Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

THE DESIGN OF A SOLID-STATE PHYSICAL MODEL OF AN AUTOMATED SYSTEM
TO BE USED AS A TEST BED FOR CONTROL APPLICATIONS

Fernando G. Gonzalez
Alicia Helton
Douglas Helton
Jeffrey Smith
Eileen Thompson
Gerry Walterscheild

Department of Electrical Engineering and Computer Science
University of Central Florida
Orlando, FL. 32816, U.S.A.

ABSTRACT

In order to develop, test, and validate control software for
managing automated systems, laboratories have traditionally
constructed experimental test beds using actual physical
equipment (small scale). These experimental systems
typically occupy a large amount of lab space, cost thousands
of dollars to construct, and require considerable human
expertise to operate. Using dedicated micro-controllers
(programmable logic controllers), we have proposed the use
of a solid-state physical model of an automated system
which faithfully replicates the operating characteristics of an
ensemble of physical equipment that would typically
comprise an automated system. In this paper we present the
design of a solid-state physical model of a Flexible
Manufacturing System (FMS). Solid-state models have
several unique advantages over the traditional models. First,
they are inexpensive and can easily be replicated at other
laboratories. Second, they can be easily reconfigured to
consider alternative scenarios. Third, they can consider an
emulated environment that is far more complex than those
that are typically addressed by models using actual
equipment. Finally, they are totally reliable and safe, and
require minimal expertise to operate. This paper discusses
the design and operational characteristics of the solid-state
model along with its anticipated uses and current limitations.

1 INTRODUCTION

To test software that can control an FMS or other
automated systems, laboratories typically use a small-scale,
relatively inexpensive analog of an automated system like
an FMS. See Davis et al. (1994). In developing a model of
an FMS, the material handling system can be modeled with
an electric train (replicating an automated guided vehicle),

900

a robotic arm, or perhaps a small conveyor belt. The actual
processing, for example the cutting of a part, may not be
performed in the model. These physical models are usually
much smaller than a real manufacturing plant. Often, they
are constructed on a table or within a small room.
Furthermore, the model is much cheaper than a real plant.
Using a physical model, control software developers can
test their software on these small-scale automated systems
so that the software is not run on a real system without
proper testing see Gonzalez and Davis (1997a) and
Gonzalez and Davis (1997b). This approach provides an
advantage over simply testing the software on a computer,
since it requires the developed software to actually interact
with physical equipment, as will be the case when the
control software is implemented upon a real system.
Developing and testing control software using physical
models, however, presents several problems. The first is the
cost of the model. Even though these models are relatively
cheap when compared to a real manufacturing plant, they are
still expensive, particularly when compared to the alternative
of simulating the system with software. Another problem is
the size of the physical model. Again while the model is
much smaller than a real manufacturing plant, it still requires
a large laboratory. This can pose a problem if laboratory
space is scarce. The last major problem with physical
models—and perhaps the biggest problem—is their poor
reliability. Since these models are much cheaper than a real
system, the quality—and therefore the reliability—of the
components is relatively low. Some models use reliable off-
the-shelf robotic arms. But in a real manufacturing plant,
robotic arms are seldom used as the primary material
handling systems except for moving material in a local area,
such as within a cell. Instead, conveyor belts or automatic
guided vehicles (AGVs) are used to move material between
machines or different parts of the manufacturing plant.

Gonzalez, A. Helton, D. Helton, Smith, Thompson, and Walterscheild

We have previously built a physical model of an FMS.
In this model, to emulate an AGV, we chose to employ an
HO-scale electric train. Figure 1 shows a picture of our
first model and Figure 2 shows its diagram. Note in Figure
1 the AGV is implemented with an electric train. The
structure in the front part of the model represents a
fixturing station. The four similar structures shown in the
rear part of the model represent four machine stations. In
Figure 2 the train track connects each machine to each
other. This model has 4 machine stations and 1 fixturing
station. When one attempts to miniaturize a system, more
precision is often needed. Since our electric train was never
designed to provide the required precision, it became
difficult to run the model for several hours without a
failure. In order to conduct extended experiments that
would require the model to run for weeks, or perhaps
months, at a time without stopping, one must constantly
monitor and service the system.

