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ABSTRACT 
 
This paper presents an overview of a neutral reference 
architecture for integrating distributed manufacturing 
simulation systems with each other, with other 
manufacturing software applications, and with 
manufacturing data repositories. Other manufacturing 
software applications include, but are not limited to 
systems used to: 1) design products, 2) specify processes, 
3) engineer manufacturing systems, and 4) manage 
production. The architecture identifies the software 
building blocks and interfaces that will facilitate the 
integration of distributed simulation systems and enable the 
integration of those systems with other manufacturing 
software applications. The architecture is being developed 
as part of the international Intelligent Manufacturing 
Systems (IMS) MISSION project. 
 
1 INTRODUCTION 
 
Scientists and engineers within the NIST Manufacturing 
Systems Integration Division of the Manufacturing 
Engineering Laboratory are developing an architecture for 
distributed manufacturing simulation in collaboration with 
representatives from a number of outside organizations.  
The organizations are principally participants in the IMS 
MISSION Project (MISSION Consortium 1998).  
MISSION is just one of many international, collaborative 
projects that are currently underway as part of the IMS 
Program. 

�The goal of MISSION is to integrate and utilize new, 
knowledge-aware technologies of distributed persistent 
data management, as well as conventional methods and 
tools, in various enterprise domains, to meet the needs of 
globally distributed enterprise modelling and simulation. 
This will make available methodologies and tools to 
support the definition of appropriate manufacturing 
strategies and the design of appropriate organizations and 
business processes.  This goal will be achieved by 
establishing a modelling platform incorporating 
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engineering knowledge and project information that 
supports space-wise and control-wise design, evaluation 
and implementation over the complete enterprise life cycle. 
This will be the foundation stone for an architecture to 
support engineering co-operation across the value chain of 
the entire extended enterprise.� (MISSION Consortium 
1998) 

NIST is currently serving as the U.S. Regional 
Coordinator for the IMS MISSION project.  For further 
information on the overall IMS Program, see the IMS Web 
page at <www.ims.org>. 

 
2 DISTRIBUTED MANUFACTURING 

SIMULATION 
 
This document takes a broad view of distributed 
manufacturing simulation (DMS).  Normally a DMS may 
be thought of as a manufacturing simulation that is 
comprised of multiple software processes that are 
independently executing and interacting with each other.  
Together, these simulation software processes may model 
something as large as a manufacturing supply chain down 
to something as small as an individual piece of industrial 
machinery.  Different software vendors may have 
developed the basic underlying simulation software.  The 
modules may run on different computer systems in 
geographically dispersed locations.  The simulation may be 
distributed to take advantage of the functionality of 
specific vendor�s products, protect proprietary information 
associated with individual system models, and/or improve 
the overall execution speed of the simulation through the 
use of parallel computer processors. 

DMS may also refer to a distributed computing 
environment where non-simulation manufacturing software 
applications are running and interacting with one or more 
simulation systems.  Engineering systems may interact 
with simulation systems through service requests.  That is, 
they submit data to a simulator for evaluation.  For 
example, a computer-aided manufacturing application that 
has generated a control program for a machine tool may 
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submit that program to a simulator to verify that it is 
correct. 

Another view of DMS is a computer environment 
comprised of multiple, functional modules that together 
form what today is commonly a single simulation system. 
Such an environment may include model building tools, 
simulation engines, display systems, and output analysis 
software. 

 
2.1 Why Build Distributed Manufacturing 

Simulation Systems?  
 
