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ABSTRACT method, for global optimization when the objective func-
tion is deterministic. In this context, the method has been
We investigate a new algorithm for simulation-based opti- found to be quite efficient for combinatorial optimization
mization where the number of alternatives is finite but very (Olafsson and Shi 2000). Furthermore, as was first sug-
large. This algorithm draws on recent work in adaptive ran- gested by Shi and Olafsson (1997), this method can also be
dom search and from ranking-and-selection. We show how applied to stochastic problems, where no analytical expres-
the ranking-and-selection approach can significantly im- sion exists for the objective function and it must be evaluated
prove performance of the random search and demonstrateusing simulation. In Olafsson (1999), this method is fur-

the importance of the probability of correct selection. ther improved by drawing on ideas from statistical sampling
techniques that have proven useful in simulation in the past,
1 INTRODUCTION namely ranking-and-selection methods. Thus, the resulting

algorithm combines statistical sampling techniques tradi-
Optimization over a large but finite feasible region is often tionally used for comparing a few alternatives with a global
a very difficult task. This is true even in the determin- optimization framework aimed at large-scale optimization
istic context, and for stochastic systems the difficulty is problems. Here we analyze this new method and in partic-
exacerbated by the added randomness. Oftentimes discreteular focus on the role and importance of the probability of
event simulation is the only tool available for optimizing correct selection.
such systems. This area has received considerable attention ~ The paper is organized as follows. In Section 2 we
and comprehensive reviews of simulation-based optimiza- discuss the new algorithm and explain its relation to previous
tion may be found in Jacobson and Schruben (1989), Fu work. In Section 3 we analyze the role of the ranking-and-
(1994), and Andradottir (1998). Here we will only mention  selection probability of correct selection. Section 4 presents
directly related research. When the number of alternatives some simulation results, and finally, Section 5 contains some
is finite and relatively small theranking-and-selectioand concluding remarks.
multiple-comparisomethods (Goldsman and Nelson 1998)
are typically applied. These methods evaluate the perfor- 2 ALGORITHM DEVELOPMENT
mance of each alternative and use statistical methods to
guarantee that the objective, that is the selection of the In mathematical notation, we want to solve the problem
best alternative, is accomplished with a given probability.
Classical methods include for example Rinott's two-stage min 1 (6), Q)
procedure (Rinott 1978), and more recent work includes that 00
of Matejcik and Nelson (1995), Chick (1997), and Chen \yhere @ is a finite feasible region, and : © — R is a
et al. (1998). When the number of alternatives becomes performance function that is subject to noise. In other words,
somewhat larger, however, then these methods become tooy,, any feasible poin® € ©, f(0) cannot be evaluated
computationally intepsive and qther random search meth- analytically. Oftenf (9) is an expectation of some random
ods, that only consider a fraction of all the alternatives, ggimate of the performance of a complex stochastic system
must be applied. given a parameted, that is, f(0) = E[L(#)]. Here

In a recent paper, Shi and Olafsson (2000) introduced ; (4) js a random variable which depends on the parameter
such an optimization method, theested partitiongNP)
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0 € ®. We assume that () is a discrete event simulation
estimate of the true performance, and refer to it as the
sample performance. Also, to simplify the analysis, we
assume that there exists a unique solutign to problem

(1) above.

2.1 The NP Methodology

As we stated in the introduction, the development in this
paper builds on a recently proposed method for simulation-
based optimization: the NP method. Here we first introduce
the basic idea of the NP method, and then show how it may
be improved by using statistical selection methodologies.
In the k-th iteration of the NP method there is always a
regiono (k) C O that is considered the most promising, and
as nothing is assumed to be known about location of good
solutions before the search is started)) = ©. The most
promising region is then partitioned intd subregions, and
what remains of the feasible regiof,\ o (k), is aggregated
into one region called the surrounding region. Therefore, at
thek-th iterationM +1 disjoint subsets that cover the feasible

The NP method shifts the focus from specific points
in the feasible regio® to a space of subsets; namely the
space of all valid regions. Consequently, a set performance
function 7 : ¥ — R is needed. This set function can then
be used to select the most promising region and is therefore
called the promising index of the region. In this paper we
let

I(n) =min f(0), Vne 2, (2)

fen
that is, the best solution in a region represents this region.
We refer the interested reader to Shi and Olafsson (1998) for
a comprehensive discussion and analysis of this algorithm,
and restrict our attention to the elements that are relevant
to our present development.

