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ABSTRACT

The output from simulation factorial experiments can b
complex and may not be amenable to standard methods
estimation like ANOVA. We consider the situation where th
simulation output may not satisfy normality assumption
but more importantly, where there may be differences
output at different factor combinations, but these are n
simply differences in means. We show that EDF statistic
can provide a similar but potentially more sensitive analys
to that provided byANOVA. Moreover we show that with the
use of resampling, we can generate accurate critical valu
for tests of hypothesis under much weaker conditions th
those required for ANOVA tests. The method is illustrate
with an example based on an actual simulation experime
comparing two methods of operating a production facilit
under different production levels.

1 INTRODUCTION

We consider the analysis of data obtained from a factori
simulation experiment. The use of linear models for mod
elling data of this type and their study using analysis o
variance is one of the most well known and used of stati
tical techniques. The simplicity of the assumptions and th
flexibility of the method of analysis makes it a powerfu
and attractive approach.

However one situation where a linear model may no
be adequate is when differences in the behaviour of t
response variableY at different factor level combinations
are not explainable simply in terms of differences in th
means, but requires a comparison of other features of
distribution, such as variance, or shape. Thus in what follow
we wish to remove the usual requirements of normality an
homoscedasticity assumed in a linear model.

Though we drop these two requirements, we shall how
ever retain, as far as possible, the underlying geomet
framework of the linear model. As with ANOVA, where
differences in means are measured by squared differenc
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we shall develop an analogue where more general differen
are measured by squared components.

Contenders for the statistic to use as a basis of o
analysis are Empirical Distribution Function Integral Te
(EDFIT) statistics of goodness-of-fit such as the Cramer-v
Mises and Anderson-Darling statistics (The seminal pap
is Anderson and Darling, 1952). These are well-known
provide good tests for detecting differences between differe
distributions. Such statistics are not as widely used as th
should be, probably because their distributions, even un
the null, are not simple to evaluate, being typically that
the weighted sum of chi-squared variables with one deg
of freedom. Moreover the distribution changes significant
if parameters have to be estimated.

These difficulties can be overcome by the use of boo
strap and resampling methods which enable the distributio
of the test statistics to be directly generated as part of
statistical analysis.

In this article we describe a method for using suc
EDFIT statistics for the analysis of factorial experiment
The main features of the method are:

(i) The method is essentially non-parametric, bu
provides a method of analysis that retains the a
tractive structural characteristics of Analysis o
Variance. In terms of generality of application
it thus matches that of ANOVA techniques.

(ii) The method is applicable under much weake
assumptions than that assumed in the line
model. In particular we drop the requirement
of normality and homoscedasticity.

(iii) The method detects general differences betwe
distributions. Thus, though it will detect dif-
ferences between means, it will also dete
differences in variance or shape. It is thu
potentially much more sensitive than ANOVA

(iv) Because resampling procedures are used in
analysis, results can be readily presented grap
ically, giving non-specialists a more natural fee
and interpretation of findings.
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We shall not develop the method in full generality but
consider two cases: the one and two way models. It shou
be clear how the technique generalises from these tw
examples.

2 CLASSIFICATION MODELS

2.1 One Way Model

Consider the one way model witht treatments, andni
observations made with treatmenti. The standard ANOVA
model of the observations is then:

yij = µ+ αi + εij i = 1, ..., t, j = 1, ..., ni

where theεij are all identically distributed with E(ε) = 0,
Var(ε) = σ 2. This yields the ANOVA decomposition of this
model as

CSS(total) = T reatSS + ResidSS (1)

where

CSS(total) =
∑
i

∑
j

(yij − ȳ)2

and

T reatSS =
∑
j

ni(ȳi − ȳ)2

are respectively the corrected total and treatment sums
squares The residual sum of squares is found by differencin
or directly from the formula

ResidSS =
∑
i

∑
j

(yij − ȳi )2.

For our purpose, the key quantity isT reatSS. The
EDFIT analogue of this quantity is obtained as follows.

