results. These results were each obtaine
approximately 2 minutes of computation using MATLAB
on a Sun Sparc 2. A more precise reporting of the tim
is not relevant, since no attempt was made to optimi
the code for either of the implementations, and a mo
precise comparison depends on both the implementat
and computer architecture. What is important is that t
variance reduction reported above essentially “comes
free”, in the sense that both methods require approximat
the same amount of computation.

In fact, we expect that the variance reduction fact
above will increase withn, since the quasi-random estima
tor is expected to converge at raten−1(logn)2, while the
standard Monte Carlo estimator is expected to converge
raten−1/2. To gauge the rate of convergence of the qua
random estimator, in Figure 1 we plotted the log of th
confidence interval halfwidth as determined by the Cranl
Patterson procedure versusn. The resulting graph clearly
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shows a slope of approximately−1, indicating that the
rate of convergence is approximately of the ordern−1. Of
course, we would not expect a term of the order(logn)2

to show up in such a plot.
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Figure 1: Log-log Plot of Confidence Interval
Halfwidth Versusn for the Quasi-random Esti-
mator in Example 1

This first example certainly lends support to the notio
that the use of quasi-random numbers can lead to compu
tional improvements in Monte Carlo calculations involving
the use of the NORTA method. Our second example rei
forces this notion through a more interesting application

Example 2 Suppose that we wish to compute the
expected length of the longest path in a stochastic activ
network as shown in Figure 2. We assume that the tim
required to complete task (arc)j in the network is expo-
nentially distributed with meanµj , and that the correlation
matrix of the task durations is6X. Specifically, we set

µ = (10,5,12,11,5,5)′,

and

6X =


1 0.5 0.5 0.3 0 0

1 0.5 0 0.3 0
1 0 0.5 0.3

1 0.1 0.5
1 0.3

1

 .

(Only the upper half of this positive semidefinite matrix
is specified as it is symmetric.) The correlation matri
6Z which yields6X after a NORTA transformation was
again obtained using the ARTAGEN software. The matri
6Z is obtained from6X by simply replacing all 0.5’s
with 0.54656, all 0.3’s with 0.34208, and all 0.1’s with
0.11936. The resulting6Z is positive definite. We again
took m = 100 andn = 128.
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Figure 2: Stochastic Activity Network Example
with Arc Labels as Shown

Once again, both the quasi-Monte Carlo approach a
the standard Monte Carlo approach took approximately t
same time to compute. The resulting quasi-Monte Car
confidence interval for the expected length of the longe
path was 26.52± 0.09. The corresponding standard Mont
Carlo confidence interval was 26.6 ± 0.3. We see that
the quasi-Monte Carlo estimator reduces variance from t
standard estimator by a factor of(0.3/0.09)2 ≈ 11.

Furthermore, as in Example 1, we expect that the qua
random estimator converges at a rate that is close to line
Figure 3 below lends credence to this supposition.
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Figure 3: Log-log Plot of Confidence Interval
Halfwidth Versusn for the Quasi-random Esti-
mator in Example 2

In both of these examples the quasi-Monte Carlo es
mator outperforms the standard Monte Carlo estimator,
we might have expected. These results reinforce the not
that the use of dependent quasi-random numbers can l
to useful efficiency improvements over estimators based
pseudo-random numbers, and the log-log plots above s
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gest that the improvements can be expected to grow witho
bound as the runlength increases.

Appendix

Before proving Theorem 2, we first give two preliminary
results.

Lemma 5 Suppose thatX is a nondegenerate ran-
dom variable, and thatg1 : IR→ IR and g2 : IR→ IR are
continuous, strictly increasing functions. IfEg2

i (X) < ∞
for i = 1,2, then cov(g1(X), g2(X)) > 0, i.e., the covari-
ance isstrictly positive.

Proof: For i = 1,2, defineg−1
i (·) as in (3). We have

that

cov(g1(X), g2(X))

=
∫ ∞
−∞

∫ ∞
−∞

P(g1(X) ≤ x, g2(X) ≤ y)−
P(g1(X) ≤ x)P (g2(X) ≤ y) dx dy (8)

=
∫ ∞
−∞

∫ ∞
−∞

P(X ≤ min{g−1
1 (x), g−1

2 (y)})−
P(g1(X) ≤ x)P (g2(X) ≤ y) dx dy (9)

≥ 0.

The first equality (8) above is given in Whitt (1976), who
attributes the result to Hoeffding (1940). The inequality
follows since the integrand in (9) is given byP(g1(X) ≤
x)P (g2(X) > y) if g−1

1 (x) ≤ g−1
2 (y), and P(g1(X) >

x)P (g2(X) ≤ y) otherwise.
It remains to show that the above inequality is, in fact

strict. Define

V = {v : P(X ≤ v)P (X > v) > 0}

to be the set of valuesv such thatX has positive probability
of being both less than or equal tov, and greater thanv.
Note thatV is an interval of strictly positive length, by our
assumption thatX is nondegenerate. Hencegi(V ) = {x :
x = gi(v), v ∈ V } is an interval of strictly positive length,
for i = 1,2. Choosev1 ∈ V , v2 ∈ V with v1 < v2.

Now selectw1, w2 ∈ [v1, v2] withw1 < w2, and define
x = g1(w1), andy = g2(w2). Observe that

P(g1(X) ≤ x)P (g2(X) > y) = P(X ≤ w1)P (X > w2)

> 0,

and that this holds for allw1 < w2 with v1 ≤ w1 < w2 ≤ v2.
Equivalently, this holds for allx, y with

g1(v1) ≤ x < g1(v2) andg2(g
−1
1 (x)) < y ≤ g2(v2).

(10)
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Observe that (10) is a set of positive Lebesgue measure (in
dimensions), and it immediately follows that the covarianc
(9) is strictly positive.

We also need the following result, which strengthen
Lemma 2 of Cario and Nelson (1997).

Lemma 6 Let (Z1, Z2) have a standard bivari-
ate normal distribution with cor(Z1, Z2) = ρ1. Let
(N1, N2) have a standard bivariate normal distribution
with cor(N1, N2) = ρ2 > ρ1. Letg1, g2 be continuous and
strictly increasing, and suppose thatEgi(N)2 <∞, where
N has a standard normal distribution, fori = 1,2. Then

Eg1(N1)g2(N2) > Eg1(Z1)g2(Z2).

The proof of this result uses the result of Lemma 5
and is virtually identical to that of Theorem 1 of Cario and
Nelson (1997). It is therefore omitted.

Proof of Theorem 2: Let 1 ≤ i, j ≤ d, and set
g1 = F−1

i (8(·)), and g2 = F−1
j (8(·)). Then g1 and g2

satisfy the conditions of Lemma 6, and so ifXi andXj
are generated via the NORTA method fromZi and Zj ,
we immediately see thatEXiXj is a strictly increasing
function of the correlationρ betweenZi andZj . Hence
the covariance betweenXi andXj is strictly increasing in
ρ, and so (4) can have at most one solution.
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