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ABSTRACT

We investigate a new algorithm for simulation-based op
mization where the number of alternatives is finite but ve
large. This algorithm draws on recent work in adaptive ra
dom search and from ranking-and-selection. We show h
the ranking-and-selection approach can significantly im
prove performance of the random search and demonst
the importance of the probability of correct selection.

1 INTRODUCTION

Optimization over a large but finite feasible region is ofte
a very difficult task. This is true even in the determin
istic context, and for stochastic systems the difficulty
exacerbated by the added randomness. Oftentimes disc
event simulation is the only tool available for optimizin
such systems. This area has received considerable atten
and comprehensive reviews of simulation-based optimiz
tion may be found in Jacobson and Schruben (1989),
(1994), and Andradóttir (1998). Here we will only mentio
directly related research. When the number of alternativ
is finite and relatively small thenranking-and-selectionand
multiple-comparisonmethods (Goldsman and Nelson 1998
are typically applied. These methods evaluate the perf
mance of each alternative and use statistical methods
guarantee that the objective, that is the selection of t
best alternative, is accomplished with a given probabili
Classical methods include for example Rinott’s two-sta
procedure (Rinott 1978), and more recent work includes th
of Matejcik and Nelson (1995), Chick (1997), and Che
et al. (1998). When the number of alternatives becom
somewhat larger, however, then these methods become
computationally intensive and other random search me
ods, that only consider a fraction of all the alternative
must be applied.

In a recent paper, Shi and Ólafsson (2000) introduc
such an optimization method, thenested partitions(NP)
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method, for global optimization when the objective func
tion is deterministic. In this context, the method has bee
found to be quite efficient for combinatorial optimization
(Ólafsson and Shi 2000). Furthermore, as was first su
gested by Shi and Ólafsson (1997), this method can also
applied to stochastic problems, where no analytical expre
sion exists for the objective function and it must be evaluate
using simulation. In Ólafsson (1999), this method is fur
ther improved by drawing on ideas from statistical samplin
techniques that have proven useful in simulation in the pa
namely ranking-and-selection methods. Thus, the resulti
algorithm combines statistical sampling techniques trad
tionally used for comparing a few alternatives with a globa
optimization framework aimed at large-scale optimizatio
problems. Here we analyze this new method and in parti
ular focus on the role and importance of the probability o
correct selection.

The paper is organized as follows. In Section 2 w
discuss the new algorithm and explain its relation to previou
work. In Section 3 we analyze the role of the ranking-and
selection probability of correct selection. Section 4 presen
some simulation results, and finally, Section 5 contains som
concluding remarks.

2 ALGORITHM DEVELOPMENT

In mathematical notation, we want to solve the problem

min
θ∈2 f (θ), (1)

where2 is a finite feasible region, andf : 2 → R is a
performance function that is subject to noise. In other word
for any feasible pointθ ∈ 2, f (θ) cannot be evaluated
analytically. Oftenf (θ) is an expectation of some random
estimate of the performance of a complex stochastic syste
given a parameterθ , that is, f (θ) = E [L(θ)]. Here
L(θ) is a random variable which depends on the parame
6
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θ ∈ 2. We assume thatL(θ) is a discrete event simulation
estimate of the true performance, and refer to it as t
sample performance. Also, to simplify the analysis, w
assume that there exists a unique solutionθopt to problem
(1) above.

