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ABSTRACT

We formulate the importance sampling problem as a para-
metric minimization problem under the original measure
and use a combination of infinitesimal perturbation analy-
sis (IPA) and stochastic approximation (SA) to minimize
the variance of the price estimation. Compared to existing
methods, the IPA estimator derived in this paper has signifi-

pling. Examples of successful implementations of control
variates for the pricing of financial derivatives include Hull
and White (1987, 1988), Turnbull and Wakeman (1991),
and Fu, Madan, Wang (1997).

Variance reduction based on importance sampling has
not been widely used as other VRTs in pricing financial
derivatives until recently. The idea behind importance sam-
pling is to simulate more sample paths on the area that

cantly smaller estimation variance and doesn’t depend on the matters; for instance, for a deep out-of-the-money call op-
form of payoff functions and differentiability of the sample tion, most of the time the payoff from the simulation is
path, and thus is more universally applicable and computa- 0, so simulating more sample paths with positive payoffs
tionally efficient. Under suitable conditions, the objective should reduce the variance in the estimation. Mathemat-
function is a convex function, the IPA estimator presented is ically speaking, the fundamental idea behind importance
unbiased, and the corresponding stochastic approximation sampling is that under certain regularity conditions, expec-
algorithm converges to the true optimal value. tation under one probability measure can be expressed as
an expectation under another probability measure through
the Radon-Nikodym theorem. The right choice of the new
probability measure will effectively reduce the variance
Monte Carlo simulation is used for pricing a variety of associated with the estimation.

securities, such as exotic equity options or fixed income se- An early example of importance sampling applied to
curities like mortgage-backed securities. As the complexity derivatives pricing is Reider (1993), where increasing the
of the structure of the financial claims and the dynamics drift substantially decreases the variance in simulations for
of the underlying assets increases, Monte Carlo simulation deep out-of-the-money European call options. Glasser-
often becomes the sole computationally feasible means of man, Heidelberger, Shahabuddin (1998) apply importance

1 INTRODUCTION

security pricing.
The efficiency of Monte Carlo simulations depends on

sampling in the Heath, Jarrow, Merton (1992) framework,
reporting substantial variance reduction by combining strat-

the variance of the estimation. Suppose we estimate the ified sampling and change of the drift term. Other recent

security pricep by p, wherep is an asymptotically unbiased
estimate ofp, then by the Central Limit Theorem,

VN(p - p) = N(©,5)),

whereN is the number of simulations awd is the variance

of estimation. This means that by reductngby a factor of

10, the number of simulation replications required to obtain

the same level of precision will be reduced by a factor of

100. This is the motivation behind a variety of variance re-

duction techniques (VRT) in Monte Carlo simulations such

as control variates, antithetic variate and importance sam-
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work on applying importance sampling in valuation of fi-
nancial claims include Andersen (1995) and Boyle, Broadie,
Glasserman (1997).

Most closely related to our work is that of Vazquez-
Abad and Dufresne (1998), who apply importance sampling
combined with control variates to dramatically reduce vari-
ance in pricing Asian options. They use gradient estimation
and stochastic approximation to find the optimal change
of the drift term. We also use gradient-based methods to
estimate the optimal importance sampling measure, but our
approach differs in one critical aspect. In our setting, the
importance sampling problem is transformed into a mini-
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mization problem under the original probability measure,
which eliminates the dependence between the payoff func-
tion and the parameters in the optimization. This leads to
a much simpler IPA gradient estimator with significantly
smaller estimation variance than the original IPA estimator

given in Vazquez-Abad and Dufresne (1998). Perhaps more

importantly, since the payoff function is not directly related
to the optimization parameters, we do not require differen-
tiability of the payoff function as in the original method,
so our method is applicable in much more general setting.
If the importance sampling is implemented via a change of
the drift term in Brownian motion, then we show that the
objective function in our minimization problem is a con-
vex function, establishing the conjecture in Vazquez-Abad
and Dufresne (1998). We further prove that our stochastic
approximation algorithm a.s. converges to the true global

