
Proceedings of the 2000 Winter Simulation Conference
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.

THE IMS MISSION ARCHITECTURE FOR DISTRIBUTED
MANUFACTURING SIMULATION

Charles McLean
Frank Riddick

National Institute of Standards and Technology (NIST)

Gaithersburg, MD 20899, U.S.A.

ABSTRACT

This paper presents an overview of a neutral reference
architecture for integrating distributed manufacturing
simulation systems with each other, with other
manufacturing software applications, and with
manufacturing data repositories. Other manufacturing
software applications include, but are not limited to
systems used to: 1) design products, 2) specify processes,
3) engineer manufacturing systems, and 4) manage
production. The architecture identifies the software
building blocks and interfaces that will facilitate the
integration of distributed simulation systems and enable the
integration of those systems with other manufacturing
software applications. The architecture is being developed
as part of the international Intelligent Manufacturing
Systems (IMS) MISSION project.

1 INTRODUCTION

Scientists and engineers within the NIST Manufacturing
Systems Integration Division of the Manufacturing
Engineering Laboratory are developing an architecture for
distributed manufacturing simulation in collaboration with
representatives from a number of outside organizations.
The organizations are principally participants in the IMS
MISSION Project (MISSION Consortium 1998).
MISSION is just one of many international, collaborative
projects that are currently underway as part of the IMS
Program.

�The goal of MISSION is to integrate and utilize new,
knowledge-aware technologies of distributed persistent
data management, as well as conventional methods and
tools, in various enterprise domains, to meet the needs of
globally distributed enterprise modelling and simulation.
This will make available methodologies and tools to
support the definition of appropriate manufacturing
strategies and the design of appropriate organizations and
business processes. This goal will be achieved by
establishing a modelling platform incorporating
153
engineering knowledge and project information that
supports space-wise and control-wise design, evaluation
and implementation over the complete enterprise life cycle.
This will be the foundation stone for an architecture to
support engineering co-operation across the value chain of
the entire extended enterprise.� (MISSION Consortium
1998)

NIST is currently serving as the U.S. Regional
Coordinator for the IMS MISSION project. For further
information on the overall IMS Program, see the IMS Web
page at <www.ims.org>.

2 DISTRIBUTED MANUFACTURING

SIMULATION

This document takes a broad view of distributed
manufacturing simulation (DMS). Normally a DMS may
be thought of as a manufacturing simulation that is
comprised of multiple software processes that are
independently executing and interacting with each other.
Together, these simulation software processes may model
something as large as a manufacturing supply chain down
to something as small as an individual piece of industrial
machinery. Different software vendors may have
developed the basic underlying simulation software. The
modules may run on different computer systems in
geographically dispersed locations. The simulation may be
distributed to take advantage of the functionality of
specific vendor�s products, protect proprietary information
associated with individual system models, and/or improve
the overall execution speed of the simulation through the
use of parallel computer processors.

DMS may also refer to a distributed computing
environment where non-simulation manufacturing software
applications are running and interacting with one or more
simulation systems. Engineering systems may interact
with simulation systems through service requests. That is,
they submit data to a simulator for evaluation. For
example, a computer-aided manufacturing application that
has generated a control program for a machine tool may
9

McLean and Riddick

submit that program to a simulator to verify that it is
correct.

Another view of DMS is a computer environment
comprised of multiple, functional modules that together
form what today is commonly a single simulation system.
Such an environment may include model building tools,
simulation engines, display systems, and output analysis
software.

2.1 Why Build Distributed Manufacturing

Simulation Systems?

A distributed approach increases the functionality of
simulation. For example, it could be used to

• model supply chains across multiple businesses
where some of the information about the inner
workings of each organization may be hidden
from other supply chain members

• simulate multiple levels of manufacturing systems
at different degrees of resolution such that lower
level simulations generate information that feeds
into higher levels

• model multiple systems in a single factory with
different simulation requirements such that an
individual simulation-vendor�s product does not
provide the capabilities to model all areas of interest

• allow a vendor to hide the internal workings of a
simulation system through the creation of run-
time simulators with limited functionality

• create an array of low-cost, run-time, simulation
models that can be integrated into larger models

• take advantage of additional computing power,
specific operating systems, or peripheral devices
(e.g., virtual reality interfaces) afforded by
distributing across multiple computer processors

• provide simultaneous access to executing
simulation models for users in different locations
(collaborative work environments)

• offer different types and numbers of software
licenses for different functions supporting
simulation activities (model building,
visualization, execution, analysis).