Figure 1: A Picture of our First Physical Model

5fi. by 10 ft. Table

Fixturing
Stations

Machine 1 1 and

]

HO Guage Train Track

Machine 4

Dedicated LAN

To Network Server ., 1y Point
Cell MHS (PLC) from Shop Level
Controller E Controller

Figure 2: The diagram of our first model

Exit Point
to Shop Level

This presents the control system designer with a
dilemma. On one hand, one can use a computer simulation
of the system to test the control software under
development. See Davis et.al. (1993) and Kelton et.al.
(1998). This option is cheap and very reliable, but the
results are not as credible as the results derived from using

901

the software to control an actual physical system. On the
other hand, if one employs a physical model of a real
system, it may provide credible results, but the reliability
problems may prevent one from conducting experiments of
a duration that is long enough to produce usable data.

In this paper, we propose a solution to this dilemma.
A physical model of a flexible manufacturing system has
been designed that is completely composed of solid-state
electronics with no moving parts. This approach represents
a compromise between a physical model, which has many
unreliable moving parts, and a software simulator, which
allows a minimal reality check. In the first part of this
paper, we will justify the use of solid-state electronics
instead of real physical parts in the model. We will
accomplish this by showing why the results of running the
control software using simulation are not as credible as the
results from running the software on a real system and by
carefully studying what parts of a physical model are
necessary to the development and testing of control
software. In the second part, we will present our solid-state
physical model that provides all of the facilities of a
conventional physical model and yet is much cheaper,
reliable, flexible, smaller, and even portable.

2 BACKGROUND INFORMATION

The following section describes the concepts that allow us
to eliminate all of the moving parts in our model and yet
perform as a conventional physical model with moving
parts. This model is used in research relating to the
development of control algorithms such as that performed
by our research team. See Gonzalez and Davis (1999).

2.1 Why We Need Physical Models

Why not simulate the system in software instead?
Certainly, testing the software on a computer-simulated
system is often the first step. However, there are many
facets associated with the operation of a physical system
that simply are difficult to test in software only. Among
these are the issues arising from the fact that the control
architecture is usually distributed across a network of
computers and communication requirements among the
distributed computing processes are a major concern. It is
often difficult to adequately model the communications
requirements using software alone. Furthermore, it is often
difficult to foresee all potential deadlock situations that can
arise and include these within the software simulation of
the system. At the same time one might ask why not
develop the system using the actual manufacturing plant?
At some point, one will need to migrate the control
software to the real system. However testing and
debugging the control software on the actual system can be
time consuming and complex. While this testing occurs,
often production must be either interrupted or postponed.

Gonzalez, A. Helton, D. Helton, Smith, Thompson, and Walterscheild

Employing a physical model to test control software pro-
vides an intermediate step allowing the software to be tested
on a physical system as it is being developed. The model
replicates many of the factors that are difficult to model in
software only, including the communication requirements
associated with the distribution of the control processes and
some timing issues. Using the model, the researcher has a
realistic understanding of how the system will operate which
simply cannot be achieved with software simulations.

In order to demonstrate the need for a physical model,
consider controlling an automated guided vehicle (AGV)
that is being emulated with an electric train. To move an
AGV (train) from one location to another in the physical
model, one has to issue a command to the programmable
logic controller (PLC) to apply a voltage on the specified
segments of the train track. An electric train occupying the
powered track segment will then start to move. If the step to
apply the voltage is skipped, the train will not move. On the
other hand, in a simulation model, the train is moved by
redrawing its location as a function of time. Thus, a data
structure is being modified to reflect the train’s trajectory.
The simulated control program may send commands to
apply power to the tracks but the simulator basically ignores
these commands since there are no actual train tracks to
power. It is possible that the control program could
accidentally turn on the wrong track segment, or perhaps
simply not turn on any track segment at all, and yet the train
would be moved correctly in the simulation because the
controller’s command to the simulator to move the train was
correct. Even if the simulator checks for the correctness of
the commands that are supposed to go to the physical
system, it may still be possible for the simulator to have an
error and not check properly. In this case, one is simply
replicating the function of the controller in the simulator. If
this is done, it becomes difficult to determine if a given
control function is being executed correctly by the controller
or being compensated for incorrectly by the simulation.

