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ABSTRACT

Most discrete-event simulation models have stochastic el-
ements that mimic the probabilistic nature of the system
under consideration. A close match between the input
model and the true underlying probabilistic mechanism as-
sociated with the system is required for successful input
modeling. The general question considered here is how to
model an element (e.g., arrival process, service times) in a
discrete-event simulation given a data set collected on the
element of interest. For brevity, it is assumed that data
is available on the aspect of the simulation of interest. It
is also assumed that raw data is available, as opposed to
censored data, grouped data, or summary statistics. This
example-driven tutorial examines introductory techniques
for input modeling. Most simulation texts (e.g., Law and
Kelton 2000) have a broader treatment of input modeling
than presented here. Nelson and Yamnitsky (1998) survey
advanced techniques.

1 DATA COLLECTION

There are two approaches that arise with respect to the
collection of data. The first is the classical approach, where
a designed experiment is conducted to collect the data. The
second is the exploratory approach, where questions are
addressed by means of existing data that the modeler had
no hand in collecting. The first approach is better in terms
of control and the second approach is generally better in
terms of cost.

Collecting data on the appropriate elements of the sys-
tem of interest is one of the initial and pivotal steps in
successful input modeling. An inexperienced modeler, for
example, collects wait times on a single-server queue when
waiting time is the performance measure of interest. Al-
though these wait times are valuable for model validation,
they do not contribute to the input model. The appropriate
data elements to collect for an input model for a single-
server queue are typically arrival and service times. An
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analysis of sample data collected on such a queue is given
in Sections 3.1 and 3.2.

Even if the decision to sample the appropriate element
is made correctly, Bratley, Fox, and Schrage (1987) warn
that there are several things that can be “wrong” about the
data set. Vending machine sales will be used to illustrate
the difficulties.

*  Wrong amount of aggregation. We desire to model
daily sales, but have only monthly sales.

e Wrong distribution in time. We have sales for this
month and want to model next month’s sales.

e  Wrong distribution in space. We want to model
sales at a vending machine in location A, but only
have sales figures on a vending machine at location
B.

¢ Censored data. We want to model demand, but we
only have sales data. If the vending machine ever
sold out, this constitutes a right-censored obser-
vation. The reliability and biostatistical literature
contains techniques for accommodating censored
data sets (Lawless 1982).

¢ Insufficient distribution resolution. We want the
distribution of number the of soda cans sold at a
particular vending machine, but our data is given
in cases, effectively rounding the data up to the
next multiple of 24.

2 INPUT MODELING TAXONOMY

Figure 1 contains a taxonomy illustrating the scope of poten-
tial input models available to simulation analysts. Modelers
too often restrict their choice of input models to the top two
branches. There is certainly no uniqueness in the branching
structure chosen for the taxonomy. The branches under
stochastic processes, for example, could have been state
followed by time, rather than time followed by state, as
presented.
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Figure 1: A Taxonomy for Input Models
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Examples of specific models that could be placed on
the branches of the taxonomy appear at the far right of
the diagram. Mixed, univariate, time-independent input
models have “empirical/trace-driven” given as a possible
model. All of the branches include this particular model.
A trace-driven input model simply generates a process that
is identical to the collected data values so as not to rely
on a parametric model. A simple example is a sequence
of arrival times collected over a 24-hour time period. The
trace-driven input model for the arrival process is generated
by having arrivals occur at the same times as the observed
values.

The upper half of the taxonomy contains models that
are independent of time. These models could have been
referred to as Monte Carlo models. Models are classified
by whether there is one or several variables of interest, and
whether the distribution of these random variables is dis-
crete, continuous, or contains both continuous and discrete
elements. Examples of univariate discrete models include
the binomial distribution and a degenerate distribution with
all of its mass at one value. Examples of continuous distri-
butions include the normal distribution and an exponential
distribution with a random parameter A (see, for example,
Martz and Waller 1982). Bézier curves (Flanigan—Wagner
and Wilson 1993) offer a unique combination of the paramet-
ric and nonparametric approaches. An initial distribution
is fitted to the data set, then the modeler decides whether
differences between the empirical and fitted models rep-
resent sampling variability or an aspect of the distribution
that should be included in the input model.

Examples of k-variable multivariate input models (John-
son 1987, Wilson 1997) include a sequence of k independent
binomial random variables, a multivariate normal distribu-
tion with mean p and variance-covariance matrix X and
a bivariate exponential distribution (Barlow and Proschan
1981).