The next section outlines the role that software

architectures will play in enabling the development of
distributed manufacturing simulations.

3 SOFTWARE ARCHITECTURE

In their book, Software Architecture: Perspectives on an
Emerging Discipline, Mary Shaw and David Garlan,
explain the significance of software architectures:

�As the size and complexity of software systems
increase, the design and specification of overall system
154
structure become more significant issues than the choice of
algorithms and data structures of computation. Structural
issues include the organization of a system as a
composition of components; global control structures; the
protocols for communication, synchronization, and data
access; the assignment of functionality to design elements;
the composition of design elements; physical distribution;
scaling and performance; dimensions of evolution; and
selection among design alternatives. This is the software
architecture level of design.�(Shaw and Garlan 1996)

A distributed manufacturing simulation architecture is
needed to address the integration problems that are
currently faced by software vendors and industrial users of
simulation technology. Neutral simulation interfaces
would help reduce the cost of data importation and model
sharing, and thus would make simulation technology more
affordable to users. The definition of a neutral architecture
for distributed manufacturing simulation is the first step
towards identifying the information models, interfaces, and
protocols for integrating these systems.

This step can be achieved by decomposing the
distributed manufacturing simulation architecture into three
major functional views: Distributed Computing Systems,
Simulation Systems, and Manufacturing Systems. Each
architectural view defines a set of system elements, data
models, and interface specifications for integrating
distributed manufacturing simulations. Aspects of each
view are interrelated to and interconnected with aspects of
the other views. The views can be thought of as three sides
of a cube.

3.1 Distributed Computing Systems View

This architectural view is concerned primarily with
simulation as a set of computers and software processes
that are simultaneous executing and communicating with
each other across a computer network. This view also
addresses issues pertaining to the general management and
integration of the software applications that are used to
generate models and data for the simulations. The fact that
the software processes are simulations or simulation-
related is not particularly critical in this view. This view is
not concerned with simulation or manufacturing data
content.

This view provides the infrastructure that allows us to
implement simulation development and execution
environments as distributed systems. Elements of this
view include: hardware computing platforms; operating
systems, distributed computer processes, integration
infrastructures, process initialization and synchronization,
software development environments (including but not
limited to editors, compilers, system build utilities,
debuggers, source code, general subroutine and header
libraries, run-time modules, and system test data),
communications systems, information models and data
0

McLean and Riddick

dictionaries, work flow management systems, database
management systems and databases, product data
management systems, version control and configuration
management, computer file systems and files, system
installation and maintenance utilities, computer security
and data protection services, license verification systems,
and World Wide Web access mechanisms. It also includes
various input and output peripheral devices such as digital
cameras, scanners, monitors, projection displays, printers,
and virtual reality interfaces.

There are five major clusters of information systems
that are relevant to the distributed manufacturing
simulation problem: 1) software development systems; 2)
design, engineering, production planning, and simulation
model development systems; 3) distributed manufacturing
simulation execution systems; 4) manufacturing
management, control, production, support systems, and 5)
distributed manufacturing data repository systems.

Figure 1 groups these systems into four computing
environments and a shared, common data repository. The
figure presents a logical grouping of system elements.
Undoubtedly each implementation of this architecture will
be based on different information systems and physical
configurations. The major elements of the figure are
described briefly below.

The Software Development Environment is used to
develop simulation engines, visualization systems,
integrating infrastructures, and other software applications.
It is not the central focus of the architecture and will not be
addressed in this paper. The Design, Engineering,
Production Planning, and Simulation Model Development
Environment contains the systems that generate models
and data used by simulation and manufacturing itself. It is
described in further detail below. The Distributed
Manufacturing Simulation Execution Environment
contains simulation engines executing models,
visualization systems, and infrastructure systems to
154
manage and integrate those simulations. The
Manufacturing Management, Control, Production and
Support Systems Environment is made up of the �real�
systems that are used to run and perform the manufacturing
operations.

