
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

A VOICE ASSISTED SIMULATION-ANIMATION ARCHITECTURE

Raymond L. Smith, III

International Business Machines Corporation
3039 Cornwallis Road

Research Triangle Park, NC 27709, U.S.A.

Stephen D. Roberts

Department of Industrial Engineering
Campus Box 7906

North Carolina State University
Raleigh, NC 27695-7906, U.S.A.

ABSTRACT

This paper introduces a software architecture that has been
used to enable voice assistance for a simulation-animation
environment by integrating technologies that recognize
spoken language input and generate spoken language output.
Voice assisted technology has several features which make
user navigation within complex software applications easier
than traditional methods, such as key-typed commands or
mouse manipulation. While this environment might be more
friendly to an end user, several challenges exist to a
developer tasked with integrating these extremely diversity
technologies into a single software architecture that must
operate with computational efficiency. We present the
requirements and design for a proposed software
architecture, referred to as the Voice Assisted Simulation-
Animation Architecture (VASArch), that attempts to address
these problems. We also present the implementation of a
prototype for simulating a single-server system with
exponentially distributed customer interarrival and service
times, called VASArch(M/M/1), which was developed to
demonstrate the feasibility of the proposed software
architecture. The prototype offers a user the ability to
interact with the simulation model environment by providing
input through spoken commands, mouse manipulation, and
keyboard entry. In addition, the prototype provides output,
which includes statistical information, in spoken and visual
form for user examination.

1 INTRODUCTION

Research in the area of Human-Computer Interaction
(HCI) attempts to enhance the effectiveness and efficiency
with which work and other activities are performed at the
human-computer interface, while promoting desirable
human values (Dix 1998). As a result, one technology
offering promise for development of interactive
applications in the future is conversational speech systems,
which includes speech synthesis and speech recognition
technologies (Bernsen 1998). The quest to communicate
12
with machines using speech as the interface medium can be
explained by the inherent advantages associated with
spoken language. Human speech is perceived as being
both natural and ubiquitous across the human population,
and the development of communication with machines
through speech has frequently been viewed as a natural
progression in human-machine interaction (Roe 1994).

At present, applications of speech technology are used
in manufacturing and inspection processes, aids for the
sight- and mobility-impaired, aviation warning systems,
telephone transaction systems, medical records dictation,
and voice messaging system (Baber 1993). Rapid
expansion of speech systems into new applications can be
attributed to recent increases in recognition rates and
memory capacity, decreases in cost, and the realized
advantages these types of systems enjoy over more
conventional input and output systems. As speech
technologies and application design improve, conver-
sational speech systems will begin to revolutionize the
human-computer interface by allowing unrestricted, vir-
tually error-free, input and retrieval of data (Taylor 1990).

In this paper we address the software architecture for a
simulation-animation environment integrating technologies
that recognize spoken language input and generate spoken
language output. The merger of these diverse
technologies, which possess drastically different
computational demands and durations, introduces
considerable complexity that the software architecture
must address. Furthermore, since the application should
support interactive behavior under real-time conditions, a
number of activities must be performed which cannot be
interrupted in the midst of execution. As a result, the
architecture design must provide the ability to manage and
control the execution of multiple activities, or tasks, within
an application constrained by a single-processor computing
environment. Throughout the remainder of this paper, we
commonly refer to the definition of the proposed software
architecture as the Voice Assisted Simulation-Animation
Architecture (VASArch).
01

Smith, III and Roberts
2 A SOFTWARE ARCHITECTURE DESIGN

The VASArch software architecture design includes (1) the
system components, (2) the conceptual design, (3) a
multiprogramming approach, and (4) the logical design.

2.1 System Components

The VASArch software architecture depends upon five
major system components: (1) the Application Controller,
(2) the Graphical User Interface, (3) the Simulation-
Animation, (4) the Speech Recognition, and (5) the Speech
Synthesis.

The Application Controller (AC) component is
responsible for managing the activities of all other system
components. It coordinates vital computer resources while
promoting a unified and interactive presentation to the
application user.

The Graphical User Interface (GUI) component is
responsible for visually rendering a presentation window
for the application and managing the display of
information representative of the activities performed by
the system components. This responsibility also includes
management of tactile information received through
keyboard or mouse.
12

The Simulation-Animation component is responsible

for the execution of a simulation model representing a
complex system and the collection of statistical
information. It is also responsible for the display of a
graphical presentation illustrating the dynamics of the
transactions within the modeled system.