We suppose that the observations under treatmenti have
distribution with Cumulative Distribution Function (CDF)
Fi(·). Thus the (non-parametric) model is

yij ∼ Fi(·) i = 1, ..., t, j = 1, ..., ni

Let

F̃i(y) = n−1
i

∑
H(y − yij )

where

H(y) = 1 if y ≥ 0

= 0 otherwise,
698
f
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be the Empirical Distribution Function (EDF) of the sam-
ple {yi1, ..., yini } corresponding to treatmenti. The total,
combined, sample can be regarded as being drawn from th
composite distribution with CDF

F(y) =
t∑
i=1

wiFi(y) (2)

wherewi = ni/∑t
j=1 nj .The EDF of the combined sample

then has the attractive alternative analogous representatio

F̄ (y) =
t∑
i=1

wiF̃i(y).

The EDFIT statistic takes the form

T =
t∑
i=1

ni

∫ (
F̃i(y)− F̄ (y)

)2
ψ[F̄ (y)]dF̄ (y). (3)

This is the analogue ofT reatSS. Hereψ(·) is a weight
function. For simplicity of notation, in what follows we
shall take the caseψ(·) = 1. It will be clear that all the
integral expressions given below can be generalised simpl
by replacingdF̄ (y) by ψ[F̄ (y)]dF̄ (y).

The sumT comprises terms each of which is the ED-
FIT statistic computed from the sample corresponding to
treatmenti, with the EDF F̄ (y) obtained from the entire
combined sample acting as the base distribution. The cor
respondence with (1) cannot be extended further becaus
T , at least in the non parametric case, is the analogue no
simply of T reatSS but also ofCSS(total) as well. Thus
the EDFIT equivalent ofResidSS is zero. We therefore
cannot develop the usual F-ratio tests found in ANOVA.

[Note: A parametric form can be developed where
parameters are estimated. This provides a closer analog
with the standard ANOVA case. However it is not clear
that the EDFIT statistic possesses any advantages.]

To proceed we need to obtain the distribution ofT
under the null hypothesis:

H0 : Fi(y) = F0(y) i = 1, ..., t.

Under the null,T has the form

T0 =
t∑
i=1

ni

∫ (
F̄i(y)− F̄ (y)

)2
dF̄ (y) (4)

where

F̄i(y) i = 1, ..., t

are the EDFs of samples (of sizeni) each sampled
from the same null distributionF0(.), and with F̄ (y) =
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i=1wiF̄i(y). We show in the next section how the dis-

tribution of T0 is easily obtained.
Though the EDFIT statistic,T , does not decompose as

in (1) to give a usableResidSS, it does however decompose
in all other respects like a treatment sum of squares. F
example, consider the caset = 3 where ‘treatmenti’ cor-
responds to a numerical level of a single factor set at lev
i = 1,2,3, and that the design is orthogonal withn1 = n2 =
n3 = n. Then ifT is found to be significantly different from
zero, we can decompose it into two identifiable contrast

T = T1+ T2

where

T1 =
∫
n

2

(
F̃3(y)− F̃1(y)

)2
dF̄ (y)

and

T2 =
∫
n

6
[F̃1(y)− 2F̃2(y)+ F̃3(y)]2dF̄ (y).

2.2 Two Way Model

It is evident that the one way model of the previous sectio
generalises to other ANOVA factor decompositions. A
a further illustration we consider the two way replicate
classification model with observations of the form

yijk = µ+ αi + βj + εijk
i = 1, ..., r, j = 1, ..., c, k = 1, ..., n.

The sum of squares decomposition is∑
i

∑
j

∑
k

(yijk − ȳ...)2

= n
∑
i

∑
j

(ȳij. − ȳ...)2+
∑
i

∑
j

∑
k

(yijk − ȳij.)2

= T reatSS + ResidSS

where the first term on the right hand side is the correcte
sum of squares due to treatments. This can be written
the form

n
∑
i

∑
j

(ȳij. − ȳ...)2

= cn
∑
i

(ȳi.. − ȳ...)2+ rn
∑
j

(ȳ.j. − ȳ...)2

+n
∑
i

∑
j

(yij. − ȳi.. − ȳ.j. + ȳ...)2
6
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The corresponding EDF decomposition is

n
∑
i

∑
j

∫ (
F̄ij (y)− F̄..(y)

)2
dF̄..(y)

=
∫ {

cn
∑
i

[F̄i.(y)− F̄..(y)]2

+ rn
∑
j

[F̄.j (y)− F̄..(y)]2

+ n
∑
i

∑
j

[F̄ij (y)− F̄i.(y)

− F̄.j (y)+ F̄..(y)]2
}
dF̄..(y)

with the obvious interpretation that̄Fij (y) is the EDF of
the sample at factor combination(i, j), F̄i.(y) is the EDF
obtained by combining all the samples corresponding to ro
factor leveli, F̄.j (y) is the EDF obtained by combining all
the samples corresponding to column factor levelj, and
F̄..(y) is the EDF obtained by combining all samples.