The lower half of the taxonomy contains stochastic pro-
cess models. These models are often used to solve problems
at the system level, in addition to serving as input models
for simulations with stochastic elements. Models are clas-
sified by how time is measured (discrete/continuous), the
state space (discrete/continuous) and whether the model is
stationary in time. For Markov models, the discrete-state/
continuous-state branch typically determines whether the
model will be called a “chain” or a “process”, and the sta-
tionary/nonstationary branch typically determines whether
the model will be preceded with the term “homogeneous”
or “nonhomogeneous”. Examples of discrete-time stochas-
tic processes include homogeneous, discrete-time Markov
chains (Ross 1997) and ARIMA time series models (Box
and Jenkins 1976). Since point processes are counting
processes, they have been placed on the continuous-time,
discrete-space branch.

In conclusion, modelers are too often limited to uni-
variate, stationary models since software is typically written
for fitting distributions to these models. Successful input
modeling requires knowledge of the full range of possible
probabilistic input models.

3 EXAMPLES

Two simple examples illustrate the types of decisions that
often arise in input modeling. The first example determines
an input model for service times and the second example
determines an input model for an arrival process.

3.1 Service Time Model

Consider a data set of n = 23 service times collected to
determine an input model in a discrete-event simulation of
a queuing system. The service times in seconds are

105.84 28.92 98.64 5556 128.04 45.60

67.80 105.12 48.48 51.84 17340 51.96
54.12  68.64 93.12 68.88 84.12 68.64
4152 12792 4212 17.88  33.00.

[Although these service times come from the life testing
literature (Lawless 1982, p. 228), the same principles apply
to both input modeling and survival analysis.]

The first step is to assess whether the observations
are independent and identically distributed (iid). The data
must be given in the order collected for independence to
be assessed. Situations where the iid assumption would not
be valid include:

* A new teller has been hired at a bank and the
23 service times represent a task that has a steep
learning curve. The expected service time is likely
to decrease as the new teller learns how to perform
the task more efficiently.

e The service times represent 23 times to completion
of a physically demanding task during an 8-hour
shift. If fatigue is a significant factor, the expected
time to complete the task is likely to increase with
time.

If a simple linear regression of the observation numbers
versus the service times shows a significant nonzero slope,
then the iid assumption is probably not appropriate.

Assume that there is a suspicion that a learning curve
is present, which makes a modeler suspect that the service
times are decreasing. One appropriate hypothesis test is

Hy:81=0
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VErsus
Hy:B1 <0

associated with the linear model (Neter, Wasserman, and
Kutner 1989)

Y =80+ pB1X +e,

where X is the observation number, Y is the service time, 8o
is the intercept, B is the slope, and € is an error term. Figure
2 shows a plot of the (x;, y;) pairsfori = 1,2, ..., 23, along
with the estimated regression line. The p -value associated
with the hypothesis test is 0.14, which is not enough evidence
to conclude that there is a statistically significant learning
curve present. The negative slope is likely due to sampling
variability. The p -value may, however, be small enough to
warrant further data collection.

Service
Time
150 A
100 4" . ) .
50 T e et
0 A Observation
Number

Figure 2: Service Time Vs. Observation Number

There are a number of other graphical and statistical
methods for assessing independence. These include analysis
of the sample autocorrelation function associated with the
observations and a scatterplot of adjacent observations (Law
and Kelton 2000). The sample autocorrelation function
(ACF) for the service times is plotted in Figure 3 for the
first ten lags. The sample ACF value at lag 1, for example,
is the sample correlation for adjacent service times. The
sample ACF value at lag 4, for example, is the sample
correlation for service times four customers apart. The
horizontal dotted lines at :l:in are 95% bounds used to

determine whether the spikes in the ACF are statistically
significant. None were statistically significant for the service
time data. For this particular example, assume that we are
satisfied that the observations are truly iid in order to perform
a classical statistical analysis.

The next step in the analysis of this data set includes
plotting a histogram and calculating the values of some
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Lag
Figure 3: Sample Autocorrelation Function

sample statistics. A histogram of the observations is shown
in Figure 4. Although the data set is small, a skewed bell-
shaped pattern is apparent. The largest observation lies in
the far right-hand tail of the distribution, so care must be
taken to assure that it is representative of the population. The
sample mean, standard deviation, coefficient of variation,
and skewness are

x =72.22

s =37.49 =0.52

=i v

1o (xi =%\’
- = 0.88.
n - N

i=1

Examples of the interpretations of these sample statistics
are:

e A coefficient of variation s /X close to 1, along with
the appropriate histogram shape, indicates that the
exponential distribution is a potential input model.

