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ABSTRACT

This study presents a new approach to solve multi-response
simulation optimization problems. This approach integrates
a simulation model with a genetic algorithm heuristic and a
goal programming model. The genetic algorithm technique
offers a very flexible and reliable tool able to search for a
solution within a global context. This method was modified
to perform the search considering the mean and the
variance of the responses. In this way, the search is
performed stochastically, and not deterministically like
most of the approaches reported in the literature. The goal
programming model integrated with the genetic algorithm
and the stochastic search present a new approach able to
lead a search towards a multi-objective solution.

1 INTRODUCTION

Most of the mathematical programming applications found
in the literature have been focused on single objective pro-
blems. Many simulation models and real world problems
involve analysis of more than one objective. The most com-
mon approach to deal with this kind of situation is to
simplify the problem selecting the most important objective
and solving the resulting single objective model. The other
objectives are just ignored or simply transformed into model
constraints. This approach would generally lead to unreali-
stic solutions, especially when conflicting objectives are
present. For example, consider an investment problem with
two objectives, profit maximization and risk minimization. It
usually happens that the higher the profit the bigger the risk.
For this reason, treating this problem using a single objective
will lead to a poor solution. A better approach to this
problem would be a multi-objective model where both
objectives, profit maximization and risk minimization, are
considered as objective functions of the model.

In simulation optimization the situation is not
different, generally just one measure of effectiveness is
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selected as the response to be optimized. Even though most
simulation packages are able to generate information
regarded to several measures of effectiveness, such as,
resource utilization, time in system, time in queues, etc.,
just one of them is used as the problem�s objective func-
tion. A multi-response approach in simulation optimization
represents a difficult task due to the stochastic nature of
simulation. The optimization problem can not be represent-
ed and solved using a deterministic mathematical model.

Most of the applications of simulation optimization
have been single objective problems. In the literature there
are few attempts to solve multi-response simulation
optimization problems. The majority of them are focused
on response surface methodology, utility theory and
interactive procedures where the decision-maker interacts
with the model and leads the search. The major drawbacks
of these approaches are local optimality and in most cases
the lack of automated direct search. In addition to this,
these methods generally analyze the problem in a
deterministic way, in other words the randomness
associated to simulation is not considered.

This study will focus on these three main issues. The
objective is to propose a general approach able to find
stochastically a global optimum, at least in theory, for a
multi-response simulation optimization problem. This
approach should be able to perform as intended in any type
of problem regardless of the size and nature of the
problem. Also it is expected to find the solution in a direct
way, in other words no external intervention will lead the
search to the optimal solution. The decision-maker will be
included at the beginning of the problem where initial
conditions are needed in order to start the optimization
process.

2 BACKGROUND

The literature reports few attempts for solving multiple
objective simulation problems in comparison to single
8
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objective problems. Montgomery and Bettencourt (1977) 
applied a method based on the Geoffrion-Dyer interactive 
vector maximal algorithm. This approach make use of the 
response surface methodology to estimate the objective 
functions equations, and then solving a set of sub 
problems, the search direction is determined. Clayton, 
Weber and Taylor (1982) present a direct search approach 
for multi-response simulation optimization based on 
modified pattern search and goal programming with 
preemptive priorities. 

Rees, Clayton and Taylor (1985) proposed a procedure 
for obtaining satisfactory solutions to multiple response 
simulation models using modified response surface 
methodology within a lexicographic goal programming 
framework. The most preferred goal is optimized first 
using the response surface approach. Then, an attempt to 
achieve the next highest ranked goal is made without 
violating the result obtained for the highest ranked goal. In 
other words, the achievement of the next goal cannot be 
made at the expense of the higher goal. The same 
procedure is repeated for each one of the goals. 

Mollaghasemi, Evans and Biles (1991) present an 
aggregation approach for multi-response simulation 
optimization. The method uses a multi-attribute value 
function representing the decision-maker preferences. 
Then, a gradient search technique is used to find the 
optimum of the assessed function. Mollaghasemi and 
Evans (1994) proposed a modification of the multi-criteria 
mathematical programming technique called STEP 
method. This technique works in interaction with the 
decision-maker who is asked, in each iteration, to 
identified the least satisfactory performance measure, 
which is then improved at the expense of other responses 
using a gradient search method. 