There are five component elements of the Design,
Engineering, Production Planning, and Simulation Model
Development Environment: 1) product design applications
and tool kits; 2) manufacturing engineering applications
and tool kits; 3) production management applications and
tool kits; 4) simulation model development applications
and tool kits, and 5) work flow management systems. In
this environment, the work flow management system
provides the integrating infrastructure. It manages and
sequences activities within the applications and tool kits
that generate manufacturing models and data. Tool kits are
tightly coupled suites of applications that work together to
perform a related set of functions. Tool kits may be
manually driven or more automated expert systems.

Product design applications may include conceptual
and detailed design, solid modeling, bill of materials
generation, design handbooks, parts catalogs, and various
analysis tools. Some manufacturing engineering
applications may include process planning and process
specification, plant layout, machine tool programming,
time standards development, line balancing, and tool and
fixture design. Production management applications may
include manufacturing resource planning, batch and lot
sizing, and scheduling applications. Simulation model
development tools include functions such as flowcharting,
diagramming, model definition, and user level
programming.

A communications network connects environments with
each other and the Manufacturing Data Repository. The
Repository is a consolidation of the various data stores and
management systems that are used by the various information
systems environments. It logically integrates the file systems,
Distributed Manufacturing
Data Repository

Software Development
Environment

Design, Engineering,
Production Planning and

Simulation Model
Development Environment

Distributed Manufacturing
Simulation Execution

Environment

Manufacturing
Management, Control,

Production and Support
Systems Environment

Communications Network

Figure 1: Relationships Between the Major Elements of the DMS Architecture
1

McLean and Riddick

Web pages, data bases, and libraries used for the storage of
data by design, engineering, production planning, real
manufacturing systems, simulation model development, and
executing distributed manufacturing simulations. In different
implementations of the architecture, the repository may reside
on a single computer system, a file server, or be
geographically distributed across a network.

The Distributed Manufacturing Data Repository may
include the following types of data stores and management
systems: computer file systems, Web pages and files,
object-oriented database management systems, relational
database management systems, special-purpose library
management systems, and source-code control systems for
software. A common data access interface mechanism will
be used to simplify access to the data repository by all
software environments and applications within those
environments. References to documents in the data
repository may be specified as Uniform Resource Locators
(URLs) see (Berners-Lee et al. 1998). This will allow the
identification of documents, both remotely and locally
stored using the well-established, standard, World Wide
Web access mechanism.

Figure 2 shows a decomposition of the Distributed
Manufacturing Data Repository into its component
elements. All of the types of data stores indicated in the
figure do not necessarily have to be included in an
implementation of the architecture. In the future,
additional data management schemes and data stores may
be added to the repository structure. From this point
forward in this document, the Distributed Manufacturing
Data Repository and Common Data Access Mechanism
will be treated and represented as a single module.

3.2 Simulation Systems View

This architectural view is concerned with the specifics of
building, initializing, running, observing, interacting with,
154
and analyzing simulations. In this view, simulation
systems, tools, and supporting applications should be
viewed generically; i.e., independent of the manufacturing
domain. The same system elements could be used for
simulating other problem domains. Major elements of this
view include: simulation coordination and management,
visualization systems, manufacturing data preparation and
model development tools, simulation models, discrete
event and process simulation engines, component module
and template libraries, mathematical and analytical models,
input distributions, timing and event calendars, and output
analysis tools.

Figure 3 illustrates the relationship between the
various elements of the distributed manufacturing
simulation execution environment. The integration
infrastructure for this environment, the Run Time
Infrastructure (RTI), is based on the U.S. Department of
Defense High Level Architecture (HLA) developed by the
Defense Modeling and Simulation Office (DMSO) (Kuhl
et al. 1999). The HLA was developed by DMSO to
provide a consistent approach for integrating distributed,
defense simulations. Several implementations of the HLA
RTI software are currently available from different
sources. There is, however, no interoperability across RTI
implementations. A distributed simulation running on
different computer systems across a network must use the
same RTI software as an integration infrastructure.