The Speech Recognition component is responsible for
the capture of spoken utterances and real-time recognition
processing to convert an utterance into decoded text. In
this particular application we require technology that
supports (1) speaker-independence, (2) continuous speech,
and (3) a medium size vocabulary. We recommend use of
the IBM Continuous Speech Series (ICSS) product to
fulfill this requirement.

The Speech Synthesis component is responsible for
producing natural sounding, continuous speech output. To
fulfill this requirement, speech will be produced by
dynamically concatenating prerecorded wave forms
selected from a repository into an ordered play list.

2.2 VASArch Conceptual Design

The conceptual design model, shown in Figure 1, describes
how the major system component functions should be
organized and assembled together. Figure 1 carefully
Figure 1: VASArch Conceptual Design

APPLICATION
CONTROLLER

Discourse
Context

SPEECH
RECOGNITION

Language
Understanding

GUI

SIMULATION

ANIMATION

SPEECH
SYNTHESIS

Language
Generation

Spoken
Utterance
(output)

Spoken
Utterance
(input)

Keyboard & Mouse

Graphs & Tables

Animated Simulation

Phrase/Sentence

Words/Phrase

Action
Code

Action
Code

Statistics

Wave forms
02

Smith, III and Roberts

illustrates how information will be exchanged between the
user and the major system components. In this particular
case, the conceptual design model focuses on the creation
of a multi-modal interface that will enable the free
exchange of information between user and machine. This
multi-modal interface will specifically offer the ability to
interact with the simulation model through input received
by keyboard, mouse, or spoken command. Users may
select the input communication medium that best serves
their need, or preference. Output from the application may
be presented to the user in the form of a visual display,
animation, or spoken language. The design will allow any
combination of these methods to be used.

2.3 A Multiprogramming Approach

Traditional interactive speech systems perform their
activities in a defined sequence of events. Users are
prompted for their input, they speak their request, the
system processes this request, some action is performed by
the system, and a spoken utterance is generated. Once a
response is given to the user almost no other activity is
performed, except to wait for the next spoken command.
In contrast, VASArch will execute an animated simulation
continuously during the period waiting for a spoken
request, while a spoken request is processed, and during
the response to a spoken request. Events that occur as a
result of a simulation event, or caused by a user event, may
also be responded to either visually or through spoken
output. This overlap in multi-modal input and output
requires the execution of tasks in parallel (Dix 1998).

Multiprogramming techniques, particularly
multitasking and multithreading capabilities, offer the
ability to exploit the parallelism that exists between
independent activities within the VASArch application
(Stock 1995). This parallelism, in essence, reflects the
division of work that must be performed. Multitasking and
multithreading combined offer substantial benefit in
situations where relatively independent activities occur
which possess distinctly different computational intensities
and durations. Typically, activities that have large
differences in timing are more likely to be isolated in their
operation from other threads of execution (Dorfman 1994,
Kogan 1994). Based on these characteristics, the activities
identified with the major system component functions are
organized into six threads of execution within a single
process. The corresponding threads include (1) the
application controller, (2) the graphical user interface, (3)
the simulation, (4) the animation, (5) the speech
recognition, and (6) the speech synthesis.

The coordination of activities and allocation of
computing resources between the threads is necessary to
execute the application. Under this multiprogramming
120
design, synchronization and communication protocols at
the operating system level provide the ability to effectively
manage the multiple threads of execution.

2.4 VASArch Logical Design

The logical design, shown in Figure 2, describes the flow
of activities between the functional subcomponents located
within each system component. More importantly, these
flows of activities begin to reveal the relationships that
must be established and maintained between the major
system components.

The description of the logical design architecture has
been arranged into five sub-sections that correspond to the
major system components. The presentation order follows
the general progression of activities through the application.