3 RESAMPLING

3.1 Distribution Free Tests

The distribution ofT0 (ie the distribution ofT under the null)
can be derived theoretically, at least asymptotically. For th
two sample case see Anderson (1962) and also Baumgartn
et al (1998). However we shall not do this here but instea
describe a simple resampling procedure that can be us
to construct, to arbitrary specified accuracy, theexactnull
distributions. The reason why this is possible is becaus
the proposed test statistics are actually distribution free,
the sense of not depending on the distributions from whic
the original samples are drawn. We show this next.

Consider a typical term

Ik = nk
∫ (

F̄k(y)− F̄ (y)
)2
dF̄ (y)

in (4). We have

F̄ (x) =


0 x < x1
i
n

xi ≤ x < xi+1, i = 1,2, ..., n− 1
1 xn ≤ x

whilst, under the null, the subsample, of sizenk, is simply a
random selection ofnk out of then observations. Suppose
that thej th (ordered) value of the subsample is thei(j)th
value of the original. Then

F̄k(xi) = j

nk
for i(j) ≤ i < i(j + 1). (5)
99
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If we write therefore

j (i) = j for i(j) ≤ i < i(j + 1)

then we find that

Ik = nk

∫ (
F̄k(y)− F̄ (y)

)2
dF̄ (y) (6)

= nk
∑
i

[
n−1

(
i

n
− j (i)

nk

)2
]
. (7)

Thus Ik depends only on the position of the observation
of the subsample in the full sample, and so is distributio
free, and it follows thatT0 is distribution free also.

This formula forIk is a convenient form for calculation
of a typical component of the test statistic.

3.2 Null distribution by Monte Carlo

The form of (5) shows that the distribution of the test statist
T (under the null) is easily constructed by Monte Carl
simulation. We break up the set{1,2, ..., n} into random
subsamples of sizesnk values, compute theIk, and then
form T from (3). We repeat thisB times to getB values of
T : T (1), T (2), ..., T (B). The EDF of theseT (j) converges
to the CDF ofT0. The sample{T (i), i = 1,2, .., B} can
thus be used in the usual way to calculate bootstrap critic
values to test the significance ofT .

An alternative way of obtaining the distribution ofT0
is simply to combine the separate samples of the origin
data obtained under the different treatments into a sing
composite sample{yij , all i, j}. Bootstrapping can be used
to obtain bootstrap samples{y∗ij } from this {yij }. Thus we
write

F̄ ∗i (y) i = 1, ..., k

for the EDFs of these bootstrap samples, which areall
drawn from{yij }, andF̄ ∗(y) for the combined EDF. Under
the null the observations in{yij } will all come from the
same distributionF0, and

T ∗0 =
k∑
i=1

ni

∫ (
F̄ ∗i (y)− F̄ ∗(y)

)2
dF̄ ∗(y). (8)

then constitutes the bootstrap version ofT0.

4 APPLICATION

As an example of the above discussion we consider data fro
a simulation experiment comparing two different method
of operating a certain piece of equipment processing
certain product. The output comprised 782 observatio
of (simulated) operator activity for each method, wher
70
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each observation was on a simple integral scale rangi
from 0 through 5 (0 indicating low activity, 5 indicating
high activity). Some preliminary analysis indicated tha
the observations could be assumed to be independent. T
observed activity level was also expected to be dependent
the production level which could be set at one of four level
The two methods of operation were simulated under th
same operating conditions, with production levels 1,2,3,4
occuring a total of 50,140,346 and 246 times respectively.

Histograms of the observed activity levels for the dif
ferent combinations of operating method(i = 1,2) and
production level(j = 1,2,3,4) are plotted in Figure 1.