* A sample skewness close to O indicates that a
symmetric distribution (e.g., a normal or uniform
distribution) is a potential input model.

The next decision that needs to be made is whether a
parametric or nonparametric input model should be used.
One simple nonparametric model would repeatedly select
one of the service times with probability 1/23. The small
size of the data set, the tied value, 68.64 seconds, and
the observation in the far right-hand tail of the distribution,
173.40 seconds, tend to indicate that a parametric analysis is
more appropriate. For this particular data set, a parametric
approach is chosen.

There are dozens of choices for a univariate parametric
model for the service times. These include general fam-
ilies of scalar distributions, modified scalar distributions
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Figure 4: Histogram of Service Times

and commonly-used parametric distributions (see, for ex-
ample, Schmeiser 1990). Since the data is drawn from a
continuous population and the support of the distribution is
positive, a time-independent, univariate, continuous input
model is chosen. The shape of the histogram indicates that
the gamma, inverse Gaussian, log normal, and Weibull dis-
tributions (Lawless 1982) are good candidates. Derivation
of the point and interval estimates for the Weibull distribu-
tion are given in detail here. Similar approaches apply to
the other distributions.

Parameter estimates for the Weibull distribution can
be found by least squares, the method of moments, and
maximum likelihood. Due to desirable statistical properties,
maximum likelihood is emphasized here. The Weibull
distribution has probability density function

fx) = A1 (0" x>0,
where X is a positive scale parameter and « is a positive
shape parameter. Let x1, x2, ..., x, denote the data values.
The likelihood function is

n n k—1
L(}\., K) — Hf(-xl) — )\.nKKn [Hxii| e Z?zl()\xi);c.
i=1 i=1

Since the natural logarithm (log) is a monotone function, the
likelihood function and its logarithm achieve their maximum
at the same values of A and x. The mathematics are typically
more tractable for maximizing a log likelihood function,
which, for the Weibull distribution, is

log L(A, k) =

n n
nlogk +knlogh + (k — 1) Zlogxi — A€ fo
i=1 i=1
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The 2 x 1 score vector has elements

Kn

dlog L(x, k) e
R X fo
A i=1

ar

and
dlogL(h,k) n ! -
— e T +nlog X + Zlogxi - Z(Axi)K log Ax;.
i=1 i=1
When these equations are equated to zero, the simultaneous
equations have no closed-form solution for the MLEs A and

A

K:

n

Kkn

T Pyl le’( =0
i=1

n n
n
- +nlogh + Zlogxi — Z(Axi)K log Ax; = 0.

i=1 i=l

To reduce the problem to a single unknown, the first equation
can be solved for A in terms of « yielding

( n )1/)(
A= =—— .
doiy X[

Law and Kelton (2000, p. 305) give an initial estimate for «
and Qiao and Tsokos (1994) present a fixed-point algorithm
for calculating the maximum likelihood estimators A and §.
Their algorithm is guaranteed to converge for any positive
initial estimate for « for a complete data set.

The score vector has a mean of 0 and a variance-
covariance matrix (A, x) given by the 2 x 2 Fisher infor-
mation matrix

—9%log L( k)
912

—9%log L(1 k)
INIK

!
1

I(h ) = gl =9 log LGk gl =0 log LGk
KO K2
The observed information matrix
—021log L(A,%) —3%1og L(.,R)
Y 2) — az IrIK
O k) “2logLGuR)  —0%logLGuLR) |
kI K2

can be used to estimate I (A, k).

For the 23 service times, the fitted Weibull distribution
has maximum likelihood estimators A = 0.0122 and & =
2.10. The log likelihood function evaluated at the maximum
likelihood estimators is log L(i,/’e) = —113.691. Figure
5 shows the empirical cumulative distribution function (a
step function with a step of height 1/23 at each data point)
along with the Weibull fit to the data.
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Figure 5: Empirical and Fitted Cumulative Distribution
Functions for the Service Times

The observed information matrix is

. . [ 681,000 875
0(’\”‘)_[ 875 10.4]

revealing a positive correlation between the elements of
the score vector. We now consider interval estimators for
A and k. Using the fact that the likelihood ratio statistic,
2[log L()AL, &)—log L(x, k)], is asymptotically 2 distributed
in n with 2 degrees of freedom and that X22,0.05 =5.99, a
95% confidence region for the parameters is all A and «
satisfying

2[—113.691 —log L(X, k)] < 5.99.