Teleb and Azadivar (1994) proposed an algorithm 
based on the constrained scalar simplex search method. 
The method works by calculating the objective function 
value in a set of vertices of a complex. The method moves 
towards the optimum by eliminating the worst solution and 
replacing it with a new and better solution obtained by 
connecting the old point to the centroid of the remaining 
vertices. The process is repeated until a convergence 
criterion is met.  

Mollaghasemi (1994) presents an interactive approach 
for optimizing multi-response simulation models based on 
the Geoffrion-Dyer-Feinberg (GDF) vector maximal 
algorithm. In this approach the decision-maker is asked to 
determine the tradeoff ratios between a reference criterion 
and the remaining responses. This information in addition 
to the gradient estimate of each response is used to 
formulate a directional sub problem that after solving it 
will lead to the determination of the optimum direction. 
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The process is repeated until the decision-maker is satisfied 
with the solution.  

Boyle (1996) presents a method called Pairwise 
Comparison Stochastic Cutting Plane (PCSCP). This method 
combines features from interactive multi-objective mathe-
matical programming and response surface methodology. 
The method works by finding the center of the feasible 
region in the decision space and performing a design of 
experiments centered at that point. Interaction with the 
decision-maker and cutting plane based techniques are used 
to determine the most preferred experimental point. Finally, 
formulating a new constraint based on the estimated gradient 
reduces the feasible region in the decision space. The 
process is repeated until the best compromise solution is 
found or terminating criteria are met. 
 
3 METHODOLOGY 
 
This section presents in detail a methodology developed to 
solve multi-response simulation optimization problems. 
This methodology integrates simulation, goal program-
ming, and genetic algorithms. The simulation model serves 
as a black box representing the objective functions of the 
problem, which generates output responses for all the 
objectives involved in the analysis. These outputs are trans-
formed using a goal programming framework enabling us 
to consider all the objectives during the optimization 
process. The genetic algorithm is responsible for perform-
ing the search for improved solutions. The selection 
process of the GA is performed using a multiple 
comparisons statistical technique. In this way, the 
stochastic nature of simulation is considered when a 
selection among different scenarios takes place. 

The general structure of the methodology can be divid-
ed in nine major sections, each one containing subsections. 
A description of the methodology is presented next. 
 
3.1 Initialization 
 
The first section or step of this methodology is related to 
the definition of the initial conditions of the problem. This 
information can be divided in two groups; information 
related to the problem it self, and information required by 
the genetic algorithm. This is explained in table 1. 
 
3.2 Goal Program 
 
In this step, part of the information gathered during the 
initialization process is used to construct a goal 
programming model. The steps required to do this are 
explained next. 
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Table 1:  Initial Conditions
Problem General
Information

Description

Variables Factors of interest for the
analysis. These factors are the
simulation input parameters.

Objectives Measures of effectiveness of
interest for the problem.

Weights Relative importance of each
objective. AHP suggested for
weights estimations

Goals Aspiration levels for each
objective. These values are
generally set using experts�
opinions. Goal values are
realistic but extremely good
solutions.

Hard Constraints Other problem constraints,
resources capacities, system
limitations, etc.

Genetic
Algorithm

Description

Population Size Number of chromosomes
(scenarios) that will be kept from
generation to generation.

Crossover Rate Probability of performing
crossover.

Mutation Rate Probability of performing
mutation

Goal Constraints: These constraints will contain the
simulation output for each objective and the goal
associated to it. The structure of the goal constraints is
presented in equation 1.

( ) , 1...E x n p b i ki i i i+ − = = (1)

Where Ei(x) is the expected value of the simulation
output representing the measure of effectiveness for
objective i, bi is the predefined goal value for objective i, ni
and pi are the negative and positive deviations of objective
i with respect to the goal. One goal constraint is required
for each objective considered in the analysis.

Hard Constraints: These constraints represent the
system�s limitations, e.g. resources capacity and
availability, demand, etc.

Objective Function: The objective function for the
goal programming model is presented as follows:

( )
1

k
Min z w n w pi i i i

i
= +∑

=
(2)
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Where wi is the weight that represents the DM pre-
ferences for objective i, and ni and pi are the negative and
positive deviations of objective i with respect to the goal.