An HLA-based distributed simulation is called a
federation. Each simulator, visualization system, real
production system, or output analysis system that is
integrated by the HLA RTI is called a federate. One
common data definition is created for domain data that is
shared across the entire federation. It is called the
federation object model (FOM). Each federate has a
simulation object model that defines the elements of the
FOM that it implements.
Common Data
Access

Mechanism

Computer File
System

PDMS Data
Bases

Product Data
Management

System

Web Files

Web Server

Object-Oriented
Data Bases

Object-Oriented
Data Base

Management
System

Relational Data
Bases

Relational Data
Base

Management
System

Special Purpose
Libraries

Special Purpose
Library

Management
System

Software File
System

Software Source
Code Control

System

Communications Network

Figure 2: Decomposition of the Distributed Manufacturing Data Repository
2

McLean and Riddick

Manufacturing Simulation
Federation Manager

Distributed
Manufacturing Data

Repository

HLA Run-Time
Infrastructure and
Communications

Network

Simulation
Visualization

Federate

DMS Adapter

Manufacturing
Simulation
Federate

DMS Adapter

Real Manufacturing
System

Federate

DMS Adapter

Simulation Output
Data Analysis

Federate

DMS Adapter

Figure 3: Distributed Manufacturing Simulation Environment Elements Integrated by
the HLA Run Time Infrastructure
A DMS Adapter Module is incorporated into each DMS
federate. The DMS Adapter will handle the transmission,
receipt, and internal updates to all FOM objects used by a
federate. The DMS Adapter Module will contain a subroutine
interface and data definition file that will facilitate its use as an
integration mechanism by software developers. The goal of
the DMS adapter is to ease the development of distributed
manufacturing simulations by reusing implementations for
some of the necessary housekeeping and administrative work.
The DMS adapter provides a simplified time management
interface, automatic storage for local object instances,
management of lists of remote object instances of interest,
management and logging for interactions of interest, and
simplified object and interaction filtering.

Several functions may be needed for the proper operation
of a distributed simulation that are logically outside of any one
simulation federate. In the distributed manufacturing sim-
ulation environment, the Manufacturing Simulation
Federation Manager is the architectural element that provides
these functions. Its may implement functionality to execute
initialization scripts that launch federates, to provide initial-
ization data to federates, to assist in federation time manage-
ment, and to provide a user interface so that users can monitor
and manipulate the federation and invoke federation services.

3.3 Manufacturing Systems View

This architectural view is concerned with modeling the
behavior and data of specific manufacturing organizations
and systems, from the supply chain down to individual
machines on the factory floor. Major elements of this view
include, but are not limited to

• manufacturing organizational templates and struc-
tures, business process and organizational models
15
• supply chain systems - refineries, mills, factories,
warehouses, distributors, transportation systems,
wholesalers, retailers, customers, and so on

• manufacturing facility departments, areas, and
subsystems - design, engineering, procurement,
finance, production shops, work cells, production
lines, workstations, inventory storage areas,
shipping and receiving, and so on

• production resources and support equipment -
machine tools, inspection equipment, material
handling systems, storage buffers, robots,
workers,

• tools and materials - cutting tools, hand tools, jigs
and fixtures, consumables, components, part
blanks, sheet and bar stock, work-in-process
inventory, and so on

• manufacturing information systems - design,
engineering, production planning and scheduling,
tool management, shop floor data collection
systems, and

• manufacturing documents and data - work flow
patterns, orders, jobs, product data, part designs,
process plans, production calendars, schedules,
layouts, and other reference data (machinability
data, statistical distributions).