A distributed approach increases the functionality of 
simulation.  For example, it could be used to 
 

• model supply chains across multiple businesses 
where some of the information about the inner 
workings of each organization may be hidden 
from other supply chain members 

• simulate multiple levels of manufacturing systems 
at different degrees of resolution such that lower 
level simulations generate information that feeds 
into higher levels 

• model multiple systems in a single factory with 
different simulation requirements such that an 
individual simulation-vendor�s product does not 
provide the capabilities to model all areas of interest 

• allow a vendor to hide the internal workings of a 
simulation system through the creation of run-
time simulators with limited functionality 

• create an array of low-cost, run-time, simulation 
models that can be integrated into larger models 

• take advantage of additional computing power, 
specific operating systems, or peripheral devices 
(e.g., virtual reality interfaces) afforded by 
distributing across multiple computer processors 

• provide simultaneous access to executing 
simulation models for users in different locations 
(collaborative work environments) 

• offer different types and numbers of software 
licenses for different functions supporting 
simulation activities (model building, 
visualization, execution, analysis). 

 
The next section outlines the role that software 

architectures will play in enabling the development of 
distributed manufacturing simulations. 

 
3 SOFTWARE ARCHITECTURE 
 
In their book, Software Architecture: Perspectives on an 
Emerging Discipline,  Mary Shaw and David Garlan, 
explain the significance of software architectures:  

�As the size and complexity of software systems 
increase, the design and specification of overall system 
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structure become more significant issues than the choice of 
algorithms and data structures of computation.  Structural 
issues include the organization of a system as a 
composition of components; global control structures; the 
protocols for communication, synchronization, and data 
access; the assignment of functionality to design elements; 
the composition of design elements; physical distribution; 
scaling and performance; dimensions of evolution; and 
selection among design alternatives.  This is the software 
architecture level of design.�(Shaw and Garlan 1996) 

A distributed manufacturing simulation architecture is 
needed to address the integration problems that are 
currently faced by software vendors and industrial users of 
simulation technology.  Neutral simulation interfaces 
would help reduce the cost of data importation and model 
sharing, and thus would make simulation technology more 
affordable to users.  The definition of a neutral architecture 
for distributed manufacturing simulation is the first step 
towards identifying the information models, interfaces, and 
protocols for integrating these systems. 

This step can be achieved by decomposing the 
distributed manufacturing simulation architecture into three 
major functional views: Distributed Computing Systems, 
Simulation Systems, and Manufacturing Systems. Each 
architectural view defines a set of system elements, data 
models, and interface specifications for integrating 
distributed manufacturing simulations.  Aspects of each 
view are interrelated to and interconnected with aspects of 
the other views.  The views can be thought of as three sides 
of a cube. 

 
3.1 Distributed Computing Systems View 
 
This architectural view is concerned primarily with 
simulation as a set of computers and software processes 
that are simultaneous executing and communicating with 
each other across a computer network.  This view also 
addresses issues pertaining to the general management and 
integration of the software applications that are used to 
generate models and data for the simulations. The fact that 
the software processes are simulations or simulation-
related is not particularly critical in this view.  This view is 
not concerned with simulation or manufacturing data 
content. 

This view provides the infrastructure that allows us to 
implement simulation development and execution 
environments as distributed systems.  Elements of this 
view include: hardware computing platforms; operating 
systems, distributed computer processes, integration 
infrastructures, process initialization and synchronization, 
software development environments (including but not 
limited to editors, compilers, system build utilities, 
debuggers, source code, general subroutine and header 
libraries, run-time modules, and system test data), 
communications systems, information models and data 
0
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dictionaries, work flow management systems, database 
management systems and databases, product data 
management systems, version control and configuration 
management, computer file systems and files, system 
installation and maintenance utilities, computer security 
and data protection services, license verification systems, 
and World Wide Web access mechanisms. It also includes 
various input and output peripheral devices such as digital 
cameras, scanners, monitors, projection displays, printers, 
and virtual reality interfaces. 

There are five major clusters of information systems 
that are relevant to the distributed manufacturing 
simulation problem: 1) software development systems; 2) 
design, engineering, production planning, and simulation 
model development systems; 3) distributed manufacturing 
simulation execution systems; 4) manufacturing 
management, control, production, support systems, and 5) 
distributed manufacturing data repository systems. 

