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ABSTRACT 
 
The focus of the paper is on the comparison of results 
obtained using group screening versus not using group 
screening in an experimental design methodology applied 
to a semiconductor manufacturing simulation model. The 
experiments were performed on the cycle time for the main 
product in the fab, which takes about 250 steps before 
completion. High utilization and large queue sizes were the 
basis for determining the five most critical workstations in 
the fab. Three parameters for each workstation were set as 
factors for investigation plus another more general 
important factor making a total of 16 input factors. A 2-
stage group-screening experiment and a 2k-p factional 
factorial were performed to identify the significant factors 
affecting the cycle time for the product. The results showed 
that the two methods could be very similar or very 
different depending on the choice of significance level for 
group screening, particularly at the early stages of 
eliminating group-factors. 
 
1 INTRODUCTION 
 
Lucent Technologies Microelectronics is one of the leading 
companies in the highly competitive semiconductor 
manufacturing. Products� cycle time is one of the major 
indicators of how well the fab is performing and 
semiconductor manufacturers are investing huge amount of 
money in trying to minimize cycle time, seeking customer 
satisfaction and higher profit. Simulation modeling and 
operations research techniques assist analysts in having a 
better understanding of the complicated processes that 
products go through, making it easier to make critical 
decisions. Cycle time is only one of the important 
performance measures; others include Work-In-Process 
levels (WIP), product throughputs, and equipment 
utilization. While these measures contradict each other, 
simulation and experimental design can help coordinate 
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different goals by optimizing overall performance. 
Simulation by itself lacks optimization capability since 
explicit relationships between inputs and outputs are not 
available, thus combining simulation modeling with 
experimental design and regression analysis can give 
effective and efficient results. 

Simulation facilitates performing sensitivity analysis 
and answering what-if questions at no cost, and helps in 
detecting potential problems and bottlenecks in the fab. 
Additionally, capital planning can be done using 
simulation models in order to forecast capacity 
requirements. Experimental design helps in identifying the 
important input factors affecting some important system 
outputs such as cycle time, queue sizes, etc. The 
semiconductor industry is relatively complex and many 
parameters and variables can be considered as contributing 
to a single important response. Biles (1984) recommends 
the application of fractional factorial designs for simulation 
experiments in cases where the effects of less than 11 input 
factors are studied. Research presented by Hood and Welch 
(1990, 1993) shows the application of fractional factorial 
Resolution III and IV designs in modeling the logistics of 
semiconductor manufacturing lines. In cases where more 
than 11 input factors are studied, the recommended type of 
design is a group-screening design. A 2-stage group-
screening procedure is introduced by Watson (1961) and 
further developed for multiple-stage designs by Patel 
(1962) and Li (1962). Mauro and Smith have made 
significant contributions to the group-screening design 
method in numerous papers on the robustness and 
effectiveness of the method (Mauro and Smith 1982, 
Mauro 1984, Mauro and Smith 1984). Li (1962) shows a 
methodology for choosing group sizes for multiple stage 
group screening in cases where the number of important 
factors in a model is known within some error margin. 
Morris (1994) talked about �effects sparsity� phenomenon, 
which means that in most cases few factors are found to be 
significant among a large number and group screening was 
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applied to a computer model.  Dean and Lewis (1999) 
suggested using the concept of group screening when noise 
factors exist without aliasing the main factors with noise 
interactions. Based on the experimental design results, 
regression analysis equations are built to define the 
relationships between the input factors and the measures of 
performance. Kleijnen (1979) introduces regression 
metamodel concepts to simulation. Friedman (Friedman, 
1984, Friedman, 1987, Friedman, 1989) talks about the 
implementation of multiple response regression 
metamodels as part of simulation output analysis. 

As mentioned earlier, group screening is 
recommended for large-scale situations such as 
semiconductor manufacturing environment. To date, little 
has been written concerning this type of application in the 
semiconductor manufacturing facilities. A 2-stage group-
screening experiment and a factional factorial presented by 
Ivanova, Mollaghasemi and Malone (1999) results were 
compared, the results illustrated that the final models are 
different; the same total number (64) of experimental runs 
were used for each of the procedures. Additionally, the 
level of significance used can highly alter the results; the 
authors recommend the use of a 0.15 significance level in 
the first stage of group screening and switch to 0.05 in 
latter stages. 