Normalization: Since different objectives are
represented using different measure units, e.g. one
objective could be presented in terms of millions dollars
and other in terms of percentage (resource utilization), it is
necessary to transform each unit to a common one. This
could be achieved dividing the expression in brackets in
equation 2 by its corresponding goal value. In this way, the
new objective function is shown next:

1

k w n w pi i i iMin z
bii

 +
= ∑  

 =
(3)

It is important to mention that when an objective is to be
minimized, then the ni term should be eliminated from the
objective function. When the objective is to be maximized,
pi has to be removed. In this way we are not penalizing the
over achievement of an objective. If the objective is to get as
close as possible to the goal, them both terms ni and pi
should be included in the objective function.

3.3 Objective Function Variance Estimation

The objective function presented above represents the deter-
ministic part of the problem. Since simulation is a stochastic
technique, it is necessary to capture the randomness
associated to it and include it in the objective function. A
simulation model is able to generate the mean and the
variance for each one of the objectives associated with the
problem. The objective function�s mean can be calculated
using equation 3 and the variance has to be estimated
considering all the variances associated to each response. If
the objectives considered in the study were all independent
of each other, the resulting variance would be the summation
of all the independent variances. Unfortunately, this is not
the most common case. A multi-objective analysis generally
considers conflicting objectives, this means there exists
correlation between them, and no independence could be
assumed. For this reason, mean and variance estimation for
the summation of non-independent random variables can be
performed using the following theorem:

If y1, y2,��, yn  are random variables and l= a1y1 + a2y2 +
�+ anyn, where ai are constant values, then

( ) ....1 1 2 2E l a a an nµ µ µ= + + (4)
0
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and
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This theorem can be used to estimate the objective
function�s mean and variance as follows:

1 2 .......1 2
1 2

ww w nd d df nb b bn
µ

    
= + + +     
     

(6)

For notation simplification and because we are not
penalizing the over achievement of any objective, the di
was used to represent ni (maximization) or pi
(minimization) depending on each objective.

22 2
2 2 2 21 2 ....1 21 2

31 2 12 cov( , ) 2 cov( , )1 2 1 3
1 2 1 3

31 2.... 2 cov( , ) 2 cov( , )1 2 3
1 2 3

2.... 2
2

ww w n
nf b b bn

ww w wy y y y
b b b b

w ww wn y y y ynb b b bn
w
b

σ σ σ σ
    

= + + + +    
     

     
+ +     

     
      

+ + +      
      


+ 


cov( , ) ........2

12 cov( , )1
1

wn y ynbn
w wn n y yn nb bn n

 
+ 

 
  −+    −

−  
(7)

Since the covariance is not known, it is necessary to
generate a set of randomly selected points of the response
surface. This is done by running the simulation model for
all the selected scenarios and collecting the mean of each
one of the measures of effectiveness under study. These
values can be used to calculate a covariance matrix. All the
covariance values that appear to be significant will be
included in the formula.

Each time a scenario is simulated, the mean and
variance of all its measures of effectiveness have to be
collected and used to evaluate equation 6 and 7. These two
equations will represent the multi-objective aggregated
MOE that will be used to search for better scenarios. The
first step in the optimization process is presented in the
next section.
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3.4 Optimization Process

The first stage to start the optimization process is to generate
an initial population of solutions (scenarios). The number of
point estimations required to start is equal to the population
size parameter defined in the initialization step of the
methodology. The selection of these scenarios is carried out
randomly. The reason for this is to cover a wide range of the
surface response. Generally, DMs have a good idea where
good solutions could be found. Some of the DMs
suggestions could be considered in the initial population.

After running all the scenarios, the mean and variance
for each MOE considered in the analysis have to be
collected and saved in a database. Then, calculate di using
equation 1. Remember that di represents either ni or pi
depending on that particular objective (maximization,
minimization). Finally using equations 6 and 7, calculate
mean and variance of the GP function. Even though the
covariance is a random variable, and its value may change
depending on the sample used for its estimation, we will
assume that it is constant from iteration to iteration, it does
not have to be estimated again.

3.5 Selection

The next step in the methodology and following the genetic
algorithm paradigm is to select the chromosomes
(scenarios) that will be considered for crossover. The
selection will be carried out in terms of each
chromosome�s fitness, which it is represented by the GP
function mean and variance.