Different manufacturers will create different supply

chain organizations and arrangements of systems within
each organization. The DMS architecture must be flexible
enough to allow these different system configurations, but
still enable increased integration. As such, the architecture
does not mandate a particular manufacturing organization.
It does require the development and specification of one
DMS FOM.
43

McLean and Riddick

Many objects in the FOM may reference documents
containing more detailed information that are stored in a
file system, PDM system, or database. An example of such
a document might be a part design file or a process plan.
The Extensible Markup Language (XML) can be used to
define new document types (Goldfarb and Prescod 2000).
XML allows for the definition data that has semantic
information in addition to the data values. XML data-type-
definitions (DTD) may be used to define new document
formats. Advantages of this approach include:

• the set of supported document types can be easily

extended
• each individual document format can be easily

modified
• COTS tools are available to implement creation,

parsing, interpreting, and displaying the documents
• XML documents from other sources can easily be

supported
• different instances of file structures may be created

to convey the same semantic information
• XML-enabled browsers can intelligently display

the data
• semantic validation of the files is possible.

Even without the DTD, XML files are often both

human and machine readable because of the semantic
information that is included.

There are potentially many document types that will be
stored as distributed manufacturing simulation data. Some of
these document types have widely-accepted or standardized
formats. Examples of these include the many kinds of CAD
files (DXF, IGES, etc.), image files (GIF, TIFF, BMP, etc),
and executables (EXE, com, bat, dll, etc.). However, many
manufacturing documents do not have standardized format.
Schedules, BOMs, and process plans are examples of such
documents. While it is easy to come up with acceptable
representations for such data that are appropriate for short-
term use, it is highly likely that these representations will
need modifications, possibly major modifications, over time.
A mechanism is needed to allow the definition of extensible
formats for new document types without adversely affecting
the rest of the DMS architecture or interfaces. XML can be
that mechanism. XML DTD�s must be stored in and
uniquely accessible from the DMS data repository. An
initial set of document formats should be developed and
allowed to expand over time as the need arises.

4 INTEGRATION VIA DMS ADAPTER

AND THE HLA/RTI

In the discussion and diagrams below, the changes
necessary for integrating a legacy simulation into a
distributed simulation using the HLA and the DMS
Adapter will be discussed. The term legacy simulation is
154
used to indicate a manufacturing-oriented or general-
purpose discrete-event simulation tool that does not have
native support for the HLA or DMS Adapter technologies.

4.1 Simplified Simulation Execution Architecture

In Figure 4, a simplified view of a non-distributed legacy
simulation application is shown. It consists of a
simulation execution system executing a simulation model.
The simulation model is a behavior-oriented description of
the logical system that is to be simulated. Simulation
execution systems often support the visualization of the
executing model and statistical reporting of the simulated
events that are generated during execution. Data that are
needed as input to or that are generated by the executing
simulation are maintained in the persistent data store.

4.2 Integration using the HLA/RTI

Figure 5 shows the architecture of a legacy simulation that
has been integrated into a distributed simulation using the
HLA. On the right side of the diagram, a simplified view of
the HLA architecture is presented (constructs or concepts
that are beyond the scope of this presentation have been
left out for brevity). The Federate Object Model (FOM) is
a description of the data that can be exchanged between
federates. The FOM is usually different for each
distributed simulation that is developed. The RTI
Ambassador implements the interface through which
federates send information to the RTI. This interface
contains over 120 methods that provide the capability to
manage federation creation, manage object class
definitions, manage information exchange using objects
and interactions, and manage the advancement of time for
the federation.

While the RTI Ambassador provides the mechanism
for sending information to the RTI, an implementation of

Legacy Simulation
Execution System

Legacy
Simulation
Persistant
Storage

Simulation
Model

Figure 4: Simplified View of a Typical
Legacy Simulation System
4

McLean and Riddick

the Federate Ambassador interface is necessary to be able
to receive information from the RTI. The Federate
Ambassador is an interface that contains around 40
methods that define how the RTI sends information to a
federate asynchronously in response changes in the state of
the federation. These state changes may be in response to
calls to the methods on the RTI Ambassador interface
made by any federate in the federation. An
implementation of the Federate Ambassador interface is
not provided with the RTI software. The rules of the HLA
require that an implementation of the Federate Ambassador
be provided by the legacy simulation. Furthermore, this
implementation must be consistent with the information
defined in the FOM that is being used in this federation.

4.2.1 HLA/RTI Integration Issues

Since legacy simulation systems are not designed to be
used with the HLA/RTI, code must be developed to adapt
the legacy simulation system for such purposes. Normally
this code is complex. In addition, although some of the
code can be reused, a significant amount of code will need
to be added or modified for each distributed simulation that
is developed. In the following sections, some of the
important issues related to the complexity and reusability
of the adaptation code are discussed.

