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ABSTRACT

The output from simulation factorial experiments can be
complex and may not be amenable to standard methods of
estimation like ANOVA. We consider the situation where the
simulation output may not satisfy normality assumptions,
but more importantly, where there may be differences in
output at different factor combinations, but these are not
simply differences in means. We show that EDF statistics
can provide a similar but potentially more sensitive analysis
to that provided by ANOVA. Moreover we show that with the
use of resampling, we can generate accurate critical values
for tests of hypothesis under much weaker conditions than
those required for ANOVA tests. The method is illustrated
with an example based on an actual simulation experiment
comparing two methods of operating a production facility
under different production levels.

1 INTRODUCTION

we shall develop an analogue where more general differences
are measured by squared components.

Contenders for the statistic to use as a basis of our
analysis are Empirical Distribution Function Integral Test
(EDFIT) statistics of goodness-of-fit such as the Cramer-von
Mises and Anderson-Darling statistics (The seminal paper
is Anderson and Darling, 1952). These are well-known to
provide good tests for detecting differences between different
distributions. Such statistics are not as widely used as they
should be, probably because their distributions, even under
the null, are not simple to evaluate, being typically that of
the weighted sum of chi-squared variables with one degree
of freedom. Moreover the distribution changes significantly
if parameters have to be estimated.

These difficulties can be overcome by the use of boot-
strap and resampling methods which enable the distributions
of the test statistics to be directly generated as part of the
statistical analysis.

In this article we describe a method for using such
EDFIT statistics for the analysis of factorial experiments.

We consider the analysis of data obtained from a factorial The main features of the method are:

simulation experiment. The use of linear models for mod-
elling data of this type and their study using analysis of
variance is one of the most well known and used of statis-
tical techniques. The simplicity of the assumptions and the
flexibility of the method of analysis makes it a powerful
and attractive approach.

However one situation where a linear model may not
be adequate is when differences in the behaviour of the
response variabl® at different factor level combinations
are not explainable simply in terms of differences in the
means, but requires a comparison of other features of a
distribution, such as variance, or shape. Thusinwhat follows
we wish to remove the usual requirements of normality and
homoscedasticity assumed in a linear model.

Though we drop these two requirements, we shall how-
ever retain, as far as possible, the underlying geometric
framework of the linear model. As with ANOVA, where
differences in means are measured by squared differences,
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0] The method is essentially non-parametric, but
provides a method of analysis that retains the at-
tractive structural characteristics of Analysis of
Variance. In terms of generality of application

it thus matches that of ANOVA techniques.
The method is applicable under much weaker
assumptions than that assumed in the linear
model. In particular we drop the requirements
of normality and homoscedasticity.

The method detects general differences between
distributions. Thus, though it will detect dif-
ferences between means, it will also detect
differences in variance or shape. It is thus
potentially much more sensitive than ANOVA.
Because resampling procedures are used in the
analysis, results can be readily presented graph-
ically, giving non-specialists a more natural feel
and interpretation of findings.

(ii)

(iii)

(iv)
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We shall not develop the method in full generality but be the Empirical Distribution Function (EDF) of the sam-
consider two cases: the one and two way models. It should ple {y;1, ..., yin;} corresponding to treatmert The total,
be clear how the technique generalises from these two combined, sample can be regarded as being drawn from the

examples. composite distribution with CDF
2 CLASSIFICATION MODELS !
F(y) =) wiFi(y) 2
2.1 One Way Model i=1
Consider the one way model with treatments, and; wherew; = n;/ >, n;. The EDF of the combined sample

observations made with treatmentThe standard ANOVA then has the attractive alternative analogous representation:
model of the observations is then:

t
, , Fy) =Y wF(y.
vij=ptot+egpi=1..t j=1..,n ) ; iFi(y)

where theg;; are all identically distributed with &) = 0, The EDFIT statistic takes the form
Var(e) = o2. This yields the ANOVA decomposition of this
model as ! . ~ 2 _
=Y m [ (Fo)= F0) wFoMFG. @)
CSS(total) = TreatSS + Residb S Q) i=1
where This is the analogue of reatSS. Here v (-) is a weight
function. For simplicity of notation, in what follows we
CSS(total) =Y ) "(yij — §)° shall take the casé (-) = 1. It will be clear that all the
P integral expressions given below can be generalised simply
by replacingd F(y) by ¥ [F(y)IdF(y).
and The sumT comprises terms each of which is the ED-
> FIT statistic computed from the sample corresponding to
TreatSS = Z”i(yi — ) treatmenti, with the EDF F(y) obtained from the entire
J combined sample acting as the base distribution. The cor-

respondence with (1) cannot be extended further because
T, at least in the non parametric case, is the analogue not
simply of TreatSS but also of CSS(total) as well. Thus
the EDFIT equivalent oResidS is zero. We therefore
Z(y 52 cannot develop the usual F-ratio tests found in ANOVA.

ij — Vi
J

are respectively the corrected total and treatment sums of
squares The residual sum of squares is found by differencing,
or directly from the formula

Resids =)

i

[Note: A parametric form can be developed where
parameters are estimated. This provides a closer analogy
with the standard ANOVA case. However it is not clear
that the EDFIT statistic possesses any advantages.]