One of most common selection method is called
roulette wheel selection. The idea is to determine selection
probabilities for each chromosome proportional to the
fitness value. If fi is the fitness value for chromosome i,
then its probability of selection pi, is equal to:

.

1

fipi pop size
fi

i

=

∑
=

(8)

Then, a wheel according to these probabilities can be
created and each time the wheel is spun a chromosome is
selected. We need to select half of the population using this
method, the other half will be generated by mating the
selected chromosomes. Because our problem is not
deterministic, it is necessary to apply some modifications
to the selection procedure. Because fi is a random variable
represented by a mean and a variance, statistical techniques
have to be applied in order to differentiate among the
chromosomes. In other words, it is not possible to say that
a chromosome is better that another because its fi mean is
better. The randomness associated to these values has to be
considered. There are many statistical techniques that can
1
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be applied to solve this problem, they are called multiple
comparison methods. These methods are able to form sets
of treatments considering the randomness associated to
them. These methods work by forming groups of
treatments. It is considered that there is statistical
difference among the groups but not within them. In this
way, we can form groups instead of individual
chromosomes that can be ranked. Using this approach we
can compute the fitness for each group and use this value
to calculate the probability of selection of that group
proportional to the population of groups. Every time the
wheel is spun and a group selected, a chromosome from
that group is randomly chosen and passed to the next
generation. Boesel et al. (1999) applied this approach to a
single objective simulation optimization problem. This
method make use of the single response variance
estimation generated by the simulation model to create
groups using a statistical grouping procedure based on
Calinski and Corsten (1985). The selection procedure
proposed in our study is based on Tukey�s multiple
comparison procedure. In addition to this, since this is a
multi-objective problem, our method makes use of the
variance of each one of the responses, as well as the
covariance of all the pairs of objectives.

Tukey�s method selects a critical distance, w, so that the
probability of making a type I error is α. Any pair of sample
means (GP means) that differ by less that w can be
considered equal. In this way, groups of chromosomes can
be created considering that their fitness values do not differ
by more than w. The estimation of w is shown in equation 9.

( , ) sw q p v
nα= (9)

Where:

P = Number of sample means (population size)
s = Square root of MSE. For the case where the

number of observations is equal for all the
samples, s= Square root of the average GP
variance.

v = Number of degrees of freedom associated to
MSE.

n = Number of observations in each of the p
samples.

qα(p,v) = Critical value of the Studentized range.

After calculating w, all the chromosomes are ranked in
terms of its fitness value and grouped considering
chromosomes that differ by less than w. In this way, we
have created groups of chromosomes that are not
statistically different.

After the groups have been created it is necessary to
assign the probability of selection for each group. This is
done by adding up all the fitness values fi within each
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group calculated in equation 8. Equation 10 shows the
formula for assigning the probability of selection for each
one of the groups.

( )p f for every i in group kk i= ∑ (10)

Having the probability of selection for each group (pk),
the roulette wheel can be constructed. The groups
containing better chromosomes would have a higher
chance to be selected. In each spin, a group is selected and
a chromosome within the group is chosen randomly. The
chosen chromosome will be passed to the next generation
and utilized as a parent in the mating process. The half of
the new generation will be created using this method, and
the other half will be the offspring generated from the
mating process.

3.6 Crossover (Mating Process)

The half of the new generation has been created using the
selection process described above. Now, in order to fill the
remaining half it is necessary to mate pairs of
chromosomes to create offspring. This process is known as
crossover. This is performed selecting a pair of
chromosomes from the new generation randomly. Then,
the crossover point has to be chosen. This point represents
the position where the chromosome is cut to exchange
genetic information within the pair of parents. There are
many different types of crossover, the most common one is
called single point crossover. Other types are two points,
multiple points and uniform crossover. All these types of
crossover work very good when the chromosome is
represented using binary code. Since we will use real
number codification, a different kind of crossover will be
used. The method that will be used in this study is a
variation of a group of techniques called blending
crossover. Some examples of blending crossover can be
found in Haupt and Haupt (1998). The method starts
selecting a pair of parent chromosomes. Then, one gene is
randomly selected as the crossover gene. The new
chromosomes will be created using a combination of the
two parents. This is shown in next.