In this paper, cycle time for the main semiconductor 
product in one of Lucent Technologies manufacturing 
facilities is identified as the important response to be 
studied. The most important input factors are identified 
through a two stage group-screening experimental design. 
Furthermore, a 2k-p fractional factorial design is applied to 
the same response again to identify the most important 
factors. The results of the two methodologies are 
compared, and finally conclusions are presented. 
 
2 THEORETICAL BACKGROUNDS 
 
2.1 Two-Stage Group Screening Design 
 
In most cases, performing simulation runs for complex 
systems such as the semiconductor facility is very time-
consuming, particularly considering the amount of factors 
involved in the experiments. The objective of factor 
screening is to detect as many important factors as possible 
in as few runs as possible. One of the most efficient 
experimental design techniques satisfying these objectives 
is the group-screening experimental design. Watson (1961) 
suggests that the k input factors in the model can be 
separated into (g) groups of (f) factors each, by any 
method. Each group is then considered as a single factor 
called group-factor. All factors in the group are to be set at 
their upper level for the group to be at its high level and 
vice versa, such that no cancellation of effects could occur. 
All factors within the group should be independent from 
each other. Watson (1961) also suggests several guidelines 
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for forming the groups. Each group is treated as if it�s a 
single factor and the first stage of experiments is 
performed. If a group-factor is found to be significant, a 
second stage of the design is set, where the original factors 
from the significant groups are tested individually. If after 
the first stage there is still a considerable number of 
important factors left in the experiment, further regrouping 
might be applied and the group-screening process will then 
have more than two stages (Li, 1962 and Patel, 1962). 
Several rules of thumb should be considered when using a 
group-screening experimental design technique in order to 
avoid cancellation of factors and to detect as many of the 
effective factors as possible (Ivanova, 1996): 
 

• A factor with an unknown direction of effect 
should be placed alone in a group. 

• Factors with assumed important positive effects 
should be placed in one group. 

• Factors with assumed small effects and the same 
direction should be placed in a group. 

• Factors with possible effects and the same 
direction should be placed in a group. 

• Resolution IV design should be used to calculate 
main effects unbiased by possible second-order 
interactions. 

 
2.2 Regression Metamodels 
 
Following each stage during group screening, regression 
analysis is used to determine the most important 
groups/factors and a regression metamodel is built relating 
the most important factors to the response. The simplest 
regression metamodel is the additive linear first-order 
model. Hypothesis testing is necessary for determining the 
significant factors in the model. The significant 
factors/groups for a stage during group screening are kept 
for the next stage while insignificant factors/groups are 
dropped from the analysis. In the last stage in the group 
screening there would be no groups left and only individual 
factors are tested. 
 
3 THE SIMULATION MODEL 
 
3.1 Model Definition 
 
The wafer fab simulation model allows the user to specify 
equipment, availability, products, routings, human 
operators and numerous other constraints. One basic 
process flow and one product is included in the simulation 
model for this research purpose. The ManSim/X simulator, 
developed by Tyecin Systems Inc., is used to build the 
simulation model. ManSim/X has been specifically 
designed for capacity analysis and production planning of 
semiconductor manufacturing facilities. The whole-line 
simulation presents a model of a 6�semiconductor wafer 
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fab with more than 250 machines and operators, grouped 
into multiple work areas. One basic recipe for the main 
product is included in the simulation.  
 
3.2 Output Analysis Results 
 
The whole-line simulation model was initially used for the 
purpose of queue size analysis and eventually recognizing 
the potential factors that might affect the cycle time for the 
product under study. A warm-up period of 100 days was 
used. The queue size analysis revealed that five 
workstations have relatively large queue sizes for their 
tools formed for a stable model, these workstations were 
the Argon fillet, Etchers, Metal Deposition tools, Oxide 
Etcher and Implanters. These five workstations affect the 
overall performance of the fab and thus have a potential 
room for improvement. Later in the analysis section of the 
paper, different factors related to these five workstations 
will be tested for their level of influence on cycle time. 
 
4 FACTOR IDENTIFICATION  
 AND DEFINITIONS 
 
The important response being studied here is the cycle time 
for the main product in the fab, and the objective is to 
determine the factors that are significantly affecting this 
response. After studying the queue sizes and utilization on 
all the workstations, five were identified as critical: Argon 
Fillet, Etcher, Implanters, Metal Deposition, and Oxide 
Etch facility groups. The percentage of hot lots released in 
the fab is also a potentially high influential factor. For each 
workstation, three parameters were considered to be 
dynamic and influential: Mean Time Between Failure 
(MTBF), The Operator to Machine Ratio (O/M) and the 
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number of tools available for the workstation (n). Each 
factor has two levels (low and high) set according to 
historical observations in the fab. Table 1 shows a list of 
the 16 factors and the coded variables accompanied with 
each one. 
 
