Proceedings of the 2000 Winter Simulation Conference

J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

AN ANALYTICAL MODEL AND AN

OPTIMAL SCHEDULING

HEURISTIC FOR COLLECTIVE RESOURCE MANAGEMENT

Qiang Sun

Siebel Systems, Inc.
2207 Bridgepointe Parkway
San Mateo, CA 94404, U.S.A.

ABSTRACT

In the this paper, we study the problem of collective resource
management. We first introduce the problem through real-
world examples. Then we generalize the problem and build
an analytical model using queuing theory. Based on this
model, we evaluate the expected average waiting time of
tasks. We present data from simulations, and compare the
expected average waiting time from theoretical calculations
to that from our experiments. We propose an optimal task
scheduling heuristic. We conclude with a brief discussion

of our future research plans.

1 INTRODUCTION

First let’s consider the following three scenarios.

We need to organize a soccer team before the next
game. The team should consist of any four com-
puter science professors and any seven computer
science majors. We need to check the schedules of
professors and students, and make appointments
for eleven people who will have made no other
commitments for the time of the game.

We need to transfer a video file from a network
hard drive to a VCR for recording. Suppose we
have smart electronics, and the reservation is done
automatically with the hard drive and the VCR.
Suppose we have a microprocessor with multiple
floating point calculation units, integer point cal-
culation units, and caches. The execution of each
instruction needs to utilize one or more of these
different units. There are precedence requirements
for the execution of the instructions.

The preceding are all examples of what we call collective
resource managementRM) problems. ACRM problem
should have the following properties:

1. There exists a resource pool made up of different
types of resources. Each type of resource has
multiple homogeneous instances. For example,

1374

professors, a VCR, and integer point units are all
considered to be resources.

The use of the any resource instance in the pool
is strictly exclusive. For example, we can't use a
VCR to record two tapes at the same time.
Eachtask, an atomic action on the associated re-
sources, requires a collection of resources. Multi-
ple instances of any resource type might be required.
For example, schedules of more than one professor
need to be modified for the soccer game.

There might be lease (Sun Microsystems 1999),
priority, precedence, deadline, or other require-
ments associated with each task. For example,
instructions need to be executed in certain order.

In this paper, we focus o®RM problems that fulfill
the first three properties.
2 RELATED WORKS
CRM problems appear in the study of distributed databases,
CPU scheduling, real-time systems, etc. Priority assign-
ments (Chang and Livny 1985 and Huang et al. 1991), task
scheduling (Abbot and Garcia-Molina 1988 and Huang et
al. 1989), concurrency control(Bestavros and Braoudaks
1994, Gupta et al. 1996, and Sha, Rajkumar, Lehoczky
1988), and fault resilience (Chandy 1998 and Sun, Zhang,
and Zhang 2000) are some of the many commonly faced
issues when we try to solv€RM problems. The unique
challenge introduced bY"RM lies in the fact that there
are homogeneous instances of each resource type, which is
what makes solving"RM problems complicated.

3 ALGORITHMS FOR CRM
3.1 Problem Generalization

Before we get into our algorithm, we need to generalize
CRM problems. We adopt the following notations:

Resource typesRi, R2, ..., Ry;

Sun

Number of instances foR;: N;;

A task request is represented by:
T((r1,r2,...,r), E), where r, is the num-
ber of type R,, required for this task and is
the expected execution time of the task.rifis
non-zero, we say thaR; is required byT, and
R; belongs to theresource set of T. Note that
ri < N; must hold.

3.2 Description of the Algorithm

We call a source that generatés a client; and each resource
instance is managed by an server. On@eia generated, it

is submitted to all the servers that manage resources required

by T. Each server has BIFO waiting queue . If a server
can not fulfill a7 immediately—because the resource is
temporarily unavailable-F is put into the waiting queue.
Once aT is taken from the waiting queue, the resource is
locked by the client which submits. We use a two-phase

locking scheme (Bestavros and Braoudaks 1994 and Gupta

et al. 1996) to ensure the atomicity of the task across
multiple resources. Preemption is not allowed and thus the
resources is held by the client until the completion of the
task.

Client Events (See Figure 1):

* A - T is generated and submitted to servers
B — Client receives a notification from server that
T has been dequeued, and lock on this server
is obtained. If enough instances of a particular
resource type have been locked, notify those servers
which have not grant locks to the client to remove
T from their waiting queues.
C — Locks for all required resources have been
obtained. Task initialization notification is sent to
locked servers.
D — Task is completed and locks are released.

