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ABSTRACT 
 
This paper discusses the problems involved in developing a 
Java based simulation model of autonomous entities that 
can navigate themselves in 2-dimensional space.  We 
develop some ideas for solving those problems. The ideas 
mentioned in this paper can be applied to simulations that 
have fuzzy logic for navigation, encapsulation for object-
oriented simulation, many instances of objects, or 
statistically complex results.  We cite reasons for 
distributing a simulation among several computers and 
propose several topics for future research. 
 
1 INTRODUCTION 
 
An innovative approach to defining the paths of birds in an 
animated cartoon flock was invented by Craig Reynolds 
(Reynolds 1987).  The flock is a simulated particle system in 
which birds are treated as individual objects.  Each bird is an 
independent actor, or intelligent agent, that navigates 
according to rules on how to avoid nearby obstacles. An 
example of a set of rules that could be used to navigate a 
flock of birds is shown below.  This rule set was used in an 
experiment with a herd of mobile robots that mimicked the 
concept of cartoon birds, except with actual moving entities 
on a floor in a lab rather than on a computer screen (Mataric 
1995). 
 

If robot is in path 
   If at the right only 
      turn left, go forward 
   If at the left only 
      turn right, go forward 
   If on both sides 
      Wait 
 

There is still much left to be explained with regards to this 
rule set.  How much should the bird turn?  How close must 
the other bird be before we take it into consideration? How 
fast should the bird fly?  There are also several issues 
regarding the system which are not addressed. What 

direction are the other birds flying?  What if a potential 
collision is head-on rather than rear-end?  How crowded is 
the system?  Will these rules work if a bird is crowded by 
birds coming head-on?   
 We experimented with these rules by simulating a flock 
of autonomous agents and varying parameters in each model 
according to a central composite experimental design. The 
factors were: the size of the navigational area, the percentage 
of that area occupied by agents, the variation of the 
directions the agents were traveling (as opposed to traveling 
parallel to each other), and the speed the agents desired to 
travel if no other agents were impeding their progress. We 
also experimented with fuzzifying the navigation rules. The 
simulation program was written in Java, an object-oriented 
language, in which each bird-like entity was modeled as an 
instance of an �agent� object.  Since this is a time-step 
simulation, instead of a discrete event simulation, a 
simulation package would not provide much functionality 
beyond source code, except possibly output analysis. 
 There are several types of systems that could be 
simulated with a software architecture similar to the 
architecture used for this research, and thus may have 
issues similar to those addressed in this paper.  Research on 
motor vehicles that drive themselves requires complex 
algorithms to calculate routes and prevent collisions in real 
time.  Pedestrians and vehicles interacting at an 
intersection could be modeled as a particle system.  A 
manufacturing application for particle system algorithms is 
a model of automated guided vehicles on a factory floor.   
 We used the simulation to obtain results pertaining to 
the efficiency and effectiveness of the system with regard 
to two performance measures: effective speed and amount 
of potential collisions.  The values of the performance 
measures were recorded periodically throughout the 
simulation, then these results were regressed to determine 
equations of the performance measures as functions of the 
experimental design factors. 
 The following sections describe the issues that arose 
during the development of this research analysis. 
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2 ISSUES 
 
Five categories of problems arose while developing the 
simulation problem for this research.  These five issues, 
along with the solution we implemented, are described in 
this section. 
 