Another concern that arises in using a simulator alone
is that physical processes must be sensed. In the real
physical system there will be sensors located at various
location in the plant to measure numerous state variables.
For example, the location of an AGV is sensed as the AGV
passes across a sensor. In Figure 3 note the three magnets
on the train that are used to trigger the three Hall-effect
switches on the post. There is only a finite time interval
during which the AGV will be in front of a sensor. If the
computer is not monitoring the sensor when the AGV is at
the sensor post, its passing the sensor can go undetected.
Again these are real-world timing concerns are difficult to
assess using software testing alone.

2.2 What Part of the Physical Model is Necessary

The feature provided by the physical model, which
prevents the control software from accidentally “cheating”,

902

Figure 3: A Picture of an AGV Approaching a Sensor Post

is its real-world physics. For example, in order to move
the train in the physical model, the control program must
apply a voltage to the tracks. The train cannot move
without this voltage. Furthermore, the model will detect the
position of the train when the train moves across a sensor.
Until the train is sensed, the controller does not know the
state of the train. Once the train is sensed it may be
necessary to stop the train to prevent it from passing its
destination. The only way to stop the train is to cut the
power to the track segment. This must be done quickly.
The train will not stop and wait for the control program to
execute the section of code that cuts the power to the track.
A delay in cutting the power will cause the train to pass its
destination. Timing is crucial.

Certainly, the physical model which employs the elec-
tric train to emulate the physics of the AGV can provide
more realism than the simulation model. However, the
train was demonstrated to be unreliable. Based upon our
prior experience in constructing our first model, we have
developed a compromise solution, which provides realism
with reliability. In the case of emulating an AGV, the
small-scale electric train has been abandoned. In its place,
we have employed a specially programmed microcomputer
chip to emulate the physics of the AGV. Like the train, the
AGYV accepts input voltages from the controller. Since our
model has an independent circuit consisting of PLCs and
other electronics, we will refer to the circuit used to model
the physics as the physics PLC and the circuit controlling
the model as simply the controller PLC or just controller.
The key issue here is that there is absolutely no
communication between the controller and the physics
PLC. To control the model the controller must apply the
correct voltage signals to the physics PLC. It can not
simply “tell” the physics PLC to move the AGV, for
example, as is the case with software simulation.

Once the controller applies voltage to the appropriate
locations in the model, the physics PLC then senses these
voltages and models the movement of the AGV according

Gonzalez, A. Helton, D. Helton, Smith, Thompson, and Walterscheild

to the location of the voltage signals. During the period of
time that the AGV is in front of a sensor, the physics PLC
outputs a signal in the same way the physical model
consisting of a real electric train would do. The control
must correctly detect this output signal and interrupt the
voltage to the physics PLC in order to stop the train. If the
controller does not detect the outputted sensor voltages,
then the voltage is not interrupted and the physics PLC
continues to move the train. In this way, the dedicated
physics PLC faithfully replicates the physical dynamics of
the train movement along the track. It is up to the
controller to manage its movement using the same mode of
operation that it would employ to manage a real system.
That is by the application of voltage at specified locations
and time and by the sensing of electrical pulses generated
from the sensors. In the next generation model, all of the
mechanical processes are replaced by dedicated PLCs that
faithfully replicate the behavior of a physical component.
In this manner, we can achieve realism and reliability. Note
the key issue here is that there is no communication
between the control software being tested and the PLC
modeling the physics. This assures that the control
software must correctly stimulate the model in order to
have it respond correctly. Unlike software simulation, no
accidental “cheating” by simply telling the physic PLC its
desired outcome is possible. The following section presents
the design of our emulator.