Figure 1 groups these systems into four computing 
environments and a shared, common data repository.  The 
figure presents a logical grouping of system elements. 
Undoubtedly each implementation of this architecture will 
be based on different information systems and physical 
configurations.  The major elements of the figure are 
described briefly below. 

The Software Development Environment is used to 
develop simulation engines, visualization systems, 
integrating infrastructures, and other software applications. 
It is not the central focus of the architecture and will not be 
addressed in this paper. The Design, Engineering, 
Production Planning, and Simulation Model Development 
Environment contains the systems that generate models 
and data used by simulation and manufacturing itself.  It is 
described in further detail below. The Distributed 
Manufacturing Simulation Execution Environment 
contains simulation engines executing models, 
visualization systems, and infrastructure systems to 
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manage and integrate those simulations. The 
Manufacturing Management, Control, Production and 
Support Systems Environment is made up of the �real� 
systems that are used to run and perform the manufacturing 
operations.  

There are five component elements of the Design, 
Engineering, Production Planning, and Simulation Model 
Development Environment: 1) product design applications 
and tool kits; 2) manufacturing engineering applications 
and tool kits; 3) production management applications and 
tool kits; 4) simulation model development applications 
and tool kits, and 5) work flow management systems.  In 
this environment, the work flow management system 
provides the integrating infrastructure.  It manages and 
sequences activities within the applications and tool kits 
that generate manufacturing models and data.  Tool kits are 
tightly coupled suites of applications that work together to 
perform a related set of functions. Tool kits may be 
manually driven or more automated expert systems. 

Product design applications may include conceptual 
and detailed design, solid modeling, bill of materials 
generation, design handbooks, parts catalogs, and various 
analysis tools.  Some manufacturing engineering 
applications may include process planning and process 
specification, plant layout, machine tool programming, 
time standards development, line balancing, and tool and 
fixture design.  Production management applications may 
include manufacturing resource planning, batch and lot 
sizing, and scheduling applications.  Simulation model 
development tools include functions such as flowcharting, 
diagramming, model definition, and user level 
programming. 

A communications network connects environments with 
each other and the Manufacturing Data Repository.  The 
Repository is a consolidation of the various data stores and 
management systems that are used by the various information 
systems environments.  It logically integrates the file systems, 
Distributed Manufacturing
Data Repository

Software Development
Environment

Design, Engineering,
Production Planning and

Simulation Model
Development  Environment

Distributed Manufacturing
Simulation Execution

Environment

Manufacturing
Management, Control,

Production and Support
Systems Environment

Communications Network

Figure 1:  Relationships Between the Major Elements of the DMS Architecture 
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Web pages, data bases, and libraries used for the storage of 
data by design, engineering, production planning, real 
manufacturing systems, simulation model development, and 
executing distributed manufacturing simulations.  In different 
implementations of the architecture, the repository may reside 
on a single computer system, a file server, or be 
geographically distributed across a network. 

The Distributed Manufacturing Data Repository may 
include the following types of data stores and management 
systems: computer file systems, Web pages and files, 
object-oriented database management systems, relational 
database management systems, special-purpose library 
management systems, and source-code control systems for 
software. A common data access interface mechanism will 
be used to simplify access to the data repository by all 
software environments and applications within those 
environments.  References to documents in the data 
repository may be specified as Uniform Resource Locators 
(URLs) see (Berners-Lee et al. 1998).  This will allow the 
identification of documents, both remotely and locally 
stored using the well-established, standard, World Wide 
Web access mechanism. 

Figure 2 shows a decomposition of the Distributed 
Manufacturing Data Repository into its component 
elements.  All of the types of data stores indicated in the 
figure do not necessarily have to be included in an 
implementation of the architecture.  In the future, 
additional data management schemes and data stores may 
be added to the repository structure.  From this point 
forward in this document, the Distributed Manufacturing 
Data Repository and Common Data Access Mechanism 
will be treated and represented as a single module. 