The 95% confidence region is shown in Figure 6. The
line ¥k = 1 is not interior to the region, indicating that the
exponential distribution is not an appropriate model for this
particular data set.

As further proof that « is significantly different from
1, the standard errors of the distribution of the parameter
estimators can be computed by using the inverse of the
observed information matrix

“1s o [ 0.00000165 —0.000139
© (k”‘)_[ —0.000139  0.108

This is the asymptotic variance-covariance matrix for the
parameter estimators A and #. The standard errors of the
parameter estimators are the square roots of the diagonal
elements

a5 =0.00128 6; = 0.329.

0.020

0.015 ~

0.010 A

0.005 A

Figure 6: 95% Confidence Region Based on the Likelihood
Ratio Statistic

Thus an asymptotic 95% confidence interval for « is
2.10 — (1.96)(0.329) < k < 2.10 + (1.96)(0.329)

or
1.46 <k < 2.74,

since zg.025 = 1.96. Since this confidence interval does not
contain 1, the inclusion of the Weibull shape parameter «
is justified.

The model adequacy should now be assessed. Since the
chi-square goodness-of-fit test has arbitrary interval limits,
it should not be applied to small data sets (e.g., n =
23), such as the service times being considered here. The
Kolmogorov—Smirnov, Cramer—von Mises, or Anderson—
Darling goodness-of-fit tests (Lawless 1982) are appropriate
here. The Kolmogorov—Smirnov test statistic, which is the
maximum vertical difference between the empirical and
fitted cumulative distribution functions, is 0.151 for this
data set with a Weibull fit. This test statistic corresponds
to a p -value of approximately 0.15 (Law and Kelton 2000,
p- 366), so the Weibull distribution provides a reasonable
model for these service times. The Kolmogorov—Smirnov
test statistic values for several models are shown below,
including four that are superior to the Weibull with respect

to fit.

Model Test statistic

Exponential 0.307

Weibull 0.151

Gamma 0.123

Arctangent 0.094

Log normal 0.090

Inverse Gaussian 0.088
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Many of the discrete-event simulation packages ex-
hibited at the Winter Simulation Conference have the ca-
pability of determining maximum likelihood estimators for
several popular parametric distributions. If the package also
performs a goodness-of-fit test such as the Kolmogorov—
Smirnov or chi-square test, the distribution that best fits the
data set can quickly be determined.

P-P (probability—probability) and Q-Q (quantile—
quantile) plots can also be used to assess model adequacy.
A P-P plot, for example, is a plot of the fitted cumulative
distribution function at the ith order statistic x(;), F (X)),
versus the adjusted empirical cumulative distribution func-
tion, F(x(i)) = i*,?'s, fori = 1,2,...,n. A plot where
the points fall close to the line passing through the origin
and (1, 1) indicates a good fit. For the 23 service times,
a P—P plot for the Weibull fit is shown in Figure 7, along
with a line connecting (0, 0) and (1, 1). P-P plots should
be constructed for all competing models.

>

0.6 -

04 4

02 4

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7: A P-P Plot for the Service Times Using the
Weibull Model

3.2 Arrival Time Model

Accurate input modeling requires a careful evaluation of
whether a stationary (no time dependence) or nonstationary
model is appropriate. Modeling arrivals to a lunch wagon
is used to illustrate the decision-making process.

Arrival times to a lunch wagon between 10:00 AM
and 2:30 PM are collected on three days. The realizations
were generated from a hypothetical arrival process given by
Klein and Roberts (1984). A total of n = 150 arrival times
were observed, including ny = 56, np = 42 and n3 = 52
on the k = 3 days. Defining (0, 4.5] to be the time interval
of interest (in hours) the three realizations are
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0.2152  0.3494  0.3943 4.175 4.248,

0.3927 0.6211  0.7504 4.044 4.374,
and

0.4499  0.5495 0.6921 3.643 4.357.

One preliminary statistical issue concerning this data is
whether the three days represent processes drawn from the
same population. External factors such as the weather, day
of the week, advertisement, and workload should be fixed.
For this particular example, we assume that these factors
have been fixed and the three processes are representative
of the population of arrival processes to the lunch wagon.

The input model for the process comes from the lower
branch (stochastic processes) of the taxonomy in Figure
1. Furthermore, the arrival times constitute realizations of
a continuous-time, discrete-state stochastic process, so the
remaining question concerns whether or not the process is
stationary.