2.1 Collision Checking 
 
During each simulated time step, agents executed a set of 
navigation rules to decide in which direction to travel. 
Each instance of an agent existed in a Java vector. Placing 
the agents in a vector not only facilitated ensuring every 
agent executed its rules during each time step. 
 The rules do not guarantee that the entities will not 
collide with or overlap each other.  Therefore a collision 
check calculation was required at each time step, separate 
from the rule execution. Placing agent locations in a vector 
assisted in validating the simulation at the end of each time 
step by enabling the programmer to check the locations of 
each agent to check if any agents overlapped. In 
preliminary simulation runs, overlapping agents did exist. 
Several calculation methods were attempted to correct this 
problem, however only one was somewhat successful. 
 One idea was to model individual entities as cells 
which exist over a given amount of area.  Cellular 
automata models of traffic have been developed (Blue et. 
al. 1996, Nagel and Rasmussen 1995).  The term �cellular 
automata� comes from defining discrete squares of space, 
or cells, and each cell has a set of rules that governs its 
state at each time step automatically.  Since the cells 
occupy areas rather than points, the problem of entities 
colliding due to modeling them as points, rather than 
rectangles, is eliminated.  However, the difficulty with 
implementing a cellular automata model is when modeling 
several entities that occupy different amounts of area.  
Consider the example shown in Figure 1 of a vehicle-
pedestrian system in which each pedestrian occupies one  
 

 
 

Figure 1:  Pedestrians and Vehicles Modeled as Discrete 
Cells 
 

cell.  Even if vehicles are modeled as many-celled objects, 
the difficulty of modeling turning vehicles arises since 
turning vehicles do not occupy rectangular space parallel to 
roadways in real world systems.  Some type of diagonal 
rectangular space must be defined or approximated. 
 Thus, the problem of overlapping entities also exists in 
cellular models with entities of varying sizes.  Since the 
cellular model does not have a means for adequately 
representing many-celled entities, we decided to use a 
point-location model within an object-oriented language. 
The advantage of using an object-oriented approach to 
model pedestrians is that each object can have an attribute, 
or variable, which defines its size and shape.  Thus 
pedestrians, vehicles, birds, and any other entity can easily 
be differentiated from each other.  
 In our point-location model, we tried moving 
overlapping agents slightly away from each other so they 
were not overlapping, but then some were moved on top of 
other nearby agents as in Figure 2. 
 

 
 

a) overlapping agents       b) moved agents 
 

Figure 2:  Agents Before (a) and After (b) Separating 
Overlapping Agents 
 
 We tried a trigonometric calculation (see Figures 3 and 
4), in which each agent checked its path to its next location 
with the paths of the other agents, but it was difficult to deter-
mine how to check agents that had already been moved due to 
effects of an agent it had been compared with previously. 
 In Figures 3 and 4, the closest potential collision for 
the black agent is the white agent.  However, the closest 
potential collision for the white agent is the grey agent.  If 
the black agent is the first agent to traverse the vector of 
agents to locate its collision mate, the black and white 
agents will be moved next to each other as in Figure 3, 
however the white and grey agents should be moved next 
to each other as in Figure 4 and the black agent does not 
collide with any agent. 
 We finally settled with the concept of mini-steps. One 
step is the distance an agent travel while it calculates one 
iteration of its maneuver-checking rules. With this method, 
each agent is moved a fraction of its step length iteratively 
during  each time step until it either reaches another agent 
or its step length. See Figure 5.  Although this stopped any 
agent involved in a collision in a realistic location, this 
increased run time on the order of n2, n being the number 
of mini-steps that make up a whole step. 
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Figure 3:  Black Agent Moved as if it Collided with the 
White Agent 
 

 
 

Figure 4:  White and Grey Agents Collide First 
 
   
 

 
Figure 5.  Mini-Steps 

 
2.2 Fuzzification  
 
Originally there were seven factors in our experimental 
design, however we decided that three of them had narrow 
logical ranges and that implementing values outside these 
ranges would be illogical. These three factors were: angle 
of vision (the angle within which other agents can be 
detected), sight distance (distance within which other 
agents can be detected), and turning angle (angle the agent 
turns away from goal location if another agent is detected).  
An agent�s goal location its destination, which may 
represent a machine to which the agent is delivering an 
unfinished product for processing. See Figure 6 for further 
clarification of the meaning of these factors. 
 Instead of varying angle of vision, sight distance, and 
turning angle within an experimental design, we  
 

a) 
       
 
 
      direction toward goal 
 
     angle of vision 
 
        
 
b) 
 