 
3.2 Simulation Systems View 
 
This architectural view is concerned with the specifics of 
building, initializing, running, observing, interacting with, 
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and analyzing simulations.  In this view, simulation 
systems, tools, and supporting applications should be 
viewed generically; i.e., independent of the manufacturing 
domain.  The same system elements could be used for 
simulating other problem domains.  Major elements of this 
view include: simulation coordination and management, 
visualization systems, manufacturing data preparation and 
model development tools,  simulation models, discrete 
event and process simulation engines,  component module 
and template libraries, mathematical and analytical models, 
input distributions, timing and event calendars, and output 
analysis tools. 

Figure 3 illustrates the relationship between the 
various elements of the distributed manufacturing 
simulation execution environment.  The integration 
infrastructure for this environment, the Run Time 
Infrastructure (RTI), is based on the U.S. Department of 
Defense High Level Architecture (HLA) developed by the 
Defense Modeling and Simulation Office (DMSO) (Kuhl 
et al. 1999).  The HLA was developed by DMSO to 
provide a consistent approach for integrating distributed, 
defense simulations. Several implementations of the HLA 
RTI software are currently available from different 
sources. There is, however, no interoperability across RTI 
implementations.  A distributed simulation running on 
different computer systems across a network must use the 
same RTI software as an integration infrastructure. 

An HLA-based distributed simulation is called a 
federation. Each simulator, visualization system, real 
production system, or output analysis system that is 
integrated by the HLA RTI is called a federate.  One 
common data definition is created for domain data that is 
shared across the entire federation.  It is called the 
federation object model (FOM).  Each federate has a 
simulation object model that defines the elements of the 
FOM that it implements. 
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Figure 2:  Decomposition of the Distributed Manufacturing Data Repository 
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Figure 3:  Distributed Manufacturing Simulation Environment Elements Integrated by 
the HLA Run Time Infrastructure 
A DMS Adapter Module is incorporated into each DMS 
federate.  The DMS Adapter will handle the transmission, 
receipt, and internal updates to all FOM objects used by a 
federate. The DMS Adapter Module will contain a subroutine 
interface and data definition file that will facilitate its use as an 
integration mechanism by software developers. The goal of 
the DMS adapter is to ease the development of distributed 
manufacturing simulations by reusing implementations for 
some of the necessary housekeeping and administrative work. 
The DMS adapter provides a simplified time management 
interface, automatic storage for local object instances, 
management of lists of remote object instances of interest, 
management and logging for interactions of interest, and 
simplified object and interaction filtering. 

Several functions may be needed for the proper operation 
of a distributed simulation that are logically outside of any one 
simulation federate.  In the distributed manufacturing sim-
ulation environment, the Manufacturing Simulation 
Federation Manager is the architectural element that provides 
these functions.  Its may implement functionality to execute 
initialization scripts that launch federates, to provide initial-
ization data to federates, to assist in federation time manage-
ment, and to provide a user interface so that users can monitor 
and manipulate the federation and invoke federation services. 

 
3.3 Manufacturing Systems View 
 
This architectural view is concerned with modeling the 
behavior and data of specific manufacturing organizations 
and systems, from the supply chain down to individual 
machines on the factory floor.  Major elements of this view 
include, but are not limited to 
 

• manufacturing organizational templates and struc-
tures, business process and organizational models 
15
• supply chain systems - refineries, mills, factories, 
warehouses, distributors, transportation systems, 
wholesalers, retailers, customers, and so on 

• manufacturing facility departments, areas, and 
subsystems - design, engineering, procurement, 
finance, production shops, work cells, production 
lines, workstations, inventory storage areas, 
shipping and receiving, and so on 

• production resources and support equipment - 
machine tools, inspection equipment, material 
handling systems, storage buffers, robots, 
workers,  

• tools and materials - cutting tools, hand tools, jigs 
and fixtures, consumables, components, part 
blanks, sheet and bar stock, work-in-process 
inventory, and so on 

• manufacturing information systems - design, 
engineering, production planning and scheduling, 
tool management, shop floor data collection 
systems, and 

• manufacturing documents and data - work flow 
patterns, orders, jobs, product data, part designs, 
process plans, production calendars, schedules, 
layouts, and other reference data (machinability 
data, statistical distributions). 