It is clear that the NP method samples from the entire
feasible region in an adaptive fashion, and concentrates the
sampling effort by systematically partitioning the feasible
region. Thus, in each iteration it selects a most promising
region, that is, the subregion that is considered the most
likely to contain the global optimum. This selection can be

to estimate the promising index for each region. This index
is a set performance function that determines which region
becomes the most promising region in the next iteration.
If one of the subregions is found to be best, this region

if a minimum probability of success could be guaranteed in
each iteration. In the pure NP algorithm described above
there is no such assurance.

Also note that when applying the NP method to a

becomes the most promising region. If the surrounding stochastic problem there are two sources of randomness that
region is found to be best, the method backtracks to a larger complicate the selection of the correct subregion. First, there
region. The new most promising region is partitioned and S @sampling error due to arelatively small sample being used
sampled in a similar fashion. This generates a sequence 0 estimate the performance of an often large set. Secondly,

of set partitions, with each partition nested within the last.
The partitioning is continued until eventually all the points
in the feasible region correspond to a singleton region. The
following definitions will be used throughout the analysis.

Definition 1 Aregion constructed using a fixed par-
titioning scheme is called &alid region given the fixed
partition. The collection of all valid regions is denoted by
3. Singleton regions are of special interest, aig C &
denotes the collection of all such valid regions.

Definition 2  The singleton regions ik, are called
regions ofmaximum depth More generally, we define the
depth d : © — Np, of any valid region iteratively witl®
having depth zero, subregions &f having depth one, and
so forth. Since they cannot be partitioned further, we call
the singleton regions irg regions of maximum depth.

Definition 3 If a valid regiono € X is formed
by partitioning a valid regionp € X, theno is called a
subregionof regionn, and regiony is called asuperregion
of regiono. We define theuperregion function : ¥ — &
as follows. Lets € £ \ ©. Defines(c) =n € %, if and
onlyifo cnandifo C& CnthenE =noré&=o0. For
completeness we definé®) = ©.
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the performance of each sample points is estimated using
simulation and hence, is noisy. It is important to observe
that the former of these elements implies that the variation
within a subregion differs greatly from one region to the
next. As an extreme case consider a singleton region that is
being compared to the entire surrounding region. That is,
a region containing only one solution being compared to a
region containing all of the other solutions. Clearly the first
source of randomness has been completely eliminated in the
singleton region, whereas it probably accounts for almost all
of the randomness in the surrounding region. This implies
that to make better use of the sampling effort the number
of sample points from each region should be variable and
dependent on the variation within the region. The two-stage
sampling procedure of Olafsson (1999) addresses this by
incorporating ranking-and-selection into the NP framework,
and we will describe this next.

2.2 Two-Stage Sampling
In Olafsson (1999) it is proposed to use Rinott's two-

stage ranking-and-selection procedure for selecting the best
subregion (Rinott 1978). To state this approach rigorously,
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we let D;;(k) be thei-th set of points selected from the
regiono; (k) using a uniform random sampling procedure,
i>1,j=12,..,M+ 1 in the k-th iteration. We let
N = |D;;(k)| denote the number of sample points, which
is assumed to be constant. We tete D;;(k) denote a
point in this set and leL(9) be a simulation estimate of
the performance of this point. Then in tketh iteration,
Xij(k) = o rgljnk L),
is an estimate of the performance of the regignwhich
we can now also refer to as theh system performance for
the j-th system; > 1, j =1,2,..., M+ 1. The two-stage
ranking-and-selection procedure first obtaipsuch system
estimates, and then uses that information to determine the
total numberN; of system estimates needed from théh
system, that is, subregiar (k). This number is selected to
be sufficiently large so that the correct subregion is selected
with probability at leastP*, subject to an indifference zone
of ¢ > 0.
More precisely, the procedure is as follows:

Algorithm NP/Rinott

Step 1. Given the current most promising region
o(k), partition o(k) into M subregions
o1(k), ..., op (k), and aggregate the surround-
ing region® \ o (k) into one regioro;+1(k).

Step 2. Leti =1.

Step 3. Use uniform sampling to obtain a &} (k)

of N sample points from region =1, 2, ...,
M+ 1.

Use discrete event simulation of the system to
obtain a sample performandg6) for every

0 € D;;j(k) and estimate the performance of
the region as

Step 4.

Xij(k) = min L(6),

3
€D;j (k) ®)

j=12 .., M+1.

Ifi = ng continue to Step 6. Otherwise let

i =i+ 1 and go back to Step 3.

Step 5.

Step 6. Calculate the first-stage sample means and
variances
. 1 X
X k) = oo 2 X (. (4)
i=1
and
no D 012
LT [X - XV
S2(k) = O

no—1
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for j=1,2, .., M +1.