5 GROUP-SCREENING  
 EXPERIMENTAL DESIGN 
 
5.1 Group-Screening - Stage I 
 
According to the grouping rules suggested by Watson 
(1961), the first set of groups for stage I is formed coming 
to a total of 4 groups. Figure 1 shows how the groups were 
organized. 

A two-level fractional factorial (24-1) resolution IV 
design with 8 runs was done, where the defining relation 
was D=ABC. The low level for each factor was chosen to 
be more constraining to the fab as compared to the high 
input factor levels. Trial simulation runs were performed to 
make sure that the model was stable under the low factor 
level setting. The high factor levels were set as an 
improvement over the base level for each factor. This 
method for setting the low and high factor levels ensures 
that there is sufficient resource capacity and that the model 
is stable for all the experimental design runs (Hood and 
Welch 1992). Table 2 shows the low and high levels for 
each group of factors.  

The next step involves building a regression 
metamodel based on the Stage I experimental results and 
determining the significant group-factors. Minitab and JMP 
softwares were used for this purpose. It is assumed that no 
interactions exist between the factor-groups. 
Table 1: Description of the 16 Factors in the Experiments 
Coded Variable Factor 

x1 MTBF for Argon Fillet (MTBFa) 
x2 MTBF for Etchers (MTBFe) 
x3 MTBF for Implanters (MTBFi ) 
x4 MTBF for Metal Deposition (MTBFm) 
x5 MTBF for Oxide Etch (MTBFo) 
x6 Number of Argon fillet tools (na) 
x7 Number of Etchers (ne) 
x8 Number of Implanter tools (ni) 
x9 Number of Metal Deposition tools (nm) 
x10 Number of Oxide Etch tools (no) 
x11 Operator to machine ratio for Argon fillet (O/Ma) 
x12 Operator to machine ratio for Etchers (O/Me) 
x13 Operator to machine ratio for Implanter (O/Mi) 
x14 Operator to machine ratio for Metal Deposition (O/Mm) 
x15 Operator to machine ratio for Oxide Etch (O/Mo) 
x16 Percentage of hot lots 
01
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Figure 1: Group-Screening Design - Stage I 

Table 2:  Factors� Low Levels and High Levels 
Group Description Low level High level 

A Mean time between failures (MTBF) Base 2*Base 
B Number of tools Base Base+1 
C Operator to machine ratio Base 1.5*Base 
D Percentage of hot lots Base 0.5*Base 

A: Mean time between 
failures (MTBF) 

MTBFa 

MTBFi 

MTBFm 

MTBFe 

C: Operator to 
machine ratio 

O/Ma 

O/Mi 

O/Mm 

O/Me 

B: Number of tools 

na 

ni 

nm 

ne 

D: Percentage of hot lots 
% hot lots 

MTBFo 

O/Mo 

no 
 
The residuals values for the 8 design runs are tested 

for normality by using normal probability plots and for 
randomness using scatter diagrams. At a level of 
significance of .05, only group A of the group screening 
variables is significant. However, because this is an early 
stage of screening, we might decide to be more flexible in 
choosing the level of significance and decide to use .10 or 
even .15. This choice is critical for its influence on the final 
model. Using .10 as the significance level, the groups that 
are significant are A: mean time between failures (MTBF) 
and B: number of tools with R2=87.9%. 

At the end of Stage I of group screening, the choice of 
the significance level affects the number of groups found to 
be significant. In stage II, the insignificant groups were 
dropped from the experiment and individual factors of 
groups A and B were tested for significance. 

 
5.2 Group-Screening Design - Stage II 
 
In Stage II, the significant group-factors found from stage I 
were separated into individual factors and a second 216-10 
150
fracional factorial design was run. Using a level of sig-
nificance of 0.10 in Stage I, the variables considered were: 
 

x1= MTBF for Argon Fillet (MTBFa) 
x2= MTBF for Etchers (MTBFe) 
x3= MTBF for Implanters (MTBFi)  
x4= MTBF for Metal Deposition (MTBFm)  
x5= MTBF for Oxide Etch (MTBFo) 
x6= Number of Argon fillet tools (na) 
x7= Number of Etchers (ne) 
x8= Number of Implanter tools (ni) 
x9 = Number of Metal Deposition tools (nm) 
x10=Number of Oxide Etch tools (no) 

 
The 64 model fit allowed for some of the two-factor 
interactions to be tested and the results were that at α=0.05 
all main factors were found to be significant except for x4 
(MTBF for metal deposition) and x9 (number of metal 
deposition tools). At α=0.10 all factors were found 
significant except for x9 (number of metal deposition 
tools). At both significance levels the interaction term 
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between x1 and x6 was found to be significant (MTBF for 
Argon Fillet X number of Argon fillet tools). 
 