 
Different manufacturers will create different supply 

chain organizations and arrangements of systems within 
each organization.  The DMS architecture must be flexible 
enough to allow these different system configurations, but 
still enable increased integration.  As such, the architecture 
does not mandate a particular manufacturing organization.  
It does require the development and specification of one 
DMS FOM. 
43
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Many objects in the FOM may reference documents 
containing more detailed information that are stored in a 
file system, PDM system, or database.  An example of such 
a document might be a part design file or a process plan.  
The Extensible Markup Language (XML) can be used to 
define new document types (Goldfarb and Prescod 2000).  
XML allows for the definition data that has semantic 
information in addition to the data values.  XML data-type-
definitions (DTD) may be used to define new document 
formats.  Advantages of this approach include:  

 
• the set of supported document types can be easily 

extended 
• each individual document format can be easily 

modified  
• COTS tools are available to implement creation, 

parsing, interpreting, and displaying the documents 
• XML documents from other sources can easily be 

supported 
• different instances of file structures may be created 

to convey the same semantic information 
• XML-enabled browsers can intelligently display 

the data 
• semantic validation of the files is possible.  

 
Even without the DTD, XML files are often both 

human and machine readable because of the semantic 
information that is included. 

There are potentially many document types that will be 
stored as distributed manufacturing simulation data. Some of 
these document types have widely-accepted or standardized 
formats.   Examples of these include the many kinds of CAD 
files (DXF, IGES, etc.), image files (GIF, TIFF, BMP, etc), 
and executables (EXE, com, bat, dll, etc.).  However, many 
manufacturing documents do not have standardized format.  
Schedules, BOMs, and process plans are examples of such 
documents.  While it is easy to come up with acceptable 
representations for such data that are appropriate for short-
term use, it is highly likely that these representations will 
need modifications, possibly major modifications, over time.  
A mechanism is needed to allow the definition of extensible 
formats for new document types without adversely affecting 
the rest of the DMS architecture or interfaces. XML can be 
that mechanism.  XML DTD�s must be stored in and 
uniquely accessible from the DMS data repository.  An 
initial set of document formats should be developed and 
allowed to expand over time as the need arises. 

 
4 INTEGRATION VIA DMS ADAPTER  

AND THE HLA/RTI  
 
In the discussion and diagrams below, the changes 
necessary for integrating a legacy simulation into a 
distributed simulation using the HLA and the DMS 
Adapter will be discussed. The term legacy simulation is 
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used to indicate a manufacturing-oriented or general-
purpose discrete-event simulation tool that does not have 
native support for the HLA or DMS Adapter technologies. 
 
4.1 Simplified Simulation Execution Architecture 
 
In Figure 4, a simplified view of a non-distributed legacy 
simulation application is shown.   It consists of a 
simulation execution system executing a simulation model.  
The simulation model is a behavior-oriented description of 
the logical system that is to be simulated.  Simulation 
execution systems often support the visualization of the 
executing model and statistical reporting of the simulated 
events that are generated during execution.  Data that are 
needed as input to or that are generated by the executing 
simulation are maintained in the persistent data store.  
 

4.2 Integration using the HLA/RTI 
 
Figure 5 shows the architecture of a legacy simulation that 
has been integrated into a distributed simulation using the 
HLA. On the right side of the diagram, a simplified view of 
the HLA architecture is presented (constructs or concepts 
that are beyond the scope of this presentation have been 
left out for brevity).  The Federate Object Model (FOM) is 
a description of the data that can be exchanged between 
federates.  The FOM is usually different for each 
distributed simulation that is developed.  The RTI 
Ambassador implements the interface through which 
federates send information to the RTI.  This interface 
contains over 120 methods that provide the capability to 
manage federation creation, manage object class 
definitions, manage information exchange using objects 
and interactions, and manage the advancement of time for 
the federation.   