2.1 The NP Methodology

As we stated in the introduction, the development in th
paper builds on a recently proposed method for simulatio
based optimization: the NP method. Here we first introdu
the basic idea of the NP method, and then show how it m
be improved by using statistical selection methodologie
In the k-th iteration of the NP method there is always
regionσ(k) ⊆ 2 that is considered the most promising, an
as nothing is assumed to be known about location of go
solutions before the search is started,σ(0) = 2. The most
promising region is then partitioned intoM subregions, and
what remains of the feasible region,2\σ(k), is aggregated
into one region called the surrounding region. Therefore,
thek-th iterationM+1 disjoint subsets that cover the feasibl
region are considered. Each of these regions is sampled us
some random sampling scheme, and the samples are u
to estimate the promising index for each region. This inde
is a set performance function that determines which regi
becomes the most promising region in the next iteratio
If one of the subregions is found to be best, this regio
becomes the most promising region. If the surroundin
region is found to be best, the method backtracks to a larg
region. The new most promising region is partitioned an
sampled in a similar fashion. This generates a sequen
of set partitions, with each partition nested within the las
The partitioning is continued until eventually all the point
in the feasible region correspond to a singleton region. T
following definitions will be used throughout the analysis

Definition 1 A region constructed using a fixed par-
titioning scheme is called avalid region given the fixed
partition. The collection of all valid regions is denoted b
6. Singleton regions are of special interest, and60 ⊂ 6
denotes the collection of all such valid regions.

Definition 2 The singleton regions in60, are called
regions ofmaximum depth. More generally, we define the
depth, d : 6 → N0, of any valid region iteratively with2
having depth zero, subregions of2 having depth one, and
so forth. Since they cannot be partitioned further, we ca
the singleton regions in60 regions of maximum depth.

Definition 3 If a valid region σ ∈ 6 is formed
by partitioning a valid regionη ∈ 6, then σ is called a
subregionof regionη, and regionη is called asuperregion
of regionσ . We define thesuperregion functions : 6→ 6

as follows. Letσ ∈ 6 \2. Defines(σ ) = η ∈ 6, if and
only if σ ⊂ η and if σ ⊆ ξ ⊆ η thenξ = η or ξ = σ . For
completeness we defines(2) = 2.
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The NP method shifts the focus from specific point
in the feasible region2 to a space of subsets; namely the
space of all valid regions. Consequently, a set performan
function I : 6 → R is needed. This set function can then
be used to select the most promising region and is therefo
called the promising index of the region. In this paper w
let

I (η) = min
θ∈η f (θ), ∀η ∈ 6, (2)

that is, the best solution in a region represents this regio
We refer the interested reader to Shi and Ólafsson (1998)
a comprehensive discussion and analysis of this algorith
and restrict our attention to the elements that are releva
to our present development.

It is clear that the NP method samples from the entir
feasible region in an adaptive fashion, and concentrates
sampling effort by systematically partitioning the feasibl
region. Thus, in each iteration it selects a most promisin
region, that is, the subregion that is considered the mo
likely to contain the global optimum. This selection can b
considered a success if the region selected contains the t
global optimum, and it would clearly be of practical interes
if a minimum probability of success could be guaranteed
each iteration. In the pure NP algorithm described abov
there is no such assurance.

Also note that when applying the NP method to a
stochastic problem there are two sources of randomness t
complicate the selection of the correct subregion. First, the
is a sampling error due to a relatively small sample being us
to estimate the performance of an often large set. Second
the performance of each sample points is estimated us
simulation and hence, is noisy. It is important to observ
that the former of these elements implies that the variatio
within a subregion differs greatly from one region to the
next. As an extreme case consider a singleton region tha
being compared to the entire surrounding region. That
a region containing only one solution being compared to
region containing all of the other solutions. Clearly the firs
source of randomness has been completely eliminated in
singleton region, whereas it probably accounts for almost a
of the randomness in the surrounding region. This implie
that to make better use of the sampling effort the numb
of sample points from each region should be variable an
dependent on the variation within the region. The two-stag
sampling procedure of Ólafsson (1999) addresses this
incorporating ranking-and-selection into the NP framework
and we will describe this next.