To proceed we need to obtain the distribution Bof
under the null hypothesis:

For our purpose, the key quantity BreatSS. The
EDFIT analogue of this quantity is obtained as follows.

We suppose that the observations under treatirteate
distribution with Cumulative Distribution Function (CDF)

F; (). Thus the (non-parametric) model is .
) (non-p ) Ho: F,(y) = Fo(y) i=1,..,1.

yij ~Fi() i=1nt j=1m Under the null,7 has the form
Let '
F(y)=n*> H(y— ) fo= ;ni / (Fi = F(y))ZdF(y) )
where where
Hy) = 11i y=>0 Fi(y) i=1,..1

= 0 otherwise, .
are the EDFs of samples (of size;) each sampled

from the same null distributiorFo(.), and with F(y) =
698



Cheng and Jones

> w;F;(y). We show in the next section how the dis-
tribution of Ty is easily obtained.

Though the EDFIT statistic]’, does not decompose as
in (1) to give a usabl®esid’' S, it does however decompose
in all other respects like a treatment sum of squares. For
example, consider the case= 3 where ‘treatment’ cor-
responds to a numerical level of a single factor set at level
i =1, 2,3, and that the design is orthogonal with=n, =
n3 = n. Then if T is found to be significantly different from
zero, we can decompose it into two identifiable contrasts

T=T1+1T>

where

~ ~ 2
fi= [ 5 (P = Fun) dF )

and
T = / MR — 25200 + FaO)PF (),

2.2 Two Way Model

It is evident that the one way model of the previous section
generalises to other ANOVA factor decompositions. As
a further illustration we consider the two way replicated
classification model with observations of the form
= u+a;+B;+e&ijk
i=1..,r, j=1..,¢c, k

Yijk

1 ..

N

The sum of squares decomposition is
DD ik —3.)?
i j ok
nY Y G = IR Y DD ik — ¥ij)?
i ik

TreatSS + ResidbS

where the first term on the right hand side is the corrected
sum of squares due to treatments. This can be written in
the form

nYy Y G —3.)°
i
nY G =502 +m Y (G -3
i J

+n Z Z(Yij. — Vi =3 +5.)?
i
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The corresponding EDF decomposition is
133 [ (Fy) = F)faE)
i
/ {an[E.(y> e
+ r; Z[F](y) - F(Y)]Z
J
+n Z Z[Fij o) — F.(»)
i

—F;j()+ F..(y)f}dﬁ.@)

with the obvious interpretation thaf;; (y) is the EDF of
the sample at factor combinatian j), F; (y) is the EDF
obtained by combining all the samples corresponding to row
factor leveli, F,j(y) is the EDF obtained by combining all
the samples corresponding to column factor leyelnd

F (y) is the EDF obtained by combining all samples.

3 RESAMPLING
3.1 Distribution Free Tests

The distribution ofTy (ie the distribution off” under the null)
can be derived theoretically, at least asymptotically. For the
two sample case see Anderson (1962) and also Baumgartner
et al (1998). However we shall not do this here but instead
describe a simple resampling procedure that can be used
to construct, to arbitrary specified accuracy, txactnull
distributions. The reason why this is possible is because
the proposed test statistics are actually distribution free, in
the sense of not depending on the distributions from which
the original samples are drawn. We show this next.
Consider a typical term

[ / (Fe(y) — F))2dF ()

in (4). We have

o

X <Xx1

F(x) = i=12 ..n-1

Xjp =X < Xj41,
Xn < X

P3|~

whilst, under the null, the subsample, of sigg is simply a
random selection af; out of then observations. Suppose
that the jth (ordered) value of the subsample is ili¢)th
value of the original. Then

Fk(x,-)=n’—k fori(j) <i <i(j+1). (5)
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If we write therefore
j@y=j for i(j)<i<i(j+1
then we find that

L o= m f (Fe(y) — F))2dF(y)

o !

Thus I;, depends only on the position of the observations
of the subsample in the full sample, and so is distribution
free, and it follows thafly is distribution free also.

This formula forl; is a convenient form for calculation
of a typical component of the test statistic.

(6)

()

3.2 Null distribution by Monte Carlo

The form of (5) shows that the distribution of the test statistic
T (under the null) is easily constructed by Monte Carlo
simulation. We break up the sét, 2, ..., n} into random
subsamples of sizes; values, compute thé;, and then
form T from (3). We repeat thi® times to getB values of
7: TD, 7@ ., T® The EDF of thesd' ) converges
to the CDF ofTp. The sample{T®, i = 1,2, .., B} can
thus be used in the usual way to calculate bootstrap critical
values to test the significance &t

An alternative way of obtaining the distribution @}
is simply to combine the separate samples of the original
data obtained under the different treatments into a single
composite samplgy;;, all i, j}. Bootstrapping can be used
to obtain bootstrap samplQ;;;kj} from this {y;;}. Thus we
write

Ffy) i=1,..k

for the EDFs of these bootstrap samples, which a@te
drawn from{y;;}, and F*(y) for the combined EDF. Under
the null the observations ifiy;;} will all come from the

same distributionfyp, and

k
75 =Y [(F0 - Foldo. @
i=1

then constitutes the bootstrap versionZgf

4 APPLICATION

each observation was on a simple integral scale ranging
from O through 5 (0 indicating low activity, 5 indicating
high activity). Some preliminary analysis indicated that
the observations could be assumed to be independent. The
observed activity level was also expected to be dependent on
the production level which could be set at one of four levels.
The two methods of operation were simulated under the
same operating conditions, with production level2,13, 4
occuring a total of 50140 346 and 246 times respectively.