While the RTI Ambassador provides the mechanism 
for sending information to the RTI, an implementation of 

Legacy Simulation
Execution System

Legacy
Simulation
Persistant
Storage

Simulation
Model

Figure 4:  Simplified View of a Typical 
Legacy Simulation System 
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the Federate Ambassador interface is necessary to be able 
to receive information from the RTI.  The Federate 
Ambassador is an interface that contains around 40 
methods that define how the RTI sends information to a 
federate asynchronously in response changes in the state of 
the federation.  These state changes may be in response to 
calls to the methods on the RTI Ambassador interface 
made by any federate in the federation.  An 
implementation of the Federate Ambassador interface is 
not provided with the RTI software.  The rules of the HLA 
require that an implementation of the Federate Ambassador 
be provided by the legacy simulation.  Furthermore, this 
implementation must be consistent with the information 
defined in the FOM that is being used in this federation.   

 
4.2.1 HLA/RTI Integration Issues 
 
Since legacy simulation systems are not designed to be 
used with the HLA/RTI, code must be developed to adapt 
the legacy simulation system for such purposes.   Normally 
this code is complex. In addition, although some of the 
code can be reused, a significant amount of code will need 
to be added or modified for each distributed simulation that 
is developed.   In the following sections, some of the 
important issues related to the complexity and reusability 
of the adaptation code are discussed. 
 
4.2.1.1  RTI Interface Complexity  
 
There are roughly 120 methods in the RTI Ambassador 
interface and 40 methods in the Federate Ambassador 
interface.  Depending on the current state of the RTI, the 
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Federate
Ambassador
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Figure 5:  Legacy Simulation Integration Using the HLA/
RTI 
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federation, and the data that is defined in the FOM, 
invoking a method can cause vastly different outcomes to 
occur.   While the richness of the RTI�s interfaces provide 
for an extremely flexible simulation integration approach, a 
side effect is that the learning curve for understanding 
these interfaces is quite high.   
 
4.2.1.2  The RTI�s Implicit Invocation Architecture  
 
The architecture of the RTI is based on what is called an 
�implicit invocation architecture.�  In this approach, a 
federate can modify the state of the federation by invoking 
methods of the RTI Ambassador interface. Information 
relating to changes in the state of the federation is passed 
back as asynchronous callbacks to methods in the Federate 
Ambassador that was implemented by the federate.   While 
this is an efficient and flexible approach, it makes adapting 
legacy simulation difficult because legacy simulations 
usually provide only procedurally oriented mechanisms for 
integration.   
 
4.2.1.3  Inadequate Integration Mechanisms are 

Provided by the Legacy Simulations 
 
To use the interfaces of the RTI, some adaptation code 
must be written using a language supported by one of the 
RTI language mappings.  Mappings currently exist for 
languages such as C, C++, Java, and CORBA IDL (Ben-
Natan 1995).    While some simulation systems provide 
mechanisms to call functions written in such languages 
natively, many do not.  Integrating those legacy 
simulations usually requires a combination of proprietary-
language code, file input/output, and socket programming, 
depending on which mechanisms are provided.  This 
situation increases the complexity of developing and 
maintaining the adaptation code.  
 
4.2.1.4  Cooperative Time Management 
 
In distributed simulations in which federates must 
cooperatively manage the advancement of time, the legacy 
simulation must be modified to cede some of the control 
over the advancement of time where previously it had 
complete control.  Because the RTI provides multiple 
mechanisms for coordinating time advancement, choosing 
the appropriate mechanism and properly implementing the 
adaptation code to support it can require significant 
forethought and development.  
 