2.4.1 Speech Recognition

The Speech Recognition system component performs
a series of activities to convert a speech utterance into
decoded text, as illustrated in Figure 2. First, the analog to
digital conversion activity uses a microphone connected to
the line input of the audio adapter to capture the speech
input signal (utterance) into a format which can later be
processed. The higher sampling rate improves recognition
accuracy; however, this results in increased computational
load and requires more memory for the internal speech data
buffers (IBM 1993). Second, once a speech utterance has
been captured into digital form it undergoes feature
extraction, which is performed in a two-stage sequence
known as data conditioning and rate conversion, and
vector-quantization. Data conditioning and rate conver-
sion are pre-process activities responsible for converting
speech data from an external data format to an internal data
format. Vector-quantization then compresses the internal
data format from either 180 kilobits or 360 kilobits per
second to only 3.2 kilobits per second producing 100
feature vectors for each second of digitized speech. Third,
following vector-quantization the recognition engine
performs the actual recognition of the speech signal
through a beam search using the feature vectors, context
word pair grammars and acoustic phoneme models.
Finally, the ICSS Application Programming Interface
(API) allows the client application to communicate with
the speech recognition engine to control context loading,
context switching, runtime parameters, data acquisition and
return of decoded text. The Speech Recognition system
component has responsibility for communicating with the
recognition server through the ICSS APIs. It also has
responsibility for communicating results to the system
components through the Application Controller.
3

Smith, III and Roberts

Figure 2: VASArch Logical Design

Speech Input Signal
(Utterance)

Speech Output Signal
(Utterance)

Speech Recognition

Analog to Digital
Conversion

(Audio Adapter #2)

Data Conditioning
&

Rate Conversion

Vector
Quantization

Beam Search
(1) Grammar Contexts
(2) Phoneme Models

Recognition Server API

ICSS API

Search

Festure Extraction

(Line-In) (Line-Out)

Speech Synthesis

Digital to Analog
Conversion

(Audio Adapter #1)

Playlist Execution
(MMPM Control)

Ordered Playlist
Construction

Variable Statistics
Resolution

Speech Output
Template

Action Code
Identification

Speech Server
Interface

Graphical User Interface (GUI)

Application Controls

Application
View

Keyboard
(Tactile)

Mouse
(Tactile)

Application Controller (AC)

Receive Event Controller (REC)

Decomposition Methods
(1) Rules-based Logic
(2) Conditional Evaluation

Decomposition Methods

Formulate Response

Dispatch Event Controller (DEC)

Simulation-Animation

SimulationAnimation

StatisticsAnimation
View

System Model
Definition

Event
Data

Control
& DataControl

Context
Control

Context
Control

Data
Control

Data
Control

Device
Control

Decoded
Text

Control
& Data

Action
Code

Control & Data

Control
& Data

2.4.2 Graphical User Interface

The Graphical User Interface system component manages
input received from tactile sources and generates display of
the application view. In order to accomplish these
activities we have utilized the facilities provided under
OS/2�s Presentation Manager environment (Burge 1993,
IBM 1992, Petzold 1994). As Figure 2 illustrates, the
graphical user interface first defines and sets up the
controls for handling of keyboard and mouse input to be
associated with the application view. Second, a graphical
presentation is created for the application view and
displayed to the user�s screen. Third, the graphical user
interface initiates handling methods for user events
generated by input controls associated with the application
view and those dispatched by the Application Controller to
reflect changes introduced from other system components.
This includes provision for the update and redraw of the
graphical presentation for the application view. Lastly, the
graphical user interface system component may selectively
transmit information to the Application Controller
regarding user events that impact other system
components. The Application Controller then engages the
respective system components needed to respond to the
event.
12
2.4.3 Application Controller

The Application Controller system component coordinates
overall program flow of control through a series of
activities which receives input requests from all system
components, decomposes the requests into meaningful
associations, processes these associations into actionable
requests and dispatches to the applicable system
components. First, requests in the form of a system event
are transmitted by a system component and received by the
Receive Event Controller (REC) located within the
Application Controller. The REC classifies the incoming
system event type to determine the appropriate
decomposition method. Event types related to the speech
recognition process are more complex and require
advanced methods to decompose the decoded text into
meaningful associations. The associations are determined
through traditional rule-based reasoning logic and
conditional evaluations. Event types not involved with the
speech recognition process require similar, but less sophis-
ticated decomposition methods in which the system events
are translated into an activity matrix for conditional evalu-
ation. Information resulting from both event types is then
brought together and evaluated using traditional rule-based
logic in order to generate the application controller�s
response, which consists of an action code assignment and
impacted system components identification. Finally, the
04

Smith, III and Roberts

Dispatch Event Controller (DEC) communicates the action
codes and synchronizes activity with the identified system
components.