B

Figure 1: Client State Diagram
Server Events (see Figure 2):

» A - Server dequeues the nektfrom the queue,
and it sends a notification to the client whefe
originates from.

B — Server receives notification from client to
removeT.

1375

Figure 2: Server State Diagram

C — Task is initiated.
D — Task is completed.

We also define for:

Tyueue 10 be the amount of time th&t spends in
the queue.

Triock 10 be the amount time between theis
dequeued and start of the execution.

T,.c.c to be the amount time for execution. Note
that T, = E.

Tywair 10 be the sum off,cue and Tpjocx

4 ANALYTICAL MODEL

4.1 Assumptions

We model the arrival of's from each client using Bossion
distribution with a mean arrival rate Thus the probability
of exactly one arrival ofT in time &z is A8t, and the
inter-arrival density iske™' (Robertazzi 1994).

T.xec IS @assume to satisfy an exponential decay distri-
bution. We use A8 to denote the mean df,,... Thus the
corresponding probability density @f... beingz is Be~#!
(Robertazzi 1994).

Given anyT the number of required resource types and
the number of instances required within a give resources
type are assumed to be exponentially distributed random
variables. We also assume that the any given resource type
has the same probability of being required by a

Problems with Possion arrival time of jobs and ex-
ponential execution time on servers can be model using
Markovian queues. In fact, if only one of thes required
by a T has non-zero value, and this non-zero value is
1, CRM problem degenerates to problem of networks of
gueues, and eacR; can be modeled using®/M/N; /oo
gueue (Kleinrock 1976 and Robertazzi 1994). Notice that
we make the assumption that the capacity of the waiting
gueue is infinite.

4.2 Abstraction

In order to use theories from queuing systems to help build
our analytical model, further abstractions are necessary.

Sun

First, we merge the waiting queues of the different instances
of the same resource type into one waiting queue (see

4.3 Evaluation of T;ysa

Figure 3). By doing so, we have essentially constructed We define the throughput @; to beis;, and denote it with

a M/M/N;/oo queue. Let such queue &; be Q;. We
restrict our model to systems that are saturated at equilibrium.
In other words, we are only interested in the cases when
the waiting queue is not empty. Because of parallelism in
execution, the equivalent mean task time @f becomes
1/(BN;). We simplify the notation to A8;. Due to Tpock,

the effective mean task time is longer thafgl Therefore,

we useg; — d; to represent the expected number of task
executed per unit time.

—)
:.
[]

[]

—()

N Servers and Oueues

Figure 3: Queue Merging

.)

Second, we unify all the clients into a client. We know
that a group of: Possion processes each with a mean arrival
rate) is equivalent to a singl®ossion process with a mean
arrival rateAn. In the rest of the paper, we simply usd¢o
denote the mean arrival rate Bffrom the unified client. Let
o; be the probability that & requiresR;. Thus the mean
arrival rate forQ; is o;A. Notice that)/_;0, =m > 1,
wherem is the expected number of resource types required
by aT.

The state ofQs is described using vectors

= def
S = (51,52, ...,8)

wheres; is the number of's in Q; (Robertazzi 1994). From
this point on, we consider the that is being executed to be
in the queue as well. This is slight modification is necessary
for the derivation presented in section 4.3. Similarly,

= def

1, %00,...,1,...,0

describes a state in whidf; is the only non-empty queue
with oneT. And,

- def
si = (Slvs'Z»-"ssiv-"ssn)

describes the set of states in which therear&’s in Q;.

1376

®;. ®; = Ao; is also calledTraffic Equation (Robertazzi
1994). Using results from networks of queues, we can set
up the following equations:

@ P(S— 1)) = (B — di) P(S). €Y

@;P(S) = (B —di)P(S+ 1) 2
u+f%—®w®=i®mii)

i=1 i=1
+f}m—¢w@+iy 3)

i=1

Equation (1) and (2) arBalance Equations (Robertazzi
1994) of Q;. It states that, under equilibrium, the net flow
into and out ofQ; are the same. Equation (3) is the Global
Balance Equation. It states that, under equilibrium, the net
flow in and out of a state is the same (Schwartz 1987).
These equations enable us to derive the probability of the
system in state§ (Chen 1987):