Fu

A direct estimate folCyp is obtained by simulating the
risk-neutral distribution of the underlying asset(s) and taking
the sample mean over replications Gf7, w). However,
by the Radon-Nikodym theorem, if measuypds absolutely
continuous w.r.t some other measure then

. d
Co=E" [C(T, a))£:| ,

which gives an alternative estimator for simulation under
P:

dQ

é T5 T
T p

@)

where Z—% is the Jacobian of the measure change, i.e.,

the Radon-Nikodym derivative. It is a simple mathematical

exercise to show that the above estimator is also an unbiased
estimator of the option price. However, the new estimator
may have different estimation variance, hence the potential
for variance reduction.

We assume the financial market is arbitrage free, so there ~ As a simple example, consider a European call option
exists an equivalent probability measuge (Harrison and on a single underlying asset, assuming a constant risk-free
Kreps 1979) under which the price at time 0 of a European interest rate, i.e.,

financial claimC(T, ) s.t. E[C(T, w)] < +00, where
T is the expiration (maturity) date argis the sample path
of the underlying stochastic process(es), is given by

optimization value.

2 FORMULATION AND SETTINGS

C(T,w) = (St — K)*,

for which the price is given by

T
C — EQ —fo r(t,w)dtC T, ,

0 [e ( a))] CO _ EQ[e_rT(ST _ K)+]
where is called the risk-neutral (martingale) measure and

r(1, ) is the risk-free interest rate process. We will assume BY the Radon-Nikodym theorem, we can also calcutage

throughout that (z, w) > 0, i.e., the risk-free interest rate by

process is non-negative. Defining the present value of the P— do

payoff by Co=E"[e7"" (ST — K)*d—P].
If we choose

O(T, w) = e~ Jo T o (T, ),
A x) =ce T (Sy — K)Td(Sr),
we are interested in estimatingy = EC[C(T, w)]. P S )" (1)

Examples of payoff functionsC (T, w). where d(S7) is the risk-neutral density ofr, and ¢ is

the normalization constant, then we obtain a zero variance
estimator by sampling from distributignx). However,c =
1/Co, which requires the full knowledge of the option price,
making this zero-variance importance sampling estimator
inapplicable in practice.

Now, we concentrate on some more attainable models
in practice. We first restrict the new measure to be in a
family of probability measuréP (6, ») : 6 € ®}, wheref
is the parameter and for aflye ®, measurg is absolutely
continuous w.r.t.P(0). We consider the problem of finding
the value ob which gives the best performance in simulation,
i.e., the smallest estimation errors in simulation.

(Sr(w) — K)*
(K — Sr(o)*

T
(T_1/ Sidt — K)T
0

(S —min{S;,0<r <TH"
(max(S7(@)} — K)*

call,
put,

continuous Asian,

lookback,
basket (max),

(St —K)TUS, <L,te[0,T]}

barrier (up and out),

where S; is the stock price at time (superscripted for the
max-option on a basket of stocks, is the strike price,
L is the barrier value for the last example, al{d} is the
indicator function.
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The variance of the new estimator (1) is

2
EP [(é(r, w)i—%) } ~C§

— g [(é(r, a)))z (%)2} —c2.

This leads to the following minimization problem in the
domain of stochastic optimization:

minV (©),
6e® ()

where

. 2 2

V) =EP |:(C(T, w)) (Z-}Q)) } )

Remark: Vazquez-Abad and Dufresne (1998) derive
the IPA estimator associated with their stochastic optimiza-
tion problem by directly differentiating the term inside the ex-
pectation of (2), which requires derivatives for bGttir’, w)
and fl—g, sincew, and henceC (T, w), clearly depends on
6, in addition to%. This is because sampling is carried
out underP rather thanQ. However, this is avoided if the
minimization is carried out under the original meas@e

and this is the fundamental difference between our method

and their method.
Simple calculation shows that

A 2(dQ)?
/Q (C(T, a))) @zt

[ oy e
/Q (é(T, w))2 Z—ng

E? [(é(T, w))zd—Q]