4.2.1.5  Storage and Maintenance for  

Instances of FOM Objects  
 
Many legacy simulations have internal representations for 
entities such as parts or machines, and these simulations can 
maintain the information about such entities as they are 
5
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created during a simulation execution.  The definitions of 
these entities will differ between different legacy 
simulations.   To enable the exchange of data relating to 
these entities, neutral representations of these entities are 
usually defined in the FOM as object classes and associated 
attributes.   However, the HLA/RTI provides no mechanism 
for storing object class instances.  It only provides for 
storage of information related to the owner of a particular 
object instance, the class of the instance, and the attributes 
that are associated with an instance.  Therefore, storage for 
instances of FOM objects must be provided by the legacy 
simulation.  This is in addition to whatever storage has been 
set aside to maintain the legacy simulation�s internal 
representation of an object.   Adaptation code to maintain 
FOM object storage and to coordinate state changes between 
the internal representations and the FOM representations of 
objects must be developed. 

 
4.3 Integration using the DMS Adapter 
 
In the previous section, some of the issues that are related 
to integrating legacy simulations using just the facilities of 
the HLA were discussed.  It shows that developing the 
Federate Ambassador and adaptation code can be a 
significant undertaking when developing a distributed 
simulation, and that this effort must be repeated for each 
legacy simulation that is to be integrated.   

Figure 6 shows the architecture of a legacy simulation 
that has been integrated into a distributed simulation using 
the DMS Adapter.  Instead of having legacy simulations 
integrated directly with the HLA/RTI, those simulations 
will interact with the interface of the adapter.   The goal of  
15
 
the adapter is to provide a simplified method for 
integrating legacy simulations into distributed simulations 
while also providing as much of the capabilities of the 
HLA/RTI as possible.   The reader should note that 
simplified does not imply simple.  Adaptation code must 
still be developed to integrate a legacy simulation system 
with the DMS Adapter.   However, by reducing the 
complexity of the interface to which the legacy simulation 
is being integrated, the level of effort for performing the 
integration should be greatly reduced. 

 
4.3.1 Architectural Goals for the DMS Adapter 
 
What follows is a list of design goals for the architecture of 
the DMS Adapter.  If met, implementing distributed 
simulations using the DMS Adapter should be simpler than 
when using the approach that was depicted in Figure 5. 
 
4.3.1.1  Reduce Interface Complexity  
 
The interface of the adapter will have approximately 35 
methods instead of the 120 methods with 40 callbacks 
defined by the RTI and Federate Ambassadors. 
 
4.3.1.2  Remove Federate Ambassador Implementation 

Issues from the Legacy Simulation 
 
Legacy simulations will not have to develop Federate 
Ambassador implementations.  The adapter will implement 
a federate ambassador and use it to receive information 
from the RTI. 
Distributed Manufacturing Simulation
Adapter HLA
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Model

Adapter
Interface

Implementation
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Implementation RTI
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Legacy Simulation
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Figure 6:  Legacy Simulation Integration Using the DMS Adapter 
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4.3.1.3  Define an Interface that Facilitates Integration 
with Procedurally Oriented Legacy Simulations 

 
The results of invoking most of the methods in the adapter�s 
interface will be returned immediately to the legacy 
simulation.   Information that must be passed back 
asynchronously to a federate will be stored in a message 
queue in the adapter associated with that federate.  This 
includes information that is generated by the activities of other 
federates in the federation.   The adapter will provide the 
storage for this information and provide methods to access 
this information upon request from the legacy simulation.  
 
4.3.1.4  Minimize the Impact of Changes to the Infor-

mation Model through the Development  
of Generic FOM Objects that Contain  
XML Stings 

 
To overcome the problem of having to develop different 
FOM�s for each distributed simulation configuration, the 
information about the classes and attributes for the objects 
that are to be exchanged will not be defined in the FOM.  
A generic object will be defined in the FOM and this object 
will be exchanged between federates.  This generic FOM 
object will contain an XML string that contains the 
semantic content for the object. The XML string is the 
information that will be passed to the legacy simulation. 
The generic FOM object will also contain information 
about the type of data contained in the XML string.  This 
will facilitate filtering and routing of object updates by the 
RTI.  There are five major benefits to this approach: 

 
1. Only one FOM needs to be developed for use with 

the DMS Adapter. 
2. Only one implementation of the Federate 

Ambassador needs to be developed for use with 
the DMS Adapter. 