Step 7. Compute the total sample size

M$®
62

Njk) = max{no +1, {

o

where ¢ is the indifference zone and is

a constant that is determined by and the
minimum probability P* of correct selection
(Rinott 1978).

ObtainV; (k) — ng more simulation estimates
of the system performance as in St - Step

5 above, that i$N; (k) —ng) - N more sample
points.

Let the overall sample mean be the promising
index for each region,

Step 8.

Step 9.

N;j (k)

>ty Xij(k)

1 (oj(0)) = Xj(h) = ==mi—.
J

()

j=12..,.M+1.
Select the index of the region with the best
promising index.

Step 10.

Jk € argj:1 T,IAQHI(G’)' (8)

If more than one region is equally promising,
the tie can be broken arbitrarily. If this index
corresponds to a region that is a subregion
of o (k), then let this be the most promising
region in the next iteration. Otherwise, if the
index corresponds to the surrounding region,
backtrack to a larger region containing the

current most promising region. That is, let

if ig <M+1,
otherwise.

ok +1) — o; (k),
v {s<o<k>>,

)
Ifo(k) € o STOP; otherwise go back to
Step 1.

Step 11.

Olafsson (1999) shows that when this algorithm is applied
the probability of terminating correctly is bounded by the
following inequality:

1—pH¥
(1— P2

_ (P*)d*
— (P*)Zd*

Plo =0y ]z PH" (10)

where it is assumed that* > % the indifference zone is
selected sufficiently small, and that the sampling is from
a normal population. Note that since we can prescribe the
value of P* then we can calculate this probabiligypriori

for a givend*, which simply measures the problem size.
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3 PROBABILITY OF CORRECT SELECTION

To implement the NP/Rinott algorithm, several parameters
must be selected that can significantly affect the performance
of the algorithm. These are the following:

The number of sample points used for each system
estimate §),

the number of system estimates in the first stage
(no > 2),

the probability of correct selectiorP( > 0.5),

and the indifference zone & 0).

First we note that there is clearly a direct tradeoff between
N andng in thatN - ng is the total first stage sample effort,
and if we fix N - ng then increasingV decreasesg and vice
versa. Secondly, the indifference zoaalepends on how
the performance function is scaled and is therefore problem
dependent.

The choice ofP*, on the other hand, deserves special
attention. In the pure Rinott procedure, as well as in
other ranking-and-selection procedures, this probability is
usually selected to be rather large, &%= 0.90 or P*
0.99. Here, however, the ranking-and-selection is done
iteratively so it is not feasible in practice to expend too
much computational effort in each iteration. From Olafsson
(1999) we know thatP* > 0.5 is needed to guarantee
asymptotic convergence, but it should not be selected too
large because then too much effort is spent in each iteration.
Indeed, whereas the expected numiigf’] of iterations
needed to find the global optimum can be shown to decrease
exponentially fastirP* (Olafsson, 1999), the computational
effort dictated by equation (6) increases exponentially in
P* due to constant: (see Figure 1). The optimal value
thus lies somewhere between 0.5 and 1, but due to the fact
that equation (6) also depends on the sample varianca, an
priori theoretical prediction of the optimal value does not
appear to be possible.

One approach to determinirgj* would be to use equa-
tion (10) as a guide, that is, select the probability by which
we want to terminate correctly and use that to determine
what value ofP* to use. On the other hand, we would also
like to know how the performance of the algorithm itself,
rather than just the stopping rule, depends on hetvis
selected. As indicated above, a theoretical analysis is not
likely be be successful, so instead an empirical simulation
study can be conducted.

4 SIMULATION RESULTS

In this section we will empirically determine the best value
of P* for a single machine tardiness problem. The exper-
iment was then run for two job-sequencing problems, one
with 5 jobs and one with 7 jobs . In each case the pro-

739

Gopinath

gram was run for three sets of simulation estimates, short,
medium and long. The three different sets of simulation
estimates were chosen in order to study the performance at
each level of simulation estimates. For each set of simu-
lation estimates, twenty different values of total tardiness
was determined and tabulated. To get a good idea of the
behavior of the algorithm as a function &* on the in-
terval from 0.5 to 1, the experiments were performed for
P* € {0.55,0.65,0.75,0.85,0.95,. Twenty replications
were used for each experiment.