4.2.1.1 RTI Interface Complexity

There are roughly 120 methods in the RTI Ambassador
interface and 40 methods in the Federate Ambassador
interface. Depending on the current state of the RTI, the

Legacy Simulation
Execution System

Legacy
Simulation
Persistant
Storage

Simulation
Model

HLA
Runtime

Infrastructure

Federate
Object
Model

Custom
Adaptation

Code

Federate
Ambassador

Implementation

RTI
Ambassador

Figure 5: Legacy Simulation Integration Using the HLA/
RTI
154
federation, and the data that is defined in the FOM,
invoking a method can cause vastly different outcomes to
occur. While the richness of the RTI�s interfaces provide
for an extremely flexible simulation integration approach, a
side effect is that the learning curve for understanding
these interfaces is quite high.

4.2.1.2 The RTI�s Implicit Invocation Architecture

The architecture of the RTI is based on what is called an
�implicit invocation architecture.� In this approach, a
federate can modify the state of the federation by invoking
methods of the RTI Ambassador interface. Information
relating to changes in the state of the federation is passed
back as asynchronous callbacks to methods in the Federate
Ambassador that was implemented by the federate. While
this is an efficient and flexible approach, it makes adapting
legacy simulation difficult because legacy simulations
usually provide only procedurally oriented mechanisms for
integration.

4.2.1.3 Inadequate Integration Mechanisms are

Provided by the Legacy Simulations

To use the interfaces of the RTI, some adaptation code
must be written using a language supported by one of the
RTI language mappings. Mappings currently exist for
languages such as C, C++, Java, and CORBA IDL (Ben-
Natan 1995). While some simulation systems provide
mechanisms to call functions written in such languages
natively, many do not. Integrating those legacy
simulations usually requires a combination of proprietary-
language code, file input/output, and socket programming,
depending on which mechanisms are provided. This
situation increases the complexity of developing and
maintaining the adaptation code.

4.2.1.4 Cooperative Time Management

In distributed simulations in which federates must
cooperatively manage the advancement of time, the legacy
simulation must be modified to cede some of the control
over the advancement of time where previously it had
complete control. Because the RTI provides multiple
mechanisms for coordinating time advancement, choosing
the appropriate mechanism and properly implementing the
adaptation code to support it can require significant
forethought and development.

4.2.1.5 Storage and Maintenance for

Instances of FOM Objects

Many legacy simulations have internal representations for
entities such as parts or machines, and these simulations can
maintain the information about such entities as they are
5

McLean and Riddick
created during a simulation execution. The definitions of
these entities will differ between different legacy
simulations. To enable the exchange of data relating to
these entities, neutral representations of these entities are
usually defined in the FOM as object classes and associated
attributes. However, the HLA/RTI provides no mechanism
for storing object class instances. It only provides for
storage of information related to the owner of a particular
object instance, the class of the instance, and the attributes
that are associated with an instance. Therefore, storage for
instances of FOM objects must be provided by the legacy
simulation. This is in addition to whatever storage has been
set aside to maintain the legacy simulation�s internal
representation of an object. Adaptation code to maintain
FOM object storage and to coordinate state changes between
the internal representations and the FOM representations of
objects must be developed.

4.3 Integration using the DMS Adapter

In the previous section, some of the issues that are related
to integrating legacy simulations using just the facilities of
the HLA were discussed. It shows that developing the
Federate Ambassador and adaptation code can be a
significant undertaking when developing a distributed
simulation, and that this effort must be repeated for each
legacy simulation that is to be integrated.

Figure 6 shows the architecture of a legacy simulation
that has been integrated into a distributed simulation using
the DMS Adapter. Instead of having legacy simulations
integrated directly with the HLA/RTI, those simulations
will interact with the interface of the adapter. The goal of
15

the adapter is to provide a simplified method for
integrating legacy simulations into distributed simulations
while also providing as much of the capabilities of the
HLA/RTI as possible. The reader should note that
simplified does not imply simple. Adaptation code must
still be developed to integrate a legacy simulation system
with the DMS Adapter. However, by reducing the
complexity of the interface to which the legacy simulation
is being integrated, the level of effort for performing the
integration should be greatly reduced.