2.4.4 Simulation-Animation

The Simulation-Animation system component performs a
series of activities that characterizes simulated transactions
within a modeled system in graphical animated
representation. As illustrated in Figure 2, the system
component consists of two separate subcomponents
represented as simulation and animation. Both the
simulation and animation subcomponents are dependent on
the system model definition that is created and stored
externally. Using this definition the simulation
subcomponent sets up the simulated system, initializes
predefined parameters, and notifies the animation
subcomponent to create the animation view. The
animation subcomponent uses the Graphical Programming
Interface (GPI) facilities to create an animation view
derived, but separate, from the GUI application view
(Knight 1995). The animation view displays the animated
representation of the system model. The simulation
subcomponent then initiates handling of incoming control
and data dispatched from the Application Controller.
When a simulation event occurs the simulation
subcomponent records statistical information and
communicates the updated event and state information to
the animation subcomponent. Since the animation view is
derived from the application view, presentation control
messages from the graphical user interface are received
through the Application Controller. The simulation
subcomponent handles all simulation events and has
principal responsibility for communications with the
Application Controller when an event impacts other system
components. In addition to these primary activities, the
Speech Synthesis system component may on occasion
require access to state and statistical information to resolve
an unknown variable in an outbound speech utterance.

2.4.5 Speech Synthesis

The Speech Synthesis system component performs a series
of activities to convert an action code assigned by the
Application Controller into a computer generated speech
utterance, as illustrated in Figure 2. First, the speech
server interface receives a request dispatched from the
Application Controller to generate a speech utterance.
Second, the speech server interface then interprets the
request by performing an indexed reference lookup for the
action code to locate the appropriate speech output
template. The speech output template identifies a
combination of fixed and variable messages that must be
assembled to generate a meaningful speech utterance. In a
majority of cases the speech output template may consist
12

only of fixed messages that can be produced simply
through the play back of a single waveform. However,
when variable messages are encountered the process
becomes more complex since the Speech Synthesis system
component must retrieve state or statistical information
from the simulation subcomponent. Once information for
the entire speech output template has been populated,
representative waveforms are retrieved and concatenated
within ordered playlist construction. Finally, an outbound
speech utterance is generated when the play list is sent to
the audio adapter connected through the line output to a
pair of acoustical speakers for digital to analog conversion.
The audio adapter for playback must be properly
configured with device-drivers setup under the MMPM
environment. The Speech Synthesis system component
notifies the Application Controller once a request has been
completed

3 THE VASARCH(M/M/1) PROTOTYPE

We developed a prototype to demonstrate the feasibility of
constructing an operational application based on the
proposed software architecture. In this prototype, we use
the M/M/1 queuing system as the system modeled for the
simulation and animation. Thus, we commonly refer to the
prototype as VASArch(M/M/1) throughout the remainder
of the paper. The prototype has served as an invaluable
resource for experimentation purposes to identify potential
design problems, determine possible improvements,
challenge performance issues and verify stability of the
proposed software architecture. Both the prototype and the
proposed software architecture have evolved through an
iterative series of modifications and enhancements based
on its performance and results.

3.1 Prototype Assumptions

A few simplifying assumptions were made to the software
architecture design since considerable investment in time
and resources would otherwise be required to develop a
comprehensive prototype. The modifications applied do
not reduce core application function, but do limit the
scalability and presentation quality. The most notable
modifications include (1) the consolidation of the graphical
user interface and animation functions; (2) the use of
bitmap images within the animation rather than more
sophisticated graphics capabilities; (3) the reports and
graphs that display statistical information are simulated
presentations that do not make use of actual statistical data
that is captured; (4) the configuration of the model
simulated cannot be readily changed to represent more
complex systems.
05

Smith, III and Roberts
3.2 Prototype Construction

The operating system requirements and technical
specifications are dependent primarily on a strong
foundation for program control in multiprogramming
environments. The requirements and technical
specifications can be summarized in five dependencies that
must be supported by the operating system. They include
the ability to (1) create and support multiple threads of
execution; (2) manage multiple task, as represented by
multiple threads originating from a single process, over one
or more processors; (3) preempt a task with possession of a
specific processor for immediate reallocation to a
prioritized task; (4) allow multiple threads access to the
same portion of code with stable performance and memory
space protection; and (5) manipulate large memory objects.