3 THE SOLID-STATE MODEL
3.1 Modeling Physical Movement

In our emulator all of the moving parts are implemented
using solid-state electronics. Note that since no actual
processing of material such as cutting, welding, bending,
and so on is performed, our emulator like most others only
models the movement of entities within the emulated
system. In our previous emulator we modeled the AGV
with an HO-scale electric train. The machine station was
modeled with a plastic disk holding 6 electromagnets. The
disk had an AC motor that turned the disk as 1 rpm and the
electromagnets could be turned on or off in order to pick
up and drop the entity which was modeled using a steel
washer. Notice that all of the movement was modeled with
real movement of a real physical entity. In our solid state
emulator movement is modeled with a wall of LEDs
turning on and off in sequence.

In the material handling system the movement of the
AGV is represented by a single LED turning on and off in
sequence along the path which the AGV follows. The
single lit LED represents the actual vehicle. The material
handling system in side of the machine center is modeled
with a set of LEDs forming a circle. The LED at position
one is the only LED that is lit. To model the disk turning
the lit LED travels along the circle of LEDs indicating that

903

as the disk turns position one moves. Figure 4 shows the
diagram of a machine center in our model. The AGV’s and
the disk’s movement is represented by the single LED
turning on and off in sequence. The sensors are represented
by a seven-segment display. It displays the AGV number
when the AGV passes in front of the display. The lines are
only drawn on the boards and to not represent any
electronic devise. The black dots are the single LEDs that
model movement and the seven-segment displays are used
to give information to a human observer. All of the other
physical devices in the model are modeled using LEDs in
much the same fashion as the AGV and the disks. There
are also some seven-segment displays used to indicate the
entity number as it moves within the model. This is
important because we must enforce the consistency of the
entity’s location. That is if entity 1 is going from location
A to B and entity 2 is going from C to D then after the
movement finishes location B will have entity 1 and
location D will have entity 2. If the entity number is not
maintained by the emulator then the controller may move
entity 1 to location B then simply say B has entity 2. Since
this is physically impossible the physics PLC must keep
track of what entities are where. This information like all
other information maintained by the physics PLC is
displayed.

- <" B =
..E.,’
HEHE:
.. (B ...’
HBEE
OHH %

Figure 4: Diagram of a Machine Station in our New Model

It is important to note, however, that the controllers
are still interacting with each electronically emulated
device in a manner that is identical to the controller
interacting with the actual device, i.e. with the application
and sensing of voltage. The way we emulate the system
has been changed; not the way we control it.

3.2 The Building Blocks
In order to increase the flexibility of the model, the model

is decomposed into building blocks that can be put together
to form a variety of realistic functional models. The

Gonzalez, A. Helton, D. Helton, Smith, Thompson, and Walterscheild

number of blocks and the types of blocks used in a model
are variable. The blocks also referred to as boards are
designed so that one can quickly build a model that closely
resembles the actual system being investigated. Note that
while the physical appearance may not be similar to the
real system it is similar in the number and types of
components. The basic modeling building blocks are
shown in Figure 5. In this figure block (A) is used to
represent the fixturing center and the queue for incoming
and outgoing jobs. Block (B) represents a pair of machine
centers, block (C) is used to allow the model to grow
vertically as well as horizontally, block (D) allows the
AGV to make a U-turn without having to go all the way to
the end of the model, and blocks (D and E) are used to
close the two ends of the model.