V()

dPpP

So we only need to find the that minimizes

V©) = EC[C3T, o) f 6. 0)]. ©
where
_ 49
£, w) = PO (4)

The important thing to note is that changing back to the
original measure) eliminates the dependence 6{T, w)
onéo.
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3 STOCHASTIC APPROXIMATION AND IPA

Our approach to minimizing' (9) is the same as Vazquez-
Abad and Dufresne (1998), in that we use gradient-based
stochastic approximation to estimate

0* = argminV (9),
gmir ©)
via the following iterative scheme:

Ont+1 = Mo — angn). ®)
whered, = ((6,)1, ..., (6,)x) represents thath iterations,
gn represents an estimate of the gradi€nt(9) at6,, {a,}
is a positive sequence of numbers converging to 0, and
[1g denotes a projection 0o®. The difference in our ap-
proach is the form o¥/ (9) used in deriving the infinitesimal
perturbation analysis (IPA) estimator: (3) v.s. (2).

We first make the following assumption.

Assumption 1 f (0, w) is Q-a.s. piecewise differen-
tiable on®.

Differentiating inside the expectation of (3) yields the
IPA estimator

o AL

6

29 (6)

Under suitable conditions, this IPA estimator is unbiased.
Theorem 1 (General Unbiasedness) If Assumption

1 holds,

%f(@, w)| < M(w) Q-a.s.;

and there exists @ > 0 such that
E2[C(T, )% < 400, EC[M()]*™? < +o00; (7)

or

EC [C(T, a))ZM(a))] < +oo; ®)
then (6) is an unbiased estimator §§V(0).

Proof. Omitted here due to space considerations. The
detailed proofs of this theorem and most of the following
results are contained in Su and Fu (2000).

Corollary 1 (Convexity) If (0, w) and C(T, w)
satisfy the conditions in Theorem 1 and in addition,

2

ol
Wf(@, a)) >0 Q-a.S,

]
=5/ @+ A8, @) = =2 f(6, )| < M, &) AD]
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uniformly when A6 — O,
EC2[M6, w)] < +00,

thenV (0) is a convex function of.

4 CHANGE OF DRIFT IN BROWNIAN
MOTION

4.1 Mathematical Framework

then is the mean rate of return ¢ underP. Thus, we
can also use the rate of retuknas the parameter, since it
is equivalent t@. The IPA estimator given by (6) in terms
of A is

~ ~ 3 2
R W A — (—*;—“W +30=%7
CZ(T, (1)) (__T + MT) e TT73? o

o

). (12)

o2

In our computational experiments, we uséstead of to
compare with Vazquez-Abad and Dufresne (1998), whose

Suppose the underlying asset price under the risk-neutral results are expressed in termsjof

measurd is an Itd process defined by the following stochas-
tic differential equation:

dS; = (S, Hydt + o (S;, )d W, 9)
where W, is a standard Brownian motion undér. We
define the family ofP(6) as all the equivalent probability
measures w.r.t.Q introduced by changing the drift term

of W, by 6. Then by Girsanov’s theorem, we know under
P(6),

dS[ = (/’L(St»t)+90(Slst))dt+o(slal)dwtv (10)
where W, is a Brownian motion undeP, and
W, = W, —6r.
The change of measure process is given by
do 1,
— = e —OWr — =0°T
ap Xp( 73 )
- 1,
= exp —6WT+§9 T,
S0
af o, - oW1 1p2
—f(ae 2 _ (=Wr +o7) [{TERT) gy

Example: If {S;} follows a geometric Brownian motion,
then

ds, = puSidt + o S, dWy,

where o is the drift (mean rate of return) and is the
volatility (standard deviation rate of return). If we define

A=pu+0o,
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4.2 Convergence Properties of IPA Estimator

In this section, we present some nice properties for impor-
tance sampling applied to a change of drift in Brownian
motion.