6 ANALYSIS WITH A 2K-P FRACTIONAL 

FACTORIAL DESIGN 
 
A 64 run, 216-10 resolution IV design was performed using 
all 16 of all the factors identified in Section 3 as well as 
some of the two factor interactions between the variables. 
Because of the size of the design, not all of the interactions 
could be fit. The significant factors of this design were 
found at a 0.05 significance level to be: 

 
x1: MTBF for Argon Fillet (MTBFa) 
x2: MTBF for Etchers (MTBFe) 
x3: MTBF for Implanters (MTBFi) 
x5: MTBF for Oxide Etch MTBFo 
x6: Number of  Argon fillet tools (na) 
x7: Number of Etcher (ne) 
x8: Number of  Implanter tools (ni) 
x10: Number of  Oxide Etch tools (no) 
x16: Percentage of hot lots. 

 
And the interaction term, 
 

x1x6: MTBF for Argon Fillet X number of Argon fillet 
tools. 
15
 
 The model consisted of 10 variables plus the intercept 
at a significance level of 0.05. Choosing an α=0.10 didn�t 
add any more terms to the model. 
 
7 CONCLUSIONS 
 
A 2-stage group-screening experiment and 2k-p experiments 
were designed to study the efficiency of using group 
screening as compared to not using group screening. Almost 
the same number of runs was made for both cases. Table 3 
summarizes the results with a look at the coefficient of 
determination (R2) and Mean Square Error (MSE). 
 The results show that both group screening and 
fractional factorial design gave similar results if one was 
careful in choosing the significance level for stage I of group 
screening. It�s interesting to note the low coefficient of 
determination (R2) if one chose to use α to be 0.05 in the 
case of group screening and the considerable improvement if 
α was chosen to be 0.10. The appropriate level of sig-
nificance is a critical factor during group screening stages; 
apparently it�s safer to go with higher significance level in 
early the stages. Another interesting observation from the 
results is that the percentage of hot lots was found to be very 
significant using fractional factorial design as opposed to 
group screening stage I where this factor�s significance was 
not detected.  The low number of runs that were taken in 
stage I of group screening could have caused this to happen. 

 

Table 3:  Comparison Between Group Screening and 2k-p 
 Group screening 2k-p 
 α=0.05 α=0.10 α=0.05 α=0.10 

MTBF for Argon Fillet (MTBFa) S* S S S 
MTBF for FE Etch (MTBFf) S S S S 

MTBF for implanter (MTBFi) S S S S 
MTBF for metal deposition (MTBFm) I S I I 

MTBF for Oxide Etch (MTBFo) S S S S 
Number of Argon fillet tools (na) I S S S 

Number of FE Etch tools (nf) I S S S 
Number of implanter tools (ni) I S S S 

Number of metal deposition tools (nm) I I I I 
Number of Oxide Etch tools (no) I S S S 

Operator to machine ratio for Argon fillet (O/Ma) I I I I 
Operator to machine ratio for FE Etch (O/Mf) I I I I 

Operator to machine ratio for implanter (O/Mi) I I I I 
Operator to machine ratio for metal deposition (O/Mm) I I I I 

Operator to machine ratio for Oxide Etch (O/Mo) I I I I 
Percentage of hot lots I I S S 

MTBF for Argon Fillet MTBFa X Number of Argon fillet tools (na) I S S S 
MSE 32.26 12.21 10.086 10.086 

R2 54.92% 84.69% 85.99% 85.99% 
Model p-value 0.0001 0.0001 0.0001 0.0001 

* S: Significant Factor, I: Insignificant Factor
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8 FUTURE WORK 
 
In future work, we might look at the throughput as a 
different performance measure that contradicts with cycle 
time. It might be interesting to try to optimize the settings of 
the different significant factors affecting these two 
performance measures so as to maximize the throughput and 
minimize cycle time then compare the benefits with the 
current settings. Considering the large number of runs that 
would be needed and the wasted computer time required for 
these runs, group-screening would be used instead of full or 
fractional factorial designs for running the experiments.  
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