4.3.1 Architectural Goals for the DMS Adapter

What follows is a list of design goals for the architecture of
the DMS Adapter. If met, implementing distributed
simulations using the DMS Adapter should be simpler than
when using the approach that was depicted in Figure 5.

4.3.1.1 Reduce Interface Complexity

The interface of the adapter will have approximately 35
methods instead of the 120 methods with 40 callbacks
defined by the RTI and Federate Ambassadors.

4.3.1.2 Remove Federate Ambassador Implementation

Issues from the Legacy Simulation

Legacy simulations will not have to develop Federate
Ambassador implementations. The adapter will implement
a federate ambassador and use it to receive information
from the RTI.
Distributed Manufacturing Simulation
Adapter HLA

Runtime
Infrastructure

Federate
Object
Model

Adapter
Interface

Implementation

Federate
Ambassador

Implementation RTI
Ambassador

Legacy Simulation
Execution System

Legacy
Simulation
Persistant
Storage

Simulation
Model

Custom
Adaptation

Code

Adapter Maintained Information

! List of Federates in the Federation
! Instantiations of locally owned objects
! Copies of objects owned by other federates
! Queue of messages from other federates
! Object type definitions
! Object and message filtering data
! Adapter initialization and configuration
 information

Figure 6: Legacy Simulation Integration Using the DMS Adapter
46

McLean and Riddick

4.3.1.3 Define an Interface that Facilitates Integration
with Procedurally Oriented Legacy Simulations

The results of invoking most of the methods in the adapter�s
interface will be returned immediately to the legacy
simulation. Information that must be passed back
asynchronously to a federate will be stored in a message
queue in the adapter associated with that federate. This
includes information that is generated by the activities of other
federates in the federation. The adapter will provide the
storage for this information and provide methods to access
this information upon request from the legacy simulation.

4.3.1.4 Minimize the Impact of Changes to the Infor-

mation Model through the Development
of Generic FOM Objects that Contain
XML Stings

To overcome the problem of having to develop different
FOM�s for each distributed simulation configuration, the
information about the classes and attributes for the objects
that are to be exchanged will not be defined in the FOM.
A generic object will be defined in the FOM and this object
will be exchanged between federates. This generic FOM
object will contain an XML string that contains the
semantic content for the object. The XML string is the
information that will be passed to the legacy simulation.
The generic FOM object will also contain information
about the type of data contained in the XML string. This
will facilitate filtering and routing of object updates by the
RTI. There are five major benefits to this approach:

1. Only one FOM needs to be developed for use with

the DMS Adapter.
2. Only one implementation of the Federate

Ambassador needs to be developed for use with
the DMS Adapter.

3. The DMS Adapter does not have to be modified
and recompiled for each distributed simulation
configuration.

4. The information model (the definition of the
entities, attributes and messages that will be
exchanged between simulations) can be changed
without changing the FOM, Federate Ambassador
implementation, or the DMS Adapter
Implementation.

5. Implementations of mechanisms for manipulating
XML data are widely available and can be used in
the development of both the DMS Adapter and
the adaptation code for legacy simulations.

154
4.3.1.5 Maintain Storage for the Objects that are
to be Exchanged between Simulations

As discussed in a previous section, the definition of an
object (class and associated attributes) that is to be
exchanged between simulations will differ from the
internal definition that each simulation supports for that
object. Since each legacy simulation only provides storage
for its internal objects and the RTI provides no mechanism
for the storage of objects, storage and maintenance for the
objects that are to be exchanged must be provided. The
DMS adapter will provide this capability.