The average tardiness results for the 5-job problem are
shown in Figure 2 as a function &* and for short, medium,
and long runs of the algorithm. As should be expected the
algorithm continues to make improvements, so as the number
of functional evaluation increases we keep getting a better
solution. For a short set of functional evaluation the best
value is 13.8. For a medium set of functional evaluation
the tardiness value obtained is 13.3. In the case of a longer
set of functional evaluation the tardiness value obtained is
11.3. Note, however, that in all cases the probability P* =
0.65 gives the best value of tardiness. Furthermore, we note
that there is a considerable difference in tardiness calculated
when the values of P* = 0.65 and P* = 0.95 are used. The
first half of Table 1 highlights these improvements.

From the fourth column of Table 1 we observed that
the improvement in the tardiness value is close to 15.9%
for a short period of computation time and up to 27% in the
case of a longer period of computation. We conclude that
by choosing the best* value we can improve our solution
considerably for the same amount of computation time.

Another important observation is that at higher proba-
bilities there is not a considerable difference in the tardiness
values calculated between the different run lengths of the al-
gorithm. On the other hand, for short, medium and long sets
of simulation estimates the tardiness values calculated for
lower probabilities are considerably different. For example,
there is a difference of 3.2 for the probabiliy* = 0.55
between short and long runs of the algorithm. This should
be contrasted with the case &f* = 0.95 where the per-
centage improvement obtained by increasing the run of the
algorithm is only 5.5% (see the second column of Table 2).

An intuitive explanation for this behavior may be that
for lower values ofP* the algorithm moves around more
freely and can thus explore a greater part of the feasible
region. Again this indicates that significant benefits in terms
of computation time can be derived if tl value is chosen
well.

The same simulation experiments were repeated for
a larger 7-job sequencing problem. The results can be
found in Figure 3, and as before it is clear that =
0.65 is the best value. Again, we observe that there is
a considerable difference in tardiness calculated when the
values of P* = 0.65 and P* = 0.95 are used, and this
is highlighted in the last column of Table 1, which shows
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Probability vs E[T] and h
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Probability
Figure 1: Computation Time Within Each Iteration Versus the Expected Number of
Iterations

Probability vs. Avg. of Tardiness
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Figure 2: Simulation Results for the 5-Job Problem
Table 1: Improvement in Average Tardiness for Different P* Values
5-job Problem 7-job Problem
Computation Time P*=095 P*=0.65 % Improved P*=095 P*=0.65 % Improved
Short 16.4 13.8 15.9 94.2 87.9 6.7
Medium 16.2 134 17.3 90.6 78.5 134
Long 155 11.3 27.1 89.4 76.4 145
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Table 2: Improvement in Tardiness from
Short to Long Computation Time

pP* Percentage Improvement
5-job problem 7-job problem

0.55 21.4 16.9

0.65 18.0 13.1

0.75 13.8 11.2

0.85 10.3 7.8

0.95 5.5 51

Probability vs Avg. of Tardiness
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Probability

Figure 3: Simulation Results for 7-Job Problem

the percentage improvement in tardiness. We see from this P* makes a better use of the computer time. Finally, we
table that the improvement in the tardiness value is close observe that our simulation experiments indicate that the
to 6.7% for a short run of the algorithm, and up to 14.5% bestP* value is insensitive to problem size and for the run
in the case of longer computation. By choosing the best length of the algorithm.

P* value we can improve our solution considerably for the

same amount of time. Similar to the previous problem, at 5 SUMMARY

higher probabilities there is not a considerable difference in

tardiness values between short and long runs of the algorithm. This paper has considered how to determine the probability
There is a difference of 15.5 for the probabiliB* = 0.55 of correct selection in the two-stage NP method proposed
between short and long runs of the algorithm, but in the case by Olafsson (1999). Our results show that this determina-
of P* = 0.95 the improvement is only 4.8 time units. A  tion is critical as the performance of the algorithm varies
comparison of the percentage improvement further illustrates greatly depending on how it is performed. Furthermore, a
the advantage of choosing lower probabilities. From the clear pattern emerged in terms of the performance of the
last column of Table 2 we observe that the percentage algorithm as a function of the selection probability and, for
improvement is 16.9% forP* = 0.55 and in the case  the test problem, the optimal probability was insensitive
of a higher probability,P* = 0.95, the improvement in to other factors. This indicates that it may be possible,
tardiness is only 5.1%. It is again evident that to get a good for a given problem, to determine an optimal or a close
improvement in a short period of time we need to choose to optimal selection probability empirically for a relatively
lower probabilities. We also observe that as in the case of small problem instance and that this setting of the algo-
the five job sequencing problem choosing the best value of rithm will perform well when other instances of the problem
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are solved. Further investigation is required, however, to
confirm this observation.
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