2.2 Two-Stage Sampling

In Ólafsson (1999) it is proposed to use Rinott’s two
stage ranking-and-selection procedure for selecting the b
subregion (Rinott 1978). To state this approach rigorous
7
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we let Dij (k) be thei-th set of points selected from the
regionσj (k) using a uniform random sampling procedure
i ≥ 1, j = 1,2, ...,M + 1 in the k-th iteration. We let
N = |Dij (k)| denote the number of sample points, which
is assumed to be constant. We letθ ∈ Dij (k) denote a
point in this set and letL(θ) be a simulation estimate of
the performance of this point. Then in thek-th iteration,

Xij (k) = min
θ∈Dij (k)

L(θ),

is an estimate of the performance of the regionσj , which
we can now also refer to as thei-th system performance for
the j -th system,i ≥ 1, j = 1,2, ...,M + 1. The two-stage
ranking-and-selection procedure first obtainsn0 such system
estimates, and then uses that information to determine t
total numberNj of system estimates needed from thej -th
system, that is, subregionσj (k). This number is selected to
be sufficiently large so that the correct subregion is selecte
with probability at leastP ∗, subject to an indifference zone
of ε > 0.

More precisely, the procedure is as follows:

Algorithm NP/Rinott

Step 1. Given the current most promising region
σ(k), partition σ(k) into M subregions
σ1(k), ..., σM(k), and aggregate the surround-
ing region2\σ(k) into one regionσM+1(k).

Step 2. Leti = 1.
Step 3. Use uniform sampling to obtain a setDij (k)

of N sample points from regionj = 1,2, ...,
M + 1.

Step 4. Use discrete event simulation of the system t
obtain a sample performanceL(θ) for every
θ ∈ Dij (k) and estimate the performance of
the region as

Xij (k) = min
θ∈Dij (k)

L(θ), (3)

j = 1,2, ...,M + 1.
Step 5. If i = n0 continue to Step 6. Otherwise let

i = i + 1 and go back to Step 3.
Step 6. Calculate the first-stage sample means an

variances

X̄
(1)
j (k) = 1

n0

n0∑
i=1

Xij (k), (4)

and

S2
j (k) =

∑n0
i=1

[
Xij (k)− X̄(1)j (k)

]2

n0 − 1
, (5)
738
for j = 1,2, ...,M + 1.
Step 7. Compute the total sample size

Nj(k) = max

{
n0 + 1,

⌈
h2S2

j (k)

ε2

⌉}
, (6)

where ε is the indifference zone andh is
a constant that is determined byn0 and the
minimum probabilityP ∗ of correct selection
(Rinott 1978).

Step 8. ObtainNj(k)−n0 more simulation estimates
of the system performance as in Step 2 - Step
5 above, that is(Nj (k)−n0) ·N more sample
points.

Step 9. Let the overall sample mean be the promisin
index for each region,

Î
(
σj (k)

) = X̄j (k) = ∑Nj (k)

i=1 Xij (k)

Nj (k)
, (7)

j = 1,2, ...,M + 1.
Step 10. Select the index of the region with the bes

promising index.

ĵk ∈ arg min
j=1,...,M+1

Î (σj ). (8)

If more than one region is equally promising,
the tie can be broken arbitrarily. If this index
corresponds to a region that is a subregio
of σ(k), then let this be the most promising
region in the next iteration. Otherwise, if the
index corresponds to the surrounding region
backtrack to a larger region containing the
current most promising region. That is, let

σ(k + 1) =
{
σ
îk
(k), if îk < M + 1,

s (σ (k)) , otherwise.
(9)

Step 11. Ifσ(k) ∈ 60 STOP; otherwise go back to
Step 1.

Ólafsson (1999) shows that when this algorithm is applie
the probability of terminating correctly is bounded by the
following inequality:

P
[
σ̂ = σ ∗opt

]
≥ (P ∗)d∗ (1− P

∗)d∗ − (P ∗)d∗
(1− P ∗)2d∗ − (P ∗)2d∗ (10)

where it is assumed thatP ∗ > 1
2, the indifference zone is

selected sufficiently small, and that the sampling is from
a normal population. Note that since we can prescribe th
value ofP ∗ then we can calculate this probabilitya priori
for a givend∗, which simply measures the problem size.
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3 PROBABILITY OF CORRECT SELECTION

To implement the NP/Rinott algorithm, several parameter
must be selected that can significantly affect the performanc
of the algorithm. These are the following:

• The number of sample points used for each system
estimate (N ),

• the number of system estimates in the first stag
(n0 ≥ 2),

• the probability of correct selection (P ∗ ≥ 0.5),
• and the indifference zone (ε > 0).