 
 
 
 sight distance 
 
 
c) 
 
 
      direction toward goal 
 
    turning angle 
 
 
 
  direction of travel 
 
 
 
agent obstacle : 
 
 
agent non-obstacle: 
 

Figure 6.  a) Angle of Vision, b) Sight Distance, and c) 
Turning Angle 

 
considered using fuzzy logic to vary these values within 
the agents� navigation rules. Fuzzy logic involves the use 
of sets or ranges of values to quantify a value instead using 
one crisp number. 
 When programming a flock of mobile robots, it may 
be difficult to determine whether fuzzy logic is the best 
method to use in the navigation algorithms.  Fuzzy logic 
may be inefficient, requiring complicated calculations to 
determine the crisp outcome, such as the speed to travel or 
angle to turn.  Fuzzy logic also may not give better or more 
accurate results, e.g. using an angle of 45o all the time may 
be just as good as a function that requires a series of 
calculations that usually results in a value of 40 o or 50o 
anyway. 

When using fuzzy logic, it is also difficult to 
determine how membership functions should be developed. 
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Membership functions define the degree to which a range 
of values belong to a category. See Tsoukalas and Uhrig 
(1997) for more information about fuzzy logic and 
membership functions. It seems that engineering judgment 
is the best way to determine appropriate membership 
functions for this particular problem.  In one of our sets of 
navigation rules, each agent used a membership function to 
determine which agent was the critical agent to avoid based 
on distance to the other agent and how close the other 
agent was to being directly ahead, as opposed to being on 
the side.  If the other agent was very close and directly in 
front of the current agent, it had a high membership value 
and had a high chance of being the critical agent to avoid.  
If the other agent was not very close and directly to the 
right (or left) of the current agent, it had a low membership 
value and may not have played a critical role in the current 
agent�s collision avoidance maneuvering rules.  

Not only is it important to determine what the 
functions should be, but it may be more important to 
determine what aspects of the model should be fuzzified 
and what aspects should not.  In this study, possible values 
to fuzzify were: field of view, turn angle, and view 
distance.  Field of view was determined to be inappropriate 
for fuzzification because the range of feasible values is 
small, thus varying the values would not give much insight 
into the problem.   
 
2.3 Encapsulation 
 
The simulation architecture for this experiment included 
many instances of an Agent object and one instance of a 
Field object which represented the two-dimensional space 
over which the agents navigated.  The instances of the 
Agent object contained parameters particular to each agent 
and the methods required for navigation.  The Field object 
contained system parameters and simulation methods. 
 During simulated navigation, each agent executed a set 
of rules that were dependent upon the locations of nearby 
agents.  Each agent�s location was a private x-y attribute.  
After each simulated time step, agents �broadcast� their 
location by updating their location within a vector of all 
agent locations. The location vector exists within the 
Frame object. 
 Changing the parameters for the experimental design 
required extensive message passing.  Parameters in each 
instance of the Agent object had to be changed.  It is 
possible to place these attributes in the Field object, which 
is accessible to all agents, however then each agent would 
have to access that parameter every time it executed its 
rules.  It is uncertain which method is better, especially if 
the simulation were distributed on several virtual machines 
with the field on a different machine than the agents.  If 
this were the case, perhaps a serialized object could contain 
a data packet that was passed to the agent whenever it 
requested information from the field. 