Theorem 2 (Unbiasedness under Q) For an asset
price process described by the Itd process (9), if

EC[C(T, »)]>™® < +o00, § >0,

then

~ ~ AW 152
czazw)(—uﬁ~+9T)e(9Wﬁ79T)

is an unbiased estimator %%V(G) under Q.
Corollary 2 (Convexity) If the asset price process is
given by the Itd process (9), thén(®) is a convex function.
For deep out of money option§(T, w) will be 0 most
of the time under measur@, and this could lead to large
variance when estimating the gradient. However, we can
perform a measure change to obtain a new IPA estimator
under P, which is given by
éQ(T,w)G—Wﬁjexp(—ZQWG~—92T). (13)
Corollary 3 (Unbiasedness of estimator undg)
Under the same conditions as in Theorem 2, the new esti-
mator given by (13) is unbiased fa; V (6).
In the computational experiments, we use the new IPA
estimator given by (13) and call it IPA-Q, because it was
derived underQ. In terms of, it becomes

C‘Z(T, w) (_&) e_Z(A;M)’WT—(A?TM)ZT. (14)
o

Next, we state a convergence theorem for (5).
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(Fu 1990) Ifv6 € ©, 2 V(. is con-
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Remark: An alternative method used in Vazquez-Abad

tinuous in#@, V(-) is convex and therefore has a unique and Dufresne (1998) is to use the sample paths in the

minimumé* € ©, where® is a compact set, and

Ont1 = 6 — angn(6n),

SUPE[g2(0)] < K < oo,
fe®

ad
E[gn(en)u:n] = B_OV(Q") + ,an

o0
where ) " |a;B;| < oo,

J=n

00 00
E a, = 00, E as < 00,
n=1

n=1

theng, — 6* a.s.

It is easy to verify that the IPA estimator given in (13)

satisfies the conditions above and thus strongly converges

optimization stage for estimation, as well.
5 COMPUTATIONAL EXPERIMENTS
5.1 Comparisons Between Two Estimators

We consider Asian options as in Vazquez-Abad and Dufresne
(1998), where the underlying stock follows geometric Brow-
nian motion

ds -
Tt =rdt + odW;,

t

(15)

wherer is the risk-free interest rate andis the volatility.
The payoff function of the option at maturi® is given by

C(T) = (A(T) = K)7, (16)

to the true optimum. The algorithm of applying importance where the average price is defined over the equally spaced
sampling via optimal change of drift in 1td process (9) is discrete time pointVo + 1, ..., N, i.e.,

as follows.

. Stage I: Optimization stage — Firtd.
Initialization: Setd = 6.
Loop: Forn =1 to N7

- Fori =1to N>

*  Generate sample path according to

(10);
* Record S; and W;;

*  Calculate IPA-Q based on (13);

- g = 1% IPA-Q;;
- Ont1 =0 — an8n(6n);
- If la,g,(6,)| < €, exit loop.

Set6* = On+1-

e  Stage II: Pricing stage — Simulate @&t= 6*.

Fori =1to N3

—  Generate sample path according to (10);

— Records; and W;;
- CalculateC; = C(T, ) %8.

Final priceCo = Nis >N G

The algorithm is characterized by
N1, N2, N3, €, and{a,}:

N1 = maximum # of iterations,

N2 = # replications per iterations,

N3 = # replications used in pricing stage,
€ = stopping rule precision, and

a, = step size multiplier ofith iteration.

the parameters
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1

AD =57,

N
> S (17)

i=No+1

We first compare our IPA estimator (IPA-Q) with the initial
IPA estimator given in Vazquez-Abad and Dufresne (1998)
(denoted henceforth by IPA-VD):

2¢ 2T (A(T) — K)t F2(0) x

N
_ 1 :
(A(T) — K)(% — “gg’T) o 2 s
0 —No+1 N

where

A—rW (A—V)ZT
o T 202 ’

f () =exp <—

The IPA-Q estimator in this case is given by
W
e 2T [AT) - K] £20) (—TT) :

The initial stock price isSp = 50, K=50, 02=0.2, r=0.05,
T=1.0 year,No = 0, andA(T) is a daily average, so that
N=T.