The model is built by putting boards together side by
side. Since the AGV must have access to every machine
station breaking the model into building blocks is not
trivial. The building blocks must be designed in such a way
such that regardless of how they are put together the MHS
will have tracks reaching every station. The tracks forming
the MHS must not become its own building block or this
will decompose the model in too many small pieces. In
order to provide tracks for the AGV that access all of the
components regardless of how the block are put together
we placed tracks along the top and bottom of each block.
The model is then built horizontally. See Figure 6 for an
example configuration. Note the configuration in Figure 6
is the same we used in our previous emulator shown in
Figure 2. When the boards are placed side by side the track
align and forms a long continuous segment of tracks. At

the right and left end of the collection of boards a U-turn
board (E) and (F) must be placed to connect the top and the
bottom segments of track. This then produces a closed
circuit of tracks segments. If the model consists of many
boards one may want to insert an I-board (D) some where
in the middle. This will allow the AGV to transfer between
the top and the bottom track segment without having to
travel to the left or the right end of the system. Board (C)
has the capability to move an AGV to a similar board
below or above it. This allows the complete model to
expand vertically as well as horizontally. The software in
the controller is designed so that the AGV goes in a
clockwise direction. This allows for a much easier control
scheme. The I-board (D) however is still bi-directional.

The controller can self adjust to any combination of
arraignment of the blocks at time of power up. The MHS
controller receives input from each board and among other
information that is used during operation it also has a
number identifying the board type. The relative location of
the identification byte tells the controller where this board
is located relative to the other boards. The software in the
controller adjusts itself to the current configuration it
detects at power up. Since the only part of the emulator
that spans across several boards is the MHS, the locations
of interest in the MHS must have a unique name regardless
of the configuration adapted. In the naming convention we
have adapted the first number in the location corresponds
to the board. The boards are numbered from left to right
from 1 to N. The next number represents the location
within the board. The controller expects these names when
referencing a location.

Figure 5: The Set of Basic Building Blocks

904

Gonzalez, A. Helton, D. Helton, Smith, Thompson, and Walterscheild

Figure 6: A Sample Configuration using One Fixturing Station and Four Machine Centers

In additional to the increased flexibility decomposing
the model in to building blocks allows the model to be
broken into pieces that are small enough to fit into an aver-
age suitcase. This allows easy transportation of the model.
So for example if one is developing control software one
may bring the model to a conference to demonstrate the
software. The next section describes the boards in more
detail.

3.2.1 The Machine Center Block

The machine-center board (B) models the machines that
perform the required operations on the entities. Each
machine consists of a disk with 6 holding position, two
loader modeled as a small track consisting of 3 LEDs is
used to move the entity between the AGV and the disk and
between the disk and the actual machine. A large LED
models the machine in progress. The block consists of two
machines, one upside down on top and the other on the
bottom. The seven-segment displays in the top machine are
not upside down. This makes the top machine slightly
different and is why they are paired. Note the machine
center block like all other blocks includes a section of the
main MHS. This was done so that the MHS does not have
its own blocks.

There is only one PLC used to model the physics in
this board. This PLC models the two machine stations as
well as the portion of the main MHS tracks that are on the
board. The controller for this board uses one PLC. This
PLC is placed in this board as well although it is an
entirely separate circuit only sharing power and the points
of contact between the controller and the physics PLC
where voltages are applies and sensed. The PLC that
belongs to the controller however only controls the two.
machine stations. The portion of the main MHS tracks that
are on the board is controller by a dedicated PLC that only
controllers the main MHS and is located in the fixturing
center board.

905

3.2.2 The Fixturing Block

The fixturing-center board (A) models the storage of parts
or jobs waiting to leave the floor or go to a machine or
waiting to leave the system. It also models the fixturing
operation that is necessary before a part can be sent to a
machine for work. This board consists of a large disk with
16 holding positions, two fixturing stations, and four
loaders. The board has two ports connecting the main MHS
to the disk.