Use of ANOVA is clearly not appropriate in this case
A possible though not ideal method of analysis is to use th
well known Friedman non-parametric test for a two-wa
layout (See for example Hollander and Wolfe 1973). Thi
test allows a number of matched samples to be compar
Thus the samples have to be of the same size with cor
sponding observations in each sample matched. In our ca
we have two samples, each corresponding to an operat
method. The two operating methods can thus be regard
as ‘Treatments’, with each sample corresponding to on
treatment and forming acolumn(in Hollander and Wolfe’s
notation). The layout is as given in Table 1.

Table 1: Structure of Data in the Example
Operating Method 1 Operating Method 2

x11 x12
x21 x22
...

...

x782,1 x782,2

Each row of corresponding observations thus constitut
a matched pair of observations,with both observations
made at the same production level. The test statistic
calculated from this pair of matched samples. (Details o
the calculation are given in Hollander and Wolfe.) Ther
are a large number of ties in the observations, and these
handled using the correction method given in Hollander an
Wolfe. The test value obtained was 0.465. To determine the
level of significance, we used bootstrap resampling to for
1000 bootstrap test values under the null. This was do
by obtaining two samples as in the layout of Table 1, wit
each of size 782, using bootstrap resampling, only withboth
bootstrap samples obtained from the one original samp
corresponding to operating method 1. To make sure th
corresponding observations in each bootstrap sample w
matched, each such pair was sampled from observatio
made at the same production level. This ensured that the
was proper matching of production levels as in the origina
samples.

Figure 2 shows the bootstrap EDF of 1000 values o
the Friedman test statistic calculated from paired sampl
formed in this way. This EDF yields an estimate of the
0
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Figure 1: Activity Levels at Different Factor Combinations
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critical value at the 90% level of significance as 2.806, and
a value of 3.704 at the 95% level of significance. Thi
latter value is depicted in Figure 2. The actual test va
of 0.465 is therefore nowhere near significant at either
these levels.

Figure 2 also shows the EDF obtained by bootstrapp
from both original samples. Thus, in this case, a pair
samples each of 782 observations is again formed, only w
one sample obtained by bootstrapping from the first origi
sample (corresponding to operating method 1), and
other obtained by sampling from the second original sam
(corresponding to the observations made under opera
method 2). The test statistic was then calculated from t
pair of bootstrap samples. The resulting EDF,GFriedman(y)

say, thus estimates the true distribution of the test stati
as obtained in theoriginal simulation. We can thus estimat
the power of the Friedman test, at the 95% level of si
as being 1−GFriedman(3.704) = 0.139. At the 90% level
the power increases to 0.196. Both values are rather low.
701
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Figure 3 shows the corresponding EDFs using the ED
FIT test statistic

T = n
∫ 2∑

j=1

[F̄.j (y)− F̄..(y)]2dF̄..(y).

This test statistic tests for a difference between the tw
operating methods, whilst allowing for differences betwee
production levels. The test value obtained from the origina
samples was 0.925. The resulting EDF formed under the
null gave critical values of 0.747 at the 90% level, and
0.970 at the 95% level. The latter is marked in Figure 3
In this case the test value lies between the two and so
significant at the 90% level, but not at the 95% level.

The Figure also shows the estimate of the true distr
bution ofT , GEDFIT (y) say, from which we can estimate
the power of the test at the 95% level of size as bein
1− GEDFIT (0.970) = 0.433. This increases to 0.647 at
the 90% level. Both values are more than three times th
of the Friedman test.
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702



Cheng and Jones

-

t

e

f

is

.

n

s
d

e
.

5 CONCLUSION

In simulation factorial experiments where observations are
replicated, the discussion suggests that theEDFIT statistic
can provide a much more sensitive test for distinguishing
differences between responses at different factor combina
tions.

This is backed up by the example of Section 4, where
a standard, normally quite powerful non-parametric test did
not reveal differences between two treatments. In contras
the EDFIT test indicated a significant difference. The
reason is because there is a significant difference in th
overall variability of the two samples even though the dif-
ference is not all that great between the overall means o
the two samples. The sensitivity of theEDFIT statistic to
any difference between samples has therefore enabled th
difference in variability to be detected.
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