At the time of our research, the operating system that
best met these criteria, with proven results, was IBM�s
OS/2. IBM OS/2 Warp had well demonstrated its stability
and performance through wide acceptance in the business
place with use in real-time, mission-critical applications,
such as financial banking, logistics management and
production operations (Kogan 1994). Furthermore, the
development tools available were considered well
developed and robust. Therefore, we selected IBM OS/2 as
the operating system on which to develop the
VASArch(M/M/1) prototype.

The code released for the prototype was prepared
using the IBM VisualAge C++ for OS/2 Programming
Tool Kit v3.0. We enabled speech recognition capability
by integrating features of the IBM Continuous Speech
Series (ICSS) for OS/2 product into the VASArch
prototype. We enabled speech generation capability by
integrating customized features provided under the IBM
Multimedia Program Manager (MMPM). We enabled
animation capability through use of the IBM Presentation
Manager (PM) environment. The simulation model used to
drive the prototype was written in a object-oriented C++
design customized specifically for the M/M/1 queuing
system.

The hardware used to develop and operate the
VASArch prototype consisted of a standard multimedia
personal computer configured with an Intel P5-100
Pentium microprocessor and 32 megabytes of memory
installed. Multimedia features require the ability to receive
audio input through a microphone, and produce audio
output through a speaker concurrently using independent
channels. Since at the time of our research most audio
adapters were incapable of performing both duties
concurrently, the personal computer was equipped with a
second audio adapter; one to maintain the audio output
channel, and one to maintain the audio input channel.
Figure 3 illustrates the computer hardware configuration
for the audio adapters, microphone, and digital stereo
12

speaker. The audio adapter used to perform speech
synthesis was a Creative Labs SoundBlaster 16 ISA ASP
adapter (ordinal device 1). A pair of digital stereo speakers
was connected to this adapter through its speaker output
line connector. The audio adapter used to perform speech
recognition was an IBM Audio Capture Playback Adapter
ISA adapter (ordinal device 2). A unidirectional
microphone was connected to this adapter through its
microphone input line connector. In the future, we
anticipate the introduction of audio adapters that will
provide full duplex capability in a single audio adapter.

3.3 Modeled System

In the M/M/1 queuing system, customers arrive at a single-
server service station in accordance with a Poisson process
� that is, the times between successive arrivals are
independent exponential random variables. Upon arrival
each customer goes directly into service if the server is
available and, if not, the customer joins the queue. When
the server finishes serving a customer, the customer leaves
the system, and the next customer in queue, if there is any,
enters service. The successive service times are assumed
to be independent exponential random variables.

Use of the M/M/1 queuing system model provides
three adjustable parameters within the simulation. First,
the arrival rate may be varied to control the frequency at
which customers enter the system. Second, the service rate
may be varied to control the rate at which customers are
served by the resource once in the system. Last, the state
of the server resource may be changed between an
operational, or inoperative state.

Figure 4 provides a screen capture from the simulation-
animation browser. The animation illustrates the M/M/1
queuing system model with the depiction of customers
waiting in queue, a customer in service and an active server
resource. While in an operational state, the server resource
may be located in one of two positions in the animation, idle

Digital Stereo
Speakers

Unidirectional
Microphone

CPCPU

Audio Adapter[1]
(Playback

Audio Adapter[2]
(Capture)

Line In

Line Out

Figure 3: Computer Hardware Configuration
06

Smith, III and Roberts

Figure 4: VASArch(M/M/1) Application Console
or busy. If there are no customers waiting to be served or in
service, the server retreats to the idle position located to the
right. The server will move into the busy position, located to
the left, to perform service when a new customer arrives.
While in an inoperative state, the server resides in the idle
position located to the right.

3.4 User Interface Features and Functions

The user interface features and functions associated with the
VASArch(M/M/1) prototype encompass the graphical user
interface, animation presentation, speech recognition, and
speech output. Throughout this section we describe the user
interface features and functions from the perspective of the
graphical user interface and animation presentation
illustrated in Figure 4. The graphical user interface allows
the user to manipulate window controls, such as push
buttons, circular dials and horizontal sliders, through mouse
and keyboard interaction. Speech recognition allows the
user not only to manipulate these same window controls
associated with the graphical user interface, but also to
extend the unseen capability using spoken commands.