3.2.3 The Track Blocks

Blocks (E and F) are used to allow the MHS tracks to form
a closed circuit, block (D) is used to form smaller loops
within the track circuit and block (C) is used to allow
vertical growth of the model. These boards do not have a
PLC to model their physics. Instead their physical
properties are modeled by a neighboring machine center
(B) or fixturing center block (A). These track blocks do not
have a controller PLC either. The controller for these
blocks resides in the fixturing center block and controls all
of the tracks within the entire model.

3.3 The Construction of the Building Blocks

Each block has a PLC dedicated to modeling the physical
reaction the model has with the input voltage levels. We
chose to use the PIC16F877 micro-controller since it
contains an EEPROM and has many built in serial
communication functions. To save on the number of I/O pins
we need to handle the large amount of I/O, consider all of
the LEDs that need to be handled, we wuse serial
communication between the PLC and the I/O ports. Voltage
sensing and application is modeled by reading or placing
logic 0 or 1 on the pins of the ports. The input ports are
implemented using an 8 bit parallel to serial buffer. All of
the ports are tied together in series. Once per cycle the PLC

Gonzalez, A. Helton, D. Helton, Smith, Thompson, and Walterscheild

latches the data on all of the ports and inputs the string of
serial data. This string of bits contains all of the input on the
board. The outputs are handled in a similar fashion using a
serial to parallel buffer. The data is sent to it serially and the
buffer outputs the data in parallel. The LEDs are controlled
using an 8-channel 7-segment display driver, MAX7219 by
Maxim. This chip can handle 8 (7-segment) displays or 64
individual LEDs. The display drivers are also chained in
series so only 3 pins in the PLC are used to control all of the
LEDs on the board. While this method is slow in general, for
our application it is sufficiently fast.

On the machine and fixturing boards, the physics PLC
is responsible for modeling all of the machines and the
portion of AGV tracks that are on the board. If a small
board, one with only AGV tracks, is placed next to a larger
board, one with a machine center or a fixturing center, then
the larger board gains the responsibility of modeling the
physics of the smaller board. This way the small boards
that only model AGV movement does not need to have a
PLC. Furthermore when an AGV moves from one board to
another, the two boards communicate with each other to
transfer control. Note, no communication between the PLC
modeling the physics and the controller may exist however
communication among the various PLCs modeling the
physics may exist without any loss of functionality.

In order to minimize the number of PCs that must be
connected to the emulator to communicate with it, the
controller has a host PLC that communicates with one PC
and sends the message to the corresponding PLC in the
emulator. This allows only one PC to handle all of the
communication with the emulator. The communication
uses the RS-232 standard making it compatible with
practically all types of PCs.

Each of the machine and the fixturing blocks measures
2 feet vertically and 1 feet horizontally. The smaller boards
that are used for the main MHS only measure 6 inches hori-
zontally. They are housed in wooden boxes each with a clear
plastic face. The tint on the plastic will hide the electronics
yet shows the LEDs when they are lit. See Figure 7.

Figure 7: A Photograph of the Emulator Composed of Five
Boards

906

In order for the solid-state model to interact with the
controller in the same way a model with mechanically
moving parts will, the model react to voltages applied and
sensed at specific locations within the model. These
locations are the electrical contact points where, in a real
system, voltage will be applied to cause a device to react.
For example in our first model, the electric train got its
power from the tracks. To move the train, one applies a 12
volts source to the tracks. In our solid-state model, the
application of a 5 volts source to a predefined contact point
representing the tracks causes the physics PLC to model
the movement of the AGV. The physics PLC models the
activation of sensors by applying a voltage at a predefined
location representing the sensor. The controller senses their
locations to determine the status of the sensor. The
emulator has modeled the presence of sensors at various
locations so that the controller can determine the location
of the emulated moving devices. The emulator is built so
that the devices in the emulator periodically pass in front of
a sensor. The physics PLC applies a voltage to the location
designated as the sensor for the duration that the device is
in front of the sensor. Once the device moves past the
sensor the physics PLC drops this value to ground.