First we note that there is clearly a direct tradeoff betwee
N andn0 in thatN ·n0 is the total first stage sample effort,
and if we fixN ·n0 then increasingN decreasesn0 and vice
versa. Secondly, the indifference zoneε depends on how
the performance function is scaled and is therefore proble
dependent.

The choice ofP ∗, on the other hand, deserves specia
attention. In the pure Rinott procedure, as well as in
other ranking-and-selection procedures, this probability i
usually selected to be rather large, sayP ∗ = 0.90 orP ∗ =
0.99. Here, however, the ranking-and-selection is don
iteratively so it is not feasible in practice to expend too
much computational effort in each iteration. From Ólafsson
(1999) we know thatP ∗ > 0.5 is needed to guarantee
asymptotic convergence, but it should not be selected to
large because then too much effort is spent in each iteratio
Indeed, whereas the expected numberE[T ] of iterations
needed to find the global optimum can be shown to decrea
exponentially fast inP ∗ (Ólafsson, 1999), the computational
effort dictated by equation (6) increases exponentially in
P ∗ due to constanth (see Figure 1). The optimal value
thus lies somewhere between 0.5 and 1, but due to the fa
that equation (6) also depends on the sample variance, ana
priori theoretical prediction of the optimal value does not
appear to be possible.

One approach to determiningP ∗ would be to use equa-
tion (10) as a guide, that is, select the probability by which
we want to terminate correctly and use that to determin
what value ofP ∗ to use. On the other hand, we would also
like to know how the performance of the algorithm itself,
rather than just the stopping rule, depends on howP ∗ is
selected. As indicated above, a theoretical analysis is n
likely be be successful, so instead an empirical simulatio
study can be conducted.

4 SIMULATION RESULTS

In this section we will empirically determine the best value
of P ∗ for a single machine tardiness problem. The exper
iment was then run for two job-sequencing problems, on
with 5 jobs and one with 7 jobs . In each case the pro
73
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gram was run for three sets of simulation estimates, sho
medium and long. The three different sets of simulatio
estimates were chosen in order to study the performance
each level of simulation estimates. For each set of sim
lation estimates, twenty different values of total tardines
was determined and tabulated. To get a good idea of t
behavior of the algorithm as a function ofP ∗ on the in-
terval from 0.5 to 1, the experiments were performed fo
P ∗ ∈ {0.55,0.65,0.75,0.85,0.95}. Twenty replications
were used for each experiment.

The average tardiness results for the 5-job problem a
shown in Figure 2 as a function ofP ∗ and for short, medium,
and long runs of the algorithm. As should be expected th
algorithm continues to make improvements, so as the numb
of functional evaluation increases we keep getting a bett
solution. For a short set of functional evaluation the be
value is 13.8. For a medium set of functional evaluatio
the tardiness value obtained is 13.3. In the case of a long
set of functional evaluation the tardiness value obtained
11.3. Note, however, that in all cases the probability P*
0.65 gives the best value of tardiness. Furthermore, we no
that there is a considerable difference in tardiness calcula
when the values of P* = 0.65 and P* = 0.95 are used. Th
first half of Table 1 highlights these improvements.

From the fourth column of Table 1 we observed tha
the improvement in the tardiness value is close to 15.9
for a short period of computation time and up to 27% in th
case of a longer period of computation. We conclude th
by choosing the bestP ∗ value we can improve our solution
considerably for the same amount of computation time.