Explanation of the user interface features and
functions is provided with respect to identifiable groups
within the graphical user interface. A group in the
120

graphical user interface is defined by a light gray
borderline that surrounds control and presentation
elements, and has a text label.

3.4.1 Active Context Group

The active context group, located near the top of the
window frame, contains four indicators that visually
identify the active context used for speech recognition that
corresponds to the simulation, statistics, settings, or
standby speech mode. Individual contexts are used by
VASArch(M/M/1) in order to improve speech recognition
efficiency and accuracy. Transition between speech
recognition operating speech modes associated with a
context occurs through use of keywords embedded in the
structure of the spoken command. The operating speech
mode can only be changed only through spoken
commands, and not by mouse or keyboard manipulation.

The exit program push button contained within the
active context group, located at the upper right corner of
the window frame, terminates execution of the program
when selected by mouse or keyboard. As an alternative,
users may also terminate execution of the program by
uttering any one of the spoken commands �exit program,�
�end program,� or �quit application.�

7

Smith, III and Roberts
3.4.2 Animation Browser Group

The animation browser group, located in the upper half of
the window frame, displays the graphical animation
representing the simulation of the single-server queuing
system model. Individual customers and their movement
through the system are distinguished by the assignment of
different colors within the animation. The activity of the
server resource is distinguished through animated
movement and change of position. In addition, the
animation browser group contains an animated simulation
clock that rotates clockwise during execution. The
animation browser group does not contain any controls that
can be manipulated either by mouse, keyboard or spoken
utterance.

3.4.3 Recognized Speech Group

The recognized speech group, located below the animation
browser near the middle of the window frame, displays
utterances recognized as a spoken command in the text
field. If an utterance cannot be identified in the active
context the application notifies the user of a problem
through a message handled by speech synthesis and
displays an error message in the text field.

3.4.4 Speech I/O Controls Group

The speech I/O controls group, located at the lower left
corner of the window frame, consists of three components
that include the speech recognition status indicator, the
activate microphone push button control, and the volume
level horizontal slider control. The speech recognition
status indicator distinguishes whether the application is (1)
�listening...� for the next spoken command; (2) �waiting...�
to process an acquired spoken utterance; or (3) �standing
by...� monitoring all spoken utterances for the attention
getting word, also known as hibernation. Selection of the
�activate microphone� push button control by mouse or
keyboard interrupts the hibernation state and resumes the
listening state with the active context in the simulation
mode. The volume level horizontal slider control may be
manipulated by mouse, keyboard, or spoken command to
adjust the speech synthesis output.

3.4.5 Simulation Controls Group

The simulation controls group, located at the lower center
of the window frame, contains three circular dial controls
representing the adjustment mechanisms for the arrival rate
at which customers enter the system, the service rate at
which customers are serviced by the resource, and the
simulation speed at which the animation-simulation is
presented. Each circular dial control may be adjusted by
mouse, keyboard or spoken command over a range of
12

values from a minimum of 0 to a maximum of 100. The
value on any circular dial control represents a relative mag-
nitude for the corresponding rate. For example, the spe-
cification of a 0 value for the dial control corresponds to
the minimum allowable rate, which is still greater than 0.

3.4.6 Simulation Monitor Group

The simulation monitor group, located at the lower right
corner of the window frame, consists of three separate text
fields which display real-time information related to the
execution of the simulation system model for the server
status, queue length, and event time. In addition, the
simulation monitor group contains a push button control
that may be activated by mouse, keyboard, or spoken
command to start or stop execution of the simulation and
associated animation.

3.5 Voice Assisted Operation

Figure 4 provides an illustration of a graphical user interface
that should appear not too unfamiliar to experienced
computer users. Based on our description of the user
interface features and functions, most users should be able to
readily navigate the application through mouse and
keyboard interaction with limited instruction. Not shown in
Figure 4 are the wide-range of transactions that can also be
performed through speech interaction. In this section we
emphasize the use of speech recognition and speech
synthesis interaction to perform similar types of activities.