3. The DMS Adapter does not have to be modified 
and recompiled for each distributed simulation 
configuration. 

4. The information model (the definition of the 
entities, attributes and messages that will be 
exchanged between simulations) can be changed 
without changing the FOM, Federate Ambassador 
implementation, or the DMS Adapter 
Implementation.  

5. Implementations of mechanisms for manipulating 
XML data are widely available and can be used in 
the development of both the DMS Adapter and 
the adaptation code for legacy simulations. 
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4.3.1.5  Maintain Storage for the Objects that are  
to be Exchanged between Simulations 

 
As discussed in a previous section, the definition of an 
object (class and associated attributes) that is to be 
exchanged between simulations will differ from the 
internal definition that each simulation supports for that 
object.  Since each legacy simulation only provides storage 
for its internal objects and the RTI provides no mechanism 
for the storage of objects, storage and maintenance for the 
objects that are to be exchanged must be provided.  The 
DMS adapter will provide this capability. 

Each adapter will provide methods that allow a legacy 
simulation to create, modify, and delete objects that can be 
shared with other federates in the federation.  Objects will 
have �owners�, and ownership will be granted initially to the 
adapter (and associated legacy simulation) that created it.  
Ownership is required for modification or deletion 
operations on an object to succeed.  Storage for �owned� 
objects will be provided by the DMS Adapter that owns the 
object.  In addition, storage for copies of objects owned by 
other DMS Adapters will be provided.  Each DMS Adapter 
will use the services of the RTI to distribute object update 
information for the objects it owns, and will incorporate 
object update information it receives about objects owned by 
other DMS Adapters.  In this way, the DMS Adapters in the 
federation can work cooperatively to maintain updated 
information about all the objects in the federation, without 
the direct intervention of their associated legacy simulations.  

 
4.3.1.6  Simplify Time Coordination 
 
The RTI provides a multitude of time synchronization 
methods that are extremely flexible and powerful but are 
also quite complicated.  The adapter implements a �time- 
stepped� synchronization approach.  DMS Adapter 
methods are provided to declare that the associated legacy 
simulation wishes to advance to a certain simulation time, 
and to check if it is ok to advance to this time.  When the 
DMS Adapter indicates to the legacy simulation that it is 
ok to advance, the legacy simulation can then �simulate� 
from its current simulation time to the new simulation time 
that it requested.  It can then use the other methods in the 
DMS Adapter interface to get information about what was 
going in the rest of the federation while it was executing its 
�simulation step.� When all of the simulations use this 
method, the functionality of the RTI�s time management 
services ensures that the collective advancement of all of 
the simulations proceeds properly. 

 
5 CONCLUSIONS 
 
This document has provided a brief overview of the 
distributed manufacturing simulation architecture that is 
being developed as a part of the IMS MISSION Project. 
7



McLean and Riddick 
 

 

The approach taken in the architecture is to facilitate 
integration of existing commercial systems with minimal 
new development work.  The architecture also should 
enable experimentation with research systems that are 
based on evolving technology. The architecture describes 
the major system modules, data elements or objects, and 
interfaces between those modules. It uses the DOD High 
Level Architecture and Run Time Infrastructure as an 
integrating infrastructure. Detailed specifications will have 
to be prepared for the key interfaces identified in this 
document. Prototypes of each of these systems are being 
developed, tested, and integrated with commercial 
simulation systems, modeling tools, and other related 
manufacturing software applications as part of the IMS 
MISSION Project. 
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