Table 1 provides 95% confidence intervals based on
50,000 replications, and the final variance ratios are listed
in the last column.

Remark: We see that the variance of IPA estimator
given in our method is significantly smaller than the variance
of estimator given in Vazquez-Abad and Dufresne (1998).
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Table 1: Asian Call OptionsSy = 50, K=50,
02=0.2, r=0.05,7=1.0 Yr

Derivative Estimation via IPA
IPA-VD IPA-Q
A | el & [ cl W
0.2 | -175.5| 15.7| -178.8 | 4.28 | 13
03| -934 | 9.2 | -96.1 | 206 | 20
04| -387 | 7.3 | -406 | 1.44 | 26
05| 3.89 | 83 3.83 1.89 | 19
06| 45.44 | 12.0| 48.39 | 3.46 | 12
0.7 | 94.88 | 22.2| 104.97| 7.41 | 9.0
0.8 | 168.82| 41.6 | 190.81| 16.86| 6.1

Table 2: Asian Call OptionsSy = 50, 62=0.2, r=0.05,7=1.0 Yr,

€=0.001, N1=20, N»=50

Convergence Property of IPA
IS via IPA-Q IS via Optimalr*
Price | C.L A | Nf | Price | ClI. | A"

K=30 | 20.407| 0.134| 0.26| 15 | 20.407| 0.135| 0.25
K=45| 8.320 | 0.114| 0.43| 20 | 8.318 | 0.115| 0.40
K=50 | 5.675 | 0.096| 0.53| 19 | 5.672 | 0.096 | 0.50
K=55| 3.713 | 0.076| 0.55| 20 | 3.718 | 0.076 | 0.60
K=75| 0.575 | 0.022| 0.79| 18 | 0.574 | 0.022| 0.80

The reason is that when calculating IPA estimator, we only
need consider the derivative g% w.r.t. A, while Vazquez-
Abad and Dufresne (1998) had to consider both the derivative
of % and the derivative of the payoff function w.rx.

5.2 Convergence Property
We test the convergence property of our algorithm in this

experiment. Again, the parameter used herg,isnd the
initial starting value of.g is chosen such thap = e 07K,

5.3 Comparison Between Importance
Sampling and Naive Simulations

5.3.1 Asian Options on Partial Average

In this testbed, the stock price again follows geometric
Brownian motion as given by (15), with payoff function
defined by (16). HoweverNg # 0. In other words, the
average begins at a dadg other than at time 0. The other
parameter values a%=100 ¢=0.2, 0.3,r=0.05, 0.09, and

because then the expected terminal stock price would be at 7=1.0 year;A(T) is the average daily stock price with the

the strike price. We us&/; = 20 iterations andV, = 50
sample paths in the optimization stage and the stopping
criteria ¢ = 0.001, so the total number of simulations
used in the optimization stage is less than 1000. We took
a, = aon~ %75, whereag = ‘ngxo)‘ . Also, we restrict that

in each stedAA| <0.2. We useN3 =10,000 simulations

in the final estimation stage, where we estimate the option
price. In this experiment, the stock prices follow the same
geometric Brownian motion as in the last examplg= 50,

02 = 0.2, r=0.05, andI'=1.0 year with strike pricex =30,

45, 50, 55, 75. The optimal values af reported are
taken from Vazquez-Abad and Dufresne (1998), which are
obtained by an extensive brute-force search.

From Table 2, we see that our algorithm converges very
fast, coming very close to the optimal value using less than
1000 simulations, whergV; is the actual # of iterations
used in optimization stage.
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averaging beginning 60 days before the option’s maturity
date. To test the effect of moneyness on the variance
reduction, we consider a range of strike pricd§=100,

110, 120, 130, 140, 150, 160, 170. The algorithm parameter
values used ar&/1=50, N»=100, N3=50,000,¢ = 0.0005

The other settings are the same as before, and the results
are shown in Tables 3 and 4.