Speech recognition and speech synthesis interactions
are organized into four structured speech modes to promote
increased recognition accuracy and improved response
time efficiency. The four speech modes, known as the
simulation mode, statistics mode, settings mode, and
hibernation mode, correspond to the indicators located in
the active context group. The indicator for the active
speech mode in the active context group is highlighted with
a green background to provide the user a visual clue to
guide word choice. The transition between the speech
modes occurs transparently to the user when keywords
embedded in a command statement are spoken. We further
describe the details each of the speech modes in the
sections that follow.

3.5.1 Simulation Speech Mode

The simulation speech mode provides the ability to adjust
the arrival rate, service rate, simulation speed, volume
control, and server resource state for the simulation model.
For example, once the simulation-animation has been
started, we adjust the arrival rate for customers entering the
system by uttering the spoken command �increase arrival
rate by fifteen percent.� As a result, we observe in Figure 4
an increase in the arrival rate from fifty percent to sixty-five
08

Smith, III and Roberts

percent as represented by the circular dial control contained
with the simulation controls group. Following the increase,
customers begin to accumulate in the queue waiting for
service since the arrival rate exceeds the service rate.

3.5.2 Statistics Speech Mode

The statistics speech mode provides the ability for the user
to display reports and graphs generated from statistical data
captured with each simulation event. Furthermore, the
statistics speech mode allows the user to ask a general
question through speech recognition and receive a reply
provided through speech synthesis. For example, a user
may inquire, �what is the percentage utilization for the
resource?� and the application may respond, �the resource
utilization is eighty-five percent.�

After transition into the statistics speech mode, the
corresponding indicator within the active context group for
statistics is highlighted with a green background. In Figure
5 we illustrate a request to produce a observation-based
report by uttering the spoken command �display report on
the customer time in system.� As a result, a window dialog
containing the report for the customer time in system is
presented.

Figure 5: Spoken Command: �Display Report on the
Customer Time in System�

3.5.3 Settings Speech Mode

The settings speech mode provides the ability for the user to
adjust internal parameters associated with the system model
through mouse, keyboard, or spoken command. Transition
from another speech mode to the settings speech mode may
be initiated through one of several spoken commands that
include �investigate settings.� After transition into the settings
speech mode the corresponding indicator located in the active
context group is highlighted with a green background.
Adjustments are performed through a displayable control
120
panel or directly manipulated by spoken command. The
control panel is revealed when the user utters the spoken
command �display control panel.� Once displayed the user
may adjust the maximum number of customers allowable in
queue, or the threshold limit for a rare event that results in an
action when trigged. Alternatively, the user may change these
settings directly through spoken commands without opening
the control panel.

3.5.4 Hibernation Speech Mode

The hibernation speech mode provides the ability for the
user to reinitiate spoken interaction from a suspended state
by continuously monitoring all spoken utterances for an
attention getting word or phrase. Entry into the hibernation
speech mode may occur because (1) the user initiated a
request for suspension by spoken command, such as
�suspend conversation�; (2) the user exceeded the
maximum allowable time to provide spoken input; or (3)
three or more consecutive errors were encountered related
to speech interaction. The �standby� indicator located in
the active context group is highlighted with a green
background to alert users of the continuous monitoring for
the attention getting word or phrase while in the
hibernation speech mode. Utterance of the attention-
getting phrase �wake-up-computer� will discontinue
hibernation and result in the restoration of the last active
speech mode to resume conversation.

4 RESULTS

The experience of speaking to your computer is quite
awkward at first. Frequent mispronunciations, false starts,
and ill constructed requests, make the initial experience
less than desirable and sometimes downright frustrating.
With a little practice, and confidence building, a reasonable
performance level can be achieved. Unfortunately, as most
have already discovered the recognition accuracy rate
varies greatly by individual. We also concluded that the
overall accuracy rate for speech recognition does not
always match the claims. We experienced difficulties in
the input of a long series of numbers, or complex numbers.
As a result, we observed occasional word substitutions in
the recognized phrases. Exceptionally good results were
obtained when the sentence structures contained
polysyllable words. Speech output should be used
sparingly since it has a tendency to overwhelm new users.

5 SUMMARY AND CONCLUSION

The main findings of this research may be summarized as
follows:

• The VASArch(M/M/1) prototype demonstrates a
software architecture sufficient to support the
9

Smith, III and Roberts

integration of speech recognition and speech
synthesis technologies in conjunction with
simulation-animation modeling software.