Since in most real-world systems, a facility is included
to permit a human operator to interact directly with the
device (this is essential when the real system gets into a
deadlock state), we will provide a means for the human
operator to interact directly with each process. This is
accomplished through a liquid crystal display (LCD) and a
small 16-key keypad. The user can physically type a
message on the keypad and communicate directly with the
process. We could also have a communication link
through the control architecture so that the user can com-
municate with each emulated device remotely. However,
by employing a keypad instead of a communication link,
we are assured that this agent is totally isolated from any
communication with any other devices in the model. The
included keypad can be used to tell the device of any
physical state change desired by a human operator. For
example, a user may wish to add another AGV to the
material handling system (MHS) or may wish to relocate
an AGV to a different location. This is equivalent to a user
of a conventional physical model walking up to the model,
lifting a train and moving it to a different spot. Since one
has to walk up to the model in a conventional model,
having to walk up to the model to use the keypad poses no
additional restrictions or inconvenience.

4 BENEFITS OF USING SOLID-
STATE EMULATORS

Since our model is implemented by electronics and has no
moving parts that can fall off, it is possible to hang the
model on a wall in order to reduce the laboratory space
needed to house it. Furthermore, the model can be

Gonzalez, A. Helton, D. Helton, Smith, Thompson, and Walterscheild

disassembled into smaller parts in order to permit it to be
transported to different locations. Since the larger boards
measure 1 by 2 feet while the smaller ones measure 6
inches by 2 feet, this allows the boards to be placed in a
suitcase for traveling. Standardized electrical connectors
are employed to connect one component of the model to
another. Once its time to set up the emulator one simply
lies the boards side by side in the desired configuration and
connects the cables in the back of each block. When the
power is turned on the software automatically adjusts itself
to the current configuration and begins to execute.
Instructions can then be sent to the emulator from the PC.

Not only does this approach make the model more
reliable, it also makes it more realistic, i.e. more like the
emulated entity’s functionality. This approach allows us to
economically emulate physical devices for which it would
be difficult to build physical analogs. Since the model is
now basically an electronic board with numerous displays
and PLCs, we have the flexibility to implement fairly
complex machines. For example, the design for our new
model may include dedicated material-handling systems
just for the handing of the tools. We were never able to
implement this system on our previous physical model
because of the high cost and space requirements. The new
model may also include an Automated Storage and Re-
trieval System for storing fixtures and parts that are either
waiting to enter the FMS or have finished processing.
Thus, we can model a real manufacturing plant in a more
comprehensive manner.

The model we have implemented has a cost under
$2,000 in material. Since all of the physical devices are
implemented using PLCs and display electronics, we avoid
having to buy any expensive physical devices such as
robotic arms. We can build several of these models for the
cost of building only one conventional model. In fact, our
goal is to construct several models at different locations
and coordinate their operation over the World Wide Web.
See Gonzalez and Davis (1997a), Gonzalez and Davis
(1997b) and Tirpak et. al. (1992).

4 CONCLUSIONS

In this paper we showed how a physical model is
implemented without the use of any moving parts. We
showed that what distinguishes a physical model from a
simulation is the fact that the controller does not tell the
model to change its state but rather the state is changed by
the application of control inputs to a physical device which
then changes its state. The physical devices change their
state using a dedicated PLCs that faithfully replicates each
device’s physics. Based upon the changes in the state, the
same PLC will output signals to its controller PLC. This
process faithfully replicates the process associated with
sensors in the real system.

907

We showed that by using dedicated PLCs to emulate
the devices, we eliminate most of the expensive, large, and
unreliable hardware that is used to model the different
physical components of a real automated system. In order
for this PLC to properly model the physics of the model
and, therefore, allow the sold-state model to function as a
conventional model with moving parts, the physics PLC
must be isolated from the rest of the model. The only
exceptions are for its interfaces with its controller through
the application and sensing of voltages at various contact
points and an off-line communication port with the human
operator. It is absolutely crucial that the controller has no
way of altering the state of the model other than by
applying appropriate inputs into the physics PLC. We then
showed how by not having any moving parts our model
can be built much cheaper, smaller, more reliable, and even
portable.