As we expect, the computational gains of implementing
importance sampling increase dramatically with increasing
strike price (more out of the money). For the case of
r=0.05,0=0.2, the variance reduction starts from 7 for the
at-the-money call option aK=100 and increases to 173
for the deep out-of-the-money call option Et=170. We
also observe an interesting phenomena that as the option
price increases with increasing interest rate or volatility,
the effectiveness of importance sampling decreases. Our
conjecture is that higher values of these parameters increase
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Table 3: Asian Call Options on Partial Averagéy = 100,
T=1.0 Yr, €=0.0005,N1=50, N»=100, N3=50000

r=0.05,0 =0.2
IS via IPA-Q Naive
Price C.l A Price C.l. | VR

K=100 | 9.747 | 0.047| 0.251| 9.840 | 0.121| 6.7
K=110| 5.397 | 0.033| 0.308 | 5.461 | 0.094| 8.2
K=120| 2.730 | 0.020| 0.368| 2.749 | 0.067| 11
K=130| 1.284 | 0.011| 0.430| 1.317 | 0.046| 17
K=140| 0.575 | 0.006| 0.473| 0.544 | 0.029| 25
K=150| 0.241 | 0.003| 0.487| 0.225 | 0.019| 44
K=160| 0.098 | 0.001| 0.501| 0.102 | 0.013| 85
K=170| 0.038 | 0.001| 0.533| 0.040 | 0.008| 173
r=0.09,0 = 0.2
K=100 | 11.732| 0.052| 0.268 | 11.839| 0.129| 6.1
K=110| 6.850 | 0.038| 0.335| 6.897 | 0.103| 7.3
K=120| 3.678 | 0.025| 0.388| 3.740 | 0.078| 10
K=130 | 1.854 | 0.015| 0.441| 1.795 | 0.058| 13
K=140| 0.867 | 0.008 | 0.489| 0.846 | 0.036| 19
K=150| 0.384 | 0.004 | 0.524| 0.388 | 0.025| 38
K=160| 0.163 | 0.002| 0.548| 0.170 | 0.016| 67
K=170| 0.067 | 0.001| 0.540| 0.068 | 0.010| 106

Table 4: Asian Call Options on Partial Averagsy = 100
T=1.0 Yr, €=0.0005,N1=50, N»=100, N3=50000

r=0.05,0 = 0.3
IS via IPA-Q Naive
Price C.L A Price C.l. | VR

K=100 | 13.295| 0.068 | 0.368 | 13.421| 0.185| 7.3
K=110| 9.103 | 0.054| 0.443| 9.119 | 0.155| 8.4
K=120| 6.059 | 0.041| 0.507| 6.171 | 0.131| 10
K=130| 3.985 | 0.030| 0.557| 3.885 | 0.104| 12
K=140| 2.556 | 0.022| 0.595| 2.475 | 0.084| 15
K=150| 1.603 | 0.015| 0.629| 1.635 | 0.070| 22
K=160 | 1.006 | 0.010| 0.693| 1.012 | 0.055| 30
K=170| 0.623 | 0.007| 0.736| 0.587 | 0.041| 36
r=0.09,0 = 0.3
K=100 | 15.063| 0.074| 0.377 | 15.197| 0.193| 6.8
K=110| 10.571| 0.059| 0.448| 10.597| 0.166| 7.9
K=120| 7.214 | 0.046| 0.525| 7.334 | 0.142| 9.5
K=130| 4.856 | 0.035| 0.561| 4.732 | 0.115| 11
K=140| 3.184 | 0.027| 0.603| 3.132 | 0.094| 13
K=150 | 2.046 | 0.018| 0.676| 2.105 | 0.079| 19
K=160| 1.314 | 0.013| 0.710| 1.314 | 0.063| 25
K=170| 0.836 | 0.009| 0.764| 0.802 | 0.049| 31
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term structure of interest rate€conometricab3 (2):
The underlying stock again follows geometric Brownian 385-408.
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Clearly, Vazquez-Abad and Dufresne (1998) is not applicable and Laplace transform inversion methodmurnal of
in this case, since the digital function is not differentiable. Computational Finance (2): 49-74.
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computational time, whereas for deep out-of-the-money op- Hull, J., and White, A. 1987. The use of the control variate

tions, the computational gains range from 10 to 170 times technique in option pricingJournal of Financial and

in our simulation experiments, and in all cases, we report Quantitative Analysi®3:237-251.