• The VASArch(M/M/1) prototype successfully
managed the concurrent operation of all the
functional system components in the software
architecture using multithreaded and multitasking
concepts.

• The VASArch(M/M/1) prototype obtained
reasonable performance on a personal computer
equipped with only a single Pentium-class
microprocessor without the use of specialized
hardware adapters, or coprocessors.

REFERENCES

Baber, Christopher and Janet M. Noyes (Eds.) (1993).

Interactive Speech Technology: Human Factors Issues
in the Application of Speech Input/Output to
Computers, Bristol, UK: Taylor & Francis.

Bernsen, Niels Ole, Hans Dybkjaer, and Laila Dybkjaer.
(1998). Designing Interactive Speech Systems: From
First Ideas to User Testing, New York, NY: Springer-
Verlag.

Burge, Thomas E., and Celi Joseph. (1993). Advanced
OS/2 Presentation Manager Programming, New
York, NY: John Wiley & Sons.

Dix, Alan, Janet Finlay, Gregory Abowd, and Russell
Beale. (1998). Human-Computer Interaction: Second
Edition. Hertfordshire, UK: Prentice Hall.

Dorfman, L., and M. J. Neuberger. (1994). Effective
Multithreading in OS/2, New York, NY: McGraw-
Hill.

Dutoit, Thierry. (1997). An Introduction to Text-to-Speech
Synthesis, Boston, MA: Kluwer Academic Publishers.

IBM Corporation. (1993). IBM Continuous Speech Series:
Developer�s Toolkit Technical Reference, Second
Edition, Armonk, NY: International Business
Machines Corporation.

IBM Corporation. (1992). IBM OS/2 Version 2.0,
Presentation Manager Programming Guide, OS/2
Technical Library, First Edition, Armonk, NY:
International Business Machines Corporation.

Knight, Stephen A., and Jeffrey M. Ryan. (1995).
Programming the OS/2 WARP version 3 GPI, New
York:, NY John Wiley & Sons.

Kogan, and Dietel. (1994). The Design of OS/2, Second
Edition, New York, NY: Addison-Wesley.

Stock, Marc. (1995). OS/2 Warp Control Program API,
New York, NY: John Wiley & Sons.

Petzold, C. (1994). OS/2 Presentation Manager
Programming, Emeryville, CA: Ziff-Davis Press.

Roe, David B., and Jay G. Wilpon (Eds.). (1994). Voice
Communications Between Humans and Machines,
Washington DC: National Academy Press.
121
Smith, R. L., (1999). A Voice Assisted Simulation-
Animation Architecture. M.S. Thesis, Department of
Industrial Engineering, North Carolina State
University.

Taylor, M. M., F. Neel, and D. G. Bouwhuis. (1990). The
Structure of Multimodal Dialogue, Human Factors in
Information Technology, New York, NY: North-
Holland.

Zue, V., R. Cole, and W. Ward. (1997). spoken language
input,� in Human Language Technology, Varile, G.
and A. Zampolli (Eds.), New York, NY: Press
Syndicate of the University of Cambridge, 1-70.

AUTHOR BIOGRAPHIES

RAYMOND L. SMITH III is a manager in e-business
and Information Systems Development for the
International Business Machines Corporation, Personal
Systems Group, located at Research Triangle Park, NC.
He received his B.S. degree in Industrial Engineering, and
M.S. degree in Industrial Engineering and Operations
Research, from North Carolina State University. He is a
certified Project Management Professional (PMP). His
interests include workflow management systems, decision
analysis support systems, intelligent systems, and
simulation applications. His email address is
<rlsmith3@us.ibm.com>.

STEPHEN D. ROBERTS is a Professor in the
Department of Industrial Engineering at North Carolina
State University. Previously he was the Department Head
and has served on the faculties of the University of Florida
and Purdue University. He received his B.S.I.E.(with
distinction), M.S.I.E., and Ph.D. from Purdue University.
He was the recipient of the 1994 Distinguished Service
Award. He has served as Proceedings Editor, Program
Chair, and Board Member for WSC. His email address is
<roberts@eos.ncsu.edu> and his WEB address is
<www.ie.ncsu.edu/roberts>.
0

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