PG) = (G—pPE-1)
= (ﬂi_idi)SiP(sl,sz,...,O,.. . Sn)
n (Di , R
ZIYETZ)HW @

i=1

We know that:
Y P =1
K

Therefore, we can use the normalization of probability
to solve P(0) (Schwartz 1987):

POX =1
> T
§ i=1
[1>¢
i=1s5;=0

[Ta-
i=1

@dw
— U

Bi

D;
Bi — d;

— 4

)Y

Bi

Sun

Thus we get: and 5. We observe that formula (8) correctly predicts both
the shape and the magnitude ©f,;;.
Pi (6) =1— 'Bi qil dl. . (5) 1000 Waiting time as functio of beta
Theoretical Results
If we substitute equation (5) into (4), we have: 800 Simulation Results..o
é 600
- [oF d;) 2
Pi(si)) = (11— S =
i (si) = (5i_di)(,3i_di) g 400
200 °
UsingLittle's Law, we can calculate the expected delay % oo
e B 0 <
of T's in Q;: 01 015 02 025 03
beta
Z;o:l siP.G) E%u(;(é 4: Simulation Results with Fixed Phi
Twair = 0 S (6) -
> s=1 (Bi — di) Pi(si)
Waiting time as function of phi
where the numerator is the mean numbefroin Q;, and 14000 T '
. . . Theoretical Results ——
the denominator is the mean rate Bf passing through 12000 Simulation Restilts
Q;. We observe that the denominator can be simplified to ® 10000
Bi — d;. We know that the value of the numerator can be £ 8000 ¢
approximated in the following way: 2
'g 6000
4000
(OF M
Let K = , thus 2000
Bi — di 0
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
e8] 00 phi
Z siPi(5) = Z si(1— K)KSi Figure 5: Simulation Results with Fixed Beta
si=1 si=1 =01

The discrepancy between the results from simulations
and those obtained by using formula (8) is caused by the
1 factd; is omitted from the calculation of theoretical results.
(1- K)K(m k) (1) As we can see from the discussion so far, to mininfizg;,
the key is to minimizet;, which offsets8 Our model would
The above approximation is valid only when the con- predict 7,,,;; more accurately if the analytical form af
straint K < 1 is satisfied. The real-world implication is could be derived.

o]
= (1—K)/ S,’Ksidsi
1

that the arrival rate of tasks should never be higher than ~ We propose that the value df satisfies an exponential
the process rate of the server. Otherwise the length of the decay distribution. And the mean valuedfis k; /8, where
waiting queue would approach infinity. k; is avariable ok, N;, andr. At any time, among all's on

Using equations (6) and (7), We obtaify,.;; as a different Qs, there is at least orié that is in the processing

function of 8;, ®;: phase. In other words, not alls in the system are waiting

in the Qs or are blocked in the locking phase. If we can

Topais=(1 i) ®i 1 1). (8) have a partial order of' based on their completion time,

Bi —di” (Bi —di)? (In %)2 In ;% then the expectation value df should be proportional to

Y Y the sum ofT,,.. of all correlatedT's that enter execution

5 SIMULATIONS phase prior taI'. We call twoT's correlated when the joint

of their resource sets is not an empty set. Notice that there
We carry out simulations in order to verify the derivation of ~are overlapping between the executions of non-correlated

Twai:- Inthe first set of experiments, the value®fis fixed Ts.
and the the value oB; is manipulated. In the second set
of experiments, the value ¢ is fixed and the value ob; 6 HEURISTIC

is manipulated. The results of these experiments compared

with the theoretical predictions are illustrated in Figure 4 In order to reduce;, we must delay the entry into the
locking phase of"'s. Before granting the lock to arig, we

1377

Sun

need to check if delaying such a grant will allow other

to complete early without delaying the completion of this
task. We first check if any lock has been granted to this
task, 71, from otherQs. If not, we calculate the expected
completion time offy and the next task i®, 7>, under the
condition that the lock is granted 14 by Q;. Then we try to
switch the order of'; and7» in all Qs. We check if such a
switch causes deadlock. If not, we re-calculate the expected
completion time forTy and 7>, under the condition that the
lock is granted toT> by Q». If the expected completion
time for 71 is not increased and the expected completion
time for T» is decreased, such a switch should be carried
out.