2.4 Distributing Computation to  
Improve Run Time 

 
The mini-steps caused the run time to increase by the order 
of n2.  Thus the simulations with many instances of agent 
objects took days to run.  This was partly solved by 
distributing the simulation among several computers. The 
source code was written so some of the experimental 
design treatments were in one set of code, other treatments 
were in another set of code and run on a different 
computer.  Thus different runs were performed 
simultaneously on different computers, which worked well 
for our experiment.  In our particular experiment, the 
results from each treatment were not dependent on each 
other, thus it was not necessary to have the computers 
networked for this particular experiment.  Instead, the 
simulation was able to run independently on each computer 
with different input sets for each treatment.  
 Distributing the computational load of a simulation 
among several computers may be a quick fix to get the job 
done, however if the code is to be reused, it may be 
worthwhile to determine how to make the simulation more 
efficient.  One method we did not attempt was to place 
each instance of an agent on its own virtual machine on 
several computers across a network.  We believed that it 
may be an interesting experiment in itself to determine the 
maximum number of agents per processor possible while 
still improving run time. This type of simulation would 
require different communication protocols than a 
simulation on one processor and was beyond the scope of 
our analysis. 
 The authors considered creating each agent as its own 
thread. Unfortunately the result was that some agents 
executed their rule sets many times in a row, while others 
did nothing. The relative navigation speed of the agents 
cannot be controlled if each agent is a thread. 
 
2.5 Obtaining Reasonable Results 
 
We hypothesized that the regression model would be 
quadratic in form with respect to speed and diversity of 
agents� travel direction, and the performance measures 
would be inversely proportional to floorspace utilization. 
 We used regression analysis with MiniTab to obtain 
the equation to describe the flow theory for the 
autonomous entities.  Since we knew that the reciprocal of 
at least one of the factors was important in the analysis, we 
included the reciprocals of all factors in our analysis to 
determine if they would give the equation a better fit to the 
simulation output.  This resulted in obtaining a very high 
R2 value, around 0.9.  
 However when we plotted our equation, we discovered 
that the predicted values were orders of magnitude out of 
the range of all simulation data points. Upon further 
examination of the results, we realized not all the terms in 
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the equation made intuitive sense. Therefore we removed 
some of the interaction terms from our analysis and 
developed more reasonable equations. The R2 was only 
around 0.6, not as high as we wished. However we learned 
the lesson that a high R2 does not always mean the results 
are adequate. One of the resulting equations is plotted in 
Figure 7. 
 

 
 
Figure 7.  Appropriate Plot for Describing Effective Speed 
as a Function of Floorspace Utilization (u) and Diversity of 
Agents� Travel Direction (w) 
 
 This plot tells us that in a system in which the agents 
travel in more widely varying directions, the average 
effective agent speed is lower than in systems in which 
agents travel in directions more parallel to each other.  As 
the floorspace becomes more crowded, the average 
effective agent speed is again reduced.  Intuitively the 
trends shown in the plot are reasonable and coincide with 
the hypothesized form of the regression model.  The details 
of the results of this model are beyond the scope of this 
paper and can be found in Schaefer et al. (2000).  
 
3 CONCLUSION 
 
When creating a model of a system with many moving 
objects, one must be careful when choosing the manner in 
which to represent entities.  If the entities are modeled as 
points but they represent areas in the real system, the rules 
must account for appropriate collision detection, otherwise 
the simulation results may not be valid.  If the entities are 
modeled as cells, the rules may need to account for entities 
of varying sizes. 

It may be important to determine what aspects of a 
model should be fuzzified and what aspects should not.  
One must consider what the logical ranges for fuzzy values 
might be. Sometimes the ranges may be very narrow, thus 
a fuzzy value may not be more accurate than a crisp value.  
Fuzzy logic may require complicated calculations to 
determine the crisp outcome. 

Several other lessons were learned.  It may be difficult 
to decide in which object to place attributes if several types 
of objects must access that attribute.  One must use good 
judgment when deciding which interaction terms to include 
in a regression model.  Distributing the computational load 
of a simulation among several computers may be a quick 
fix to get the job done, however if the code is to be reused, 
it may be worthwhile to determine how to make the 
simulation more efficient. 

The authors intend to continue work in this area by 
implementing the rule sets on several virtual machines to 
simulate a distributed system of vehicle traffic approaching 
an intersection, then extending the research to a set of 
several intersections.  We expect many more issues to 
come up as we develop a distributed simulation of a system 
similar to the one used in this research, however that will 
be a topic for a future Winter Simulation Conference 
paper. 
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