Chrom. A      [a1, a2,   a3,   a4,��..an]
Chrom. B      [b1, b2,   b3,   b4,��..bn]
Offspring C   [a1, a2,  X,   b4,��..bn]
Offspring D   [b1, b2,  Y,   a4,��..an]
X= a3-β(a3-b3)
Y=b3+β(a3-b3)
β: Random number between 0 and 2

Crossover
Gene
2
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If the last gene is selected, then all the genes to the left
are swapped. This method of crossover will allow adding
new information to the new chromosomes. After the
crossover process has been completed for all pairs of
parent chromosomes, the mutation operator has to be
applied. This process is explained in the next section.

3.7 Mutation

Mutation is the second way a genetic algorithm explores a
surface. The basic idea about mutation is to keep the GA
from fast convergence to local optima. The simplest type
of mutation is called uniform mutation. In this type of
mutation a gene is replaced with a randomly selected
number within the boundaries of the parameter. The
probability of mutation is specified in the initialization step
of the methodology and represents the chance that a gene
would mutate in each generation. If a mutation rate is 5%,
the population size is 10, and the number of genes (para-
meters) in each chromosome is 4, then, (10x4x0.05)=2
genes should mutate in each generation. There is a concept
called elitism that leaves the best chromosomes out of the
mutation candidates. The reason for this is to avoid the
change of a very good solution. A percentage of the
population could be selected as elite solutions.

3.8 Evaluation

The new generation has been created using the crossover
and mutation genetic operators. The problem is that for
some of these chromosomes its fitness value is unknown.
In order to estimate the fitness of a chromosome it is
necessary to run the simulation model for each one of the
scenarios represented by the chromosomes. Before running
the simulation the database containing all the simulation
results should be checked to see if that particular scenario
was run already. This is important since simulation time is
costly. If that parameter configuration was contained in the
database, then its output can be use for estimating the
chromosome fitness. If it is not found then the simulation
model has to be used to estimate the output. These values
should be stored in the database and the fitness value
computed using equations 6 and 7.

3.9 Stopping Criteria

The last step in the methodology is to check if the GA found
a solution that is good enough to meet the DM expectations.
The first possibility is that the GA has reached a point of
total convergence. This happens when all the chromosomes
in a generation are exactly the same. In this case the process
should be stopped since no further improvement could be
reached. This is not the most common case in real world
problems, so other stopping criteria are necessary. The
simplest one is related to the amount of time or number of
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simulated scenarios that the DM is willing to spend in the
analysis. If this is the case the process should be stopped
when this constraint has been meet and the best solution
reached so far can be selected as the final solution. Other
types of stopping criteria are related to the improvement
observed among generations. For example, if no significant
improvement is observed in a number of consecutive
generations the GA should be stopped.

4 FUTURE RESEARCH

Since this is an ongoing research, there are several aspects
that still have to be investigated. The natural next step
would be to apply the methodology to test bed cases. This
would offer important results that would help for testing
the performance of the methodology. These results should
be compared to the results obtained using other techniques.
This will offer an empirical validation and justification for
the application of this technique. Some possible alterna-
tives to compare the methodology with could be some of
the methods presented in the literature review. The opinion
of experts in the field of the particular test bed utilized to
test the methodology could offer important information for
the analysis of its performance. The utilization of meta-
models such as response surface methodology would offer
important insights to analyze the problem�s surface and
evaluate the results obtained using the proposed approach.

Another important aspect to consider is related to the
genetic algorithm parameters selected for implementation
in the methodology. The selection of the population size,
crossover rate, mutation rate, and other aspects as type of
crossover an mutation could be analyzed in order to find
the best GA parameter configuration for this particular
methodology.

Finally, interesting analysis could be done in the field
of statistical multiple comparison techniques. There is an
important number of methods that could be used in the
selection step of this methodology.

5 CONCLUSIONS

This paper has presented a new approach to solve multi-
response simulation optimization problems. This approach
integrates a simulation model with a stochastic genetic
algorithm heuristic and a goal programming model.

A literature review was presented including the most
relevant research performed in the field of multi-response
simulation optimization.

Finally, a future research section summarizes some of
the aspects that have to be considered to continue with this
research. These include the application of the methodology
to some test bed cases, the selection of the most appro-
priate GA conditions, and further study in the multiple
comparison techniques area.
3
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