We showed how to decompose the model into
modeling blocks that can accommodate any configuration.
The blocks are designed so that the main MHS has access
to all of the points of interest regardless of the
configuration. By using serial data transfer between the
PLC and the ports were able to use only 7 pins for all the
input and output including the control of all of the LEDs.

The developed model also has an educational function.
Currently it is difficult to teach students to develop control
architectures for systems as complex as an FMS. Many
universities have developed laboratories using real
equipment. However, these laboratories are expensive and
can be dangerous for the novice to experiment with. In
developing the electronic model, we have resolved all
safety concerns. Furthermore, in our electronic emulation,
we can include devices and subsystems that are seldom
included in most academic laboratories. For example,
most academic laboratories do not include tool handling or
automated storage and retrieval systems. Once the student
has mastered the control architecture for the model, he or
she can then attempt to program the real system.

REFERENCES

Davis, W. J., B. Bauman, J. Macro, and D. Setterdahl,
1994. Constructing a model for research and education
in the control of flexible automation. In Proceedings
of the ORSA Technical Section on Manufacturing
Management Conference, eds. J. Buzacott and C.A.
Yano, 151-157.

Davis, W. J., D. Setterdahl, J. Macro, V. Izokaitis, and B.
Bauman. 1993. Recent advances in the modeling,
scheduling and control of flexible automation. In
Proceedings of the 1993 Winter Simulation
Conference, 143—155.

Gonzalez, F. G., and W. J. Davis. 1997a. A simulation-
based controller for distributed discrete-event systems
with application to flexible manufacturing. In Pro-

Gonzalez, A. Helton, D. Helton, Smith, Thompson, and Walterscheild

ceedings of the 1997 Winter Simulation Conference,
845-853.

Gonzalez, F. G., W. J. Davis. 1997b. A simulation-based
controller for a flexible manufacturing cell. In
Proceedings of the 1997 International Conference on
Systems, Man and Cybernetics.

Gonzalez, F. G., W. J. Davis. 1999. An intelligent control
architecture distributed across the network, for the
control of large-scale discrete-event systems. In Pro-
ceedings of the joint conference of the Third World
Multiconference on System, Cybernetics and Infor-
matics (SCI 99) and the Fifth International Confer-
ence on Information Systems Analysis and Synthesis
(ISAS 99).

Kelton, W. D., D. A. Sadowski, and R. P. Sadowski. 1998.
Simulation with ARENA, New York, NY: McGraw-
Hill.

Tirpak, T. M., S. M. Daniel, J. D. LalLonde, and W. J.
Davis. 1992. A fractal architecture for modeling and
controlling flexible manufacturing systems. In /[EEE
Transactions on Systems, Man and Cybernetics, 22(5):
564-567.

AUTHOR BIOGRAPHIES

FERNANDO G. GONZALEZ is an Assistant Professor at
the University of Central Florida. He received his B.S.C.S,
and M.S.E.E. from Florida International University, and his
Ph.D. from the University of Illinois at Urbana-Champaign.
His interest includes real-time discrete-event control of
distributed systems. His email and web addresses are
<fgonzalel@pegasus.cc.ucf.edu> and
<http://pegasus.cc.ucf.edu/~fgonzale>.

ALICIA HELTON is an undergraduate student at the
University of Central Florida, Electrical and Computer
Engineering Department.

DOUGLAS HELTON is an undergraduate student at the
University of Central Florida, Electrical and Computer
Engineering Department.

JEFFREY SMITH is an undergraduate student at the
University of Central Florida, Electrical and Computer
Engineering Department.

EILEEN THOMPSON is an undergraduate student at the
University of Central Florida, Electrical and Computer
Engineering Department.

GERRY WALTERSCHEILD is an undergraduate

student at the University of Central Florida, Electrical and
Computer Engineering Department.

908

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