Another important observation is that at higher proba
bilities there is not a considerable difference in the tardine
values calculated between the different run lengths of the
gorithm. On the other hand, for short, medium and long se
of simulation estimates the tardiness values calculated f
lower probabilities are considerably different. For example
there is a difference of 3.2 for the probabilityP ∗ = 0.55
between short and long runs of the algorithm. This shou
be contrasted with the case ofP ∗ = 0.95 where the per-
centage improvement obtained by increasing the run of t
algorithm is only 5.5% (see the second column of Table 2

An intuitive explanation for this behavior may be tha
for lower values ofP ∗ the algorithm moves around more
freely and can thus explore a greater part of the feasib
region. Again this indicates that significant benefits in term
of computation time can be derived if theP ∗ value is chosen
well.

The same simulation experiments were repeated f
a larger 7-job sequencing problem. The results can
found in Figure 3, and as before it is clear thatP ∗ =
0.65 is the best value. Again, we observe that there
a considerable difference in tardiness calculated when t
values ofP ∗ = 0.65 andP ∗ = 0.95 are used, and this
is highlighted in the last column of Table 1, which show
9
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Figure 1: Computation Time Within Each Iteration Versus the Expected Number of
Iterations
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Figure 2: Simulation Results for the 5-Job Problem
5-job Problem 7-job Problem
Computation Time P ∗ = 0.95 P ∗ = 0.65 % Improved P ∗ = 0.95 P ∗ = 0.65 % Improved

Short 16.4 13.8 15.9 94.2 87.9 6.7
Medium 16.2 13.4 17.3 90.6 78.5 13.4

Long 15.5 11.3 27.1 89.4 76.4 14.5

Table 1: Improvement in Average Tardiness for Different P ∗ Values
740
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Table 2: Improvement in Tardiness from
Short to Long Computation Time
P ∗ Percentage Improvement

5-job problem 7-job problem
0.55 21.4 16.9
0.65 18.0 13.1
0.75 13.8 11.2
0.85 10.3 7.8
0.95 5.5 5.1

Long

Figure 3: Simulation Results for 7-Job Problem
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the percentage improvement in tardiness. We see from t
table that the improvement in the tardiness value is clo
to 6.7% for a short run of the algorithm, and up to 14.5%
in the case of longer computation. By choosing the be
P ∗ value we can improve our solution considerably for th
same amount of time. Similar to the previous problem,
higher probabilities there is not a considerable difference
tardiness values between short and long runs of the algorith
There is a difference of 15.5 for the probabilityP ∗ = 0.55
between short and long runs of the algorithm, but in the ca
of P ∗ = 0.95 the improvement is only 4.8 time units. A
comparison of the percentage improvement further illustrat
the advantage of choosing lower probabilities. From th
last column of Table 2 we observe that the percenta
improvement is 16.9% forP ∗ = 0.55 and in the case
of a higher probability,P ∗ = 0.95, the improvement in
tardiness is only 5.1%. It is again evident that to get a go
improvement in a short period of time we need to choo
lower probabilities. We also observe that as in the case
the five job sequencing problem choosing the best value
74
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P ∗ makes a better use of the computer time. Finally, w
observe that our simulation experiments indicate that th
bestP ∗ value is insensitive to problem size and for the ru
length of the algorithm.

5 SUMMARY

This paper has considered how to determine the probabil
of correct selection in the two-stage NP method propose
by Ólafsson (1999). Our results show that this determin
tion is critical as the performance of the algorithm varie
greatly depending on how it is performed. Furthermore,
clear pattern emerged in terms of the performance of th
algorithm as a function of the selection probability and, fo
the test problem, the optimal probability was insensitiv
to other factors. This indicates that it may be possible
for a given problem, to determine an optimal or a clos
to optimal selection probability empirically for a relatively
small problem instance and that this setting of the algo
rithm will perform well when other instances of the problem
1
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are solved. Further investigation is required, however,
confirm this observation.
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