This heuristic is similar to that proposed in (Sun, Zhang,
and Zhang 2000), but there are some difference. First, we
check if any lock has been granted T before proceed
with the heuristic. This procedure helps to avoid redundant
calculations. Second, our heuristic is only meant to be used
in a non-distributed environment, and thus it is possible
to have information of hard global state. This allows us
to prevent deadlock and re-ord&s globally. Here is the
pseudo code for the heuristic:

optimize(queue Q_i){
task T_1 = getTask(Q_i, 1);
if(no locks has been granted to T_1){
time t_1=calculateCompletionTime(Q_i,1);
time t_2=calculateCompletionTime(Q_i,2);
task T_2=getTask(Q_i,2);
switch the order of T 1 and T 2

in all Qs;
if(detect no deadlock){
time t 3 =
calculateCompletionTime(Q_i,1);
time t 4 =

calculateCompletionTime(Q_i,2);
if(l(t.4 > t1) && t 3 <t 2)
switch is valid;
else
restore the order of T_1 and
T 2 in all Qs;

The methodQueue getTask() returns theT at the
given index inQ. The index of the firsT in Q is 1. The
methodcalculateCompletionTime() returns the estima-
tion of expected completion time @f at the given index in
Q. Both methods are easy to implement, so we will skip
their details in this paper.

7 SUMMARY AND FUTURE RESEARCH
In this paper, we introduce the problem of Collective Re-

source Management(CRM). We formalize the problem by
specifying the special characteristics@®M. An analytical

1378

model is built and the expected waiting time of tasks are
derived. We use simulation to obtain data to support our
analytical model. We present a heuristic to reduce expected
waiting time.

For future research, we plan to build simulations to test
the effectiveness of our heuristic and to derive an empirical
form of d;. We also plan to study some unique issues of
CRM in distributed environments.

ACKNOWLEDGMENTS

| would like to express my greatest gratitude to Professor
Duane Bailey at Williams College, MA, Irena Pashchenko,
an undergraduate student at Smith College, MA, and Hao
Zhang, a graduate student at UC Berkeley for their advice
and invaluable help in the writing of this paper.

BIBLIOGRAPHY

Robert Abbottand Hector Garcia-Molina. 1988. Scheduling
real-time transactions: A performance evaluation. In
Proceedings of Very Large Data Base Conferered 2.

Azer Bestavros and Spyridon Braoudaks. 1994. Timeliness
via speculation for real-time database. Rroceedings
of IEEE Real-Time Systems SymposiG6+-43.

K. M. Chandy. 1998. Using announce-listen with global
events to develop distributed control syster@ncur-
rency:Practice and Experience

Hung-Yang Chang and Miron Livny. 1985. Priority in
distributed system. IRroceedings of IEEE Real-Time
Systems Symposiurh23-130.

W. Chen. 1987.Solution manual for telecommunications
networks: Protocol, modeling and analysiaddison-
Wesley.

Ramesh Gupta, Jayant Haritsa, Krithi Ramamritham, and
S. Seshadri. 1996. Commit processing in distributed
real-time database systems. Pmnoceedings of IEEE
Real-Time Systems Symposil2f0-229.

Jiandong Huang, John A Stankovic, Krithi Ramamritham,
and Don Towsley. 1989. Experimental evaluation of
real-time transaction processing. Rroceedings of
IEEE Real-Time Systems Symposid4d—153,

Jiandong Huang, John A Stankovic, Krithi Ramamritham,
and Don Towsley. 1991. On using priority inheritance
in real-time databases. Rroceedings of IEEE Real-
Time Systems Symposium

Leonard Kleinrock. Queueing theory Wiley, 1976.

Thomas G. Robertazzi. 1994.Computer networks and
systems : Queueing theory and performance evaluation
Springer-Verlag.

M. Schwartz. 1987.Telecommunication networks: Proto-
col, modeling and analysisAddison-Wesley.

Sun

Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky.
1988. Concurrency control for distributed real-time
databasesACM Sigmod Recordl7(1):82-98.

Q. Sun, H. Zhang, and J.H. Zhang. 2000. A time-stamp
based solution for collective resource acquisition in
distributed systems. IRICSS-33

Sun Microsystems, Inc. 1999Jini Distributed Leasing
Specification

AUTHOR BIOGRAPHY

QIANG SUN currently works as a Software Engineer
in the server infrastructure group at Siebel Systems, Inc.
He enjoyed his undergraduate life at Williams College,
MA and California Institute of Technology. He received
a bachelor's degree in Computer Science and Physics,
Summa Cum Laude, from Williams College in June, 2000.
His research interests include distributed systems and is-
sues in concurrent computation. His email address is
<gsun@siebel.com>

1379

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