Histograms of the observed activity levels for the dif-
ferent combinations of operating methdd = 1, 2) and
production level(j = 1, 2, 3, 4) are plotted in Figure 1.

Use of ANOVA is clearly not appropriate in this case.
A possible though not ideal method of analysis is to use the
well known Friedman non-parametric test for a two-way
layout (See for example Hollander and Wolfe 1973). This
test allows a number of matched samples to be compared.
Thus the samples have to be of the same size with corre-
sponding observations in each sample matched. In our case
we have two samples, each corresponding to an operating
method. The two operating methods can thus be regarded
as ‘Treatments’, with each sample corresponding to one
treatment and forming eolumn(in Hollander and Wolfe’s
notation). The layout is as given in Table 1.

Table 1: Structure of Data in the Example

Operating Method 1f Operating Method 2
X11 X12
X21 X22
X7821 X7822

Each row of corresponding observations thus constitutes
a matched pair of observationsyith both observations
made at the same production level. The test statistic is
calculated from this pair of matched samples. (Details of
the calculation are given in Hollander and Wolfe.) There
are a large number of ties in the observations, and these are
handled using the correction method given in Hollander and
Wolfe. The test value obtained was185. To determine the
level of significance, we used bootstrap resampling to form
1000 bootstrap test values under the null. This was done
by obtaining two samples as in the layout of Table 1, with
each of size 782, using bootstrap resampling, only titth
bootstrap samples obtained from the one original sample
corresponding to operating method 1. To make sure that
corresponding observations in each bootstrap sample were
matched, each such pair was sampled from observations
made at the same production level. This ensured that there

As an example of the above discussion we consider data from was proper matching of production levels as in the original

a simulation experiment comparing two different methods
of operating a certain piece of equipment processing a
certain product. The output comprised 782 observations
of (simulated) operator activity for each method, where

700

samples.

Figure 2 shows the bootstrap EDF of 1000 values of
the Friedman test statistic calculated from paired samples
formed in this way. This EDF yields an estimate of the
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Figure 1: Activity Levels at Different Factor Combinations
critical value at the 90% level of significance a8@5 and Figure 3 shows the corresponding EDFs using the ED-

a value of 3704 at the 95% level of significance. This FIT test statistic

latter value is depicted in Figure 2. The actual test value

of 0.465 is therefore nowhere near significant at either of 2 - 2, =

these lovols T =n [ Y1F0) - FOIFE.).
Figure 2 also shows the EDF obtained by bootstrapping =1

from both original samples. Thus, in this case, a pair of

samples each of 782 observations is again formed, only with

one sample obtained by bootstrapping from the first original

sample (corresponding to operating method 1), and the

other obtained by sampling from the second original sample

(corresponding to the observations made under operating

method 2). The test statistic was then calculated from this

pair of bootstrap samples. The resulting EDiedman (¥)

say, thus estimates the true distribution of the test statistic

as obtained in theriginal simulation. We can thus estimate

the power of the Friedman test, at the 95% level of size,

as being - Grrieaman(3.704 = 0.139. At the 90% level

the power increases ta1®6. Both values are rather low.

This test statistic tests for a difference between the two
operating methods, whilst allowing for differences between
production levels. The test value obtained from the original
samples was .925 The resulting EDF formed under the
null gave critical values of G47 at the 90% level, and
0.970 at the 95% level. The latter is marked in Figure 3.
In this case the test value lies between the two and so is
significant at the 90% level, but not at the 95% level.

The Figure also shows the estimate of the true distri-
bution of T, Ggprir(y) say, from which we can estimate
the power of the test at the 95% level of size as being
1— Geprir(0.970) = 0.433 This increases to.647 at
the 90% level. Both values are more than three times that
of the Friedman test.
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Figure 2: Bootstrap EDFs — Friedman Statistic
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Figure 3: Bootstrap EDFs — EDFIT Statistic
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5 CONCLUSION

In simulation factorial experiments where observations are
replicated, the discussion suggests thatAlieF I T statistic
can provide a much more sensitive test for distinguishing
differences between responses at different factor combina-
tions.

This is backed up by the example of Section 4, where
a standard, normally quite powerful non-parametric test did
not reveal differences between two treatments. In contrast
the EDFIT test indicated a significant difference. The
reason is because there is a significant difference in the
overall variability of the two samples even though the dif-
ference is not all that great between the overall means of
the two samples. The sensitivity of tleD F I T statistic to
any difference between samples has therefore enabled this
difference in variability to be detected.
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