Each adapter will provide methods that allow a legacy
simulation to create, modify, and delete objects that can be
shared with other federates in the federation. Objects will
have �owners�, and ownership will be granted initially to the
adapter (and associated legacy simulation) that created it.
Ownership is required for modification or deletion
operations on an object to succeed. Storage for �owned�
objects will be provided by the DMS Adapter that owns the
object. In addition, storage for copies of objects owned by
other DMS Adapters will be provided. Each DMS Adapter
will use the services of the RTI to distribute object update
information for the objects it owns, and will incorporate
object update information it receives about objects owned by
other DMS Adapters. In this way, the DMS Adapters in the
federation can work cooperatively to maintain updated
information about all the objects in the federation, without
the direct intervention of their associated legacy simulations.

4.3.1.6 Simplify Time Coordination

The RTI provides a multitude of time synchronization
methods that are extremely flexible and powerful but are
also quite complicated. The adapter implements a �time-
stepped� synchronization approach. DMS Adapter
methods are provided to declare that the associated legacy
simulation wishes to advance to a certain simulation time,
and to check if it is ok to advance to this time. When the
DMS Adapter indicates to the legacy simulation that it is
ok to advance, the legacy simulation can then �simulate�
from its current simulation time to the new simulation time
that it requested. It can then use the other methods in the
DMS Adapter interface to get information about what was
going in the rest of the federation while it was executing its
�simulation step.� When all of the simulations use this
method, the functionality of the RTI�s time management
services ensures that the collective advancement of all of
the simulations proceeds properly.

5 CONCLUSIONS

This document has provided a brief overview of the
distributed manufacturing simulation architecture that is
being developed as a part of the IMS MISSION Project.
7

McLean and Riddick

The approach taken in the architecture is to facilitate
integration of existing commercial systems with minimal
new development work. The architecture also should
enable experimentation with research systems that are
based on evolving technology. The architecture describes
the major system modules, data elements or objects, and
interfaces between those modules. It uses the DOD High
Level Architecture and Run Time Infrastructure as an
integrating infrastructure. Detailed specifications will have
to be prepared for the key interfaces identified in this
document. Prototypes of each of these systems are being
developed, tested, and integrated with commercial
simulation systems, modeling tools, and other related
manufacturing software applications as part of the IMS
MISSION Project.

ACKNOWLEDGMENTS

Work described in this paper was sponsored by the NIST
Systems Integration for Manufacturing Applications
(SIMA) Program. No approval or endorsement of any
commercial product by the National Institute of Standards
and Technology is intended or implied. The work
described was funded by the United States Government
and is not subject to copyright.

REFERENCES

MISSION Consortium. 1998. Intelligent Manufacturing

System (IMS) Project Proposal: Modelling and
Simulation Environments for Design, Planning and
Operation of Globally Distributed Enterprises
(MISSION), Version 3.3. Shimuzu Corporation,
Tokyo, Japan

Shaw, M., and D. Garlan. 1996. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-
Hall: Saddle River, NJ

Berners-Lee, T., R. Fielding, and L. Masinter. 1998.
Uniform Resource Identifiers (URI): Generic Syntax
(RFC 2396). Internet Engineering Task Force

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating
Computer Simulations: An Introduction to the High
Level Architecture. Prentice Hall: Upper Saddle River,
NJ

Goldfarb, C., and P. Prescod. 2000. The XML Handbook,
Prentice Hall: Upper Saddle River, NJ

Ben-Natan, R., 1995. CORBA: A Guide To The Common
Object Request Broker Architecture. McGraw-Hill:
New York, NY

AUTHOR BIOGRAPHIES

CHUCK MCLEAN is Leader of the Manufacturing
Systems Engineering Group in the U.S. National Institute
of Standards and Technology (NIST) Manufacturing
154
Systems Integration Division. He has managed research
programs in manufacturing simulation, engineering tool
integration, product data standards, and manufacturing
automation at NIST since 1982. He has authored more than
50 papers on topics in these areas. He holds a Master�s
Degree in Information Engineering from University of
Illinois at Chicago and Bachelor�s Degree from Cornell
University.

FRANK RIDDICK is a staff member in the
Manufacturing Systems Engineering Group in the U.S.
National Institute of Standards and Technology (NIST)
Manufacturing Systems Integration Division. He has
participated in research and authored several papers
relating to manufacturing simulation integration and
product data modeling. He holds a Master�s Degree in
Mathematics from Purdue University.
8

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