significant variance reductions from the simulation results. Su, Y., and Fu, M. 2000. Optimal importance sampling for
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Table 5: Asian Digital Call Options on Partial Average:
So = 100 7=1.0YT,¢=0.0005,N1=50, No=100, N3=50000

r=0.05,0 = 0.2
IS via IPA-Q Naive
Price | C.I. A Price | C.I. | VR

K=100 | 5.300| 0.033| 0.149| 5.358| 0.041| 1.6
K=110 | 3.403| 0.028| 0.211| 3.431| 0.040| 2.0
K=120 | 1.947| 0.020| 0.278| 1.988| 0.034| 3.0
K=130 | 1.017| 0.012| 0.344| 0.994 | 0.026 | 4.4
K=140 | 0.481| 0.007| 0.402| 0.479| 0.018| 7.4
K=150 | 0.213| 0.003| 0.453| 0.211| 0.012| 13
K=160 | 0.090| 0.002| 0.484 | 0.093| 0.008 | 26
K=170 | 0.036| 0.001| 0.531| 0.036| 0.005| 53
r=0.09,0 = 0.2
K=100 | 5.772| 0.032| 0.164 | 5.814| 0.039| 1.4
K=110 | 3.953| 0.030| 0.214| 3.986| 0.040| 1.8
K=120 | 2.420| 0.023| 0.274| 2.465| 0.036| 2.5
K=130 | 1.345| 0.015| 0.356| 1.317| 0.028 | 3.5
K=140 | 0.678| 0.009| 0.399| 0.680| 0.021| 5.7
K=150 | 0.318| 0.008 | 0.470| 0.322| 0.015]| 9.9
K=160 | 0.143| 0.002 | 0.499| 0.143| 0.010| 17
K=170 | 0.061| 0.001| 0.530| 0.055| 0.006| 27

Table 6: Asian Digital Call Options on Partial Average:
Sp =100 T=1.0Yr,¢=0.0005,N1=50, No=100, N3=50000

r=0.05,0 = 0.3
IS via IPA-Q Naive
Price | C.I. A Price| C.I. | VR

K=100 | 4.829| 0.033| 0.216| 4.866| 0.042| 1.7
K=110 | 3.549| 0.029| 0.281 | 3.578| 0.040| 2.0
K=120 | 2.518| 0.024| 0.318| 2.554| 0.037| 2.5
K=130 | 1.730| 0.018| 0.375| 1.715| 0.032| 3.1
K=140 | 1.148| 0.014| 0.496 | 1.142| 0.027 | 4.0
K=150 | 0.741| 0.009| 0.508 | 0.764 | 0.023| 5.8
K=160 | 0.476| 0.007| 0.559| 0.471| 0.018]| 7.3
K=170| 0.299| 0.005| 0.611| 0.296| 0.015| 10
r=0.09,0 = 0.3
K=100 | 5.094| 0.032| 0.237| 5.145| 0.040| 1.5
K=110 | 3.868| 0.029| 0.283| 3.897| 0.040| 1.8
K=120 | 2.806 | 0.025| 0.352 | 2.847 | 0.037| 2.3
K=130 | 2.001| 0.020| 0.417| 1.975| 0.033| 2.8
K=140 | 1.354| 0.015| 0.480| 1.354| 0.029| 3.6
K=150 | 0.903| 0.011| 0.516| 0.921| 0.024 | 4.8
K=160 | 0.590| 0.008 | 0.583| 0.587 | 0.020| 6.3
K=170 | 0.381| 0.006 | 0.608 | 0.378| 0.016 | 8.4
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