If the process proves to be stationary, the techniques
from the previous example, such as drawing a histogram,
and choosing a parametric or nonparametric model for the
interarrival times, are appropriate. This results in a Poisson
or renewal process model. On the other hand, if the process is
nonstationary, a nonhomogeneous Poisson process might be
an appropriate input model. A nonhomogeneous Poisson
process is governed by an intensity function A(¢) which
gives an arrival rate [e.g., A(2) = 10 means that the arrival
rate is 10 customers per hour at time 2] that can vary
with time. The next paragraph describes a nonparametric
procedure for estimating the cumulative intensity function
A(t) = fé A(t)dt from k realizations.

The cumulative intensity function is to be estimated
on (0, S], where S is a known constant which equals 4.5
in this case. The interval (0, S] may represent the time a
system allows arrivals (e.g., 9 AM to 5 PM at a bank) or
one period of a cycle (e.g., one day at an emergency room).
Letn;,i =1,2,...,k be the number of observations in the
ith realization, n = Y5_ n;, and let #(1y, 1(2), .. . , t(n) be
the order statistics of the superposition of the k realizations,
t0) = 0 and #(,41) = S. The piecewise-linear estimator of
the cumulative intensity function between the time values
in the superposition is

R in n(t — tgy)
A(t) = +
(n+ Dk (n + Dk — t))
for t;) <t < tu41);i =0,1,2,...,n, which is given in

Leemis (1991) and extended to nonoverlapping intervals in
Arkin and Leemis (2000). Asymptotic confidence intervals
and variate generation via inversion are also contained in
these references. This estimator (solid line), along with
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95% confidence bounds (dashed lines), are given in Figure
8. The cumulative intensity function estimator at time 4.5
is 150/3 = 50, the point estimator for the expected number

Alt)
60

50 1
40 -

30 A

Figure 8: Point and 95% Confidence Interval Estimators for
the Cumulative Intensity Function

of arriving customers per day. If A(2) is linear, a stationary
model is appropriate. Since customers are more likely to
arrive to the lunch wagon between 12:00 (¢ = 2) and 1:00
(t = 3) than at other times and the cumulative intensity
function estimator has an S-shape, a nonstationary model
is indicated. More specifically, a nonhomogeneous Poisson
process is a reasonable model for the arrival process.

The next question to be determined is whether a para-
metric or nonparametric model should be chosen for the
process. Figure 8 indicates that the intensity function in-
creases initially, remains fairly constant during the noon
hour, then decreases. This may be difficult to model para-
metrically, so a nonparametric approach, possibly using
A@) in Figure 8 might be appropriate. Process generation
for simulation is straightforward (Leemis 1991).

There are many potential parametric models for non-
stationary arrival processes. The next paragraph describes
the procedure for fitting a power law process, where the
intensity function has the same parametric form as the haz-
ard function for the Weibull distribution. Other models can
be fit in a similar fashion.

The likelihood function for estimating the vector of
unknown parameters 6 = (61,6>,...,0,) from a single
realization on (0, S] is

n S
L) = []‘[ k(ti):| exp [— / A(t)dt]
i=1 0

MLEs can be determined by maximizing L(6) or its loga-
rithm with respect to all unknown parameters. Confidence
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intervals for the unknown parameters can be found in a
similar manner to the service time example. Owing to the
additive property of the intensity function for multiple real-
izations, the likelihood function for the case of k realizations
is

n S
L®) = |:l_[k)\(t,-)i| exp [— /O k)»(t)dti|.

i=1

The power law process has intensity function

At) = i t >0,

for A > 0 and « > 0. Thus the likelihood function for &
realizations is

n
L, k) = k"A™ e OS TT e
i=1

The log likelihood function is

n
log L(A, k) = nlog(kk) — nklogh — k(A8 + (k — 1) Z logt;.
The 2 x 1 score vector has elements i=l

dlog L%
dlog L) _ Kkn 4 i, que—1
oA Py

and

dlog L(x, !
Aog LK) _ 1 joan+ 1 +3 logt; — k(15)< log (1S).
0K K

i=1
When the score is equated to zero, the analytic expressions
for A and « are

n - 1 (n)l/'f
nlogS— Y " logt S \k '

l%:

Substituting the arrival times into these formulas yields
MLEs A = 4.86 and & = 1.27. The cumulative intensity
function for the power law process
A1) = (A" t >0,
is plotted along with the nonparametric estimator in Figure
9. Note that due to the peak in customer arrivals around
the noon hour, the power law process is not an appropriate
model since it is not able to adequately approximate the
intensity function.

Since the intensity function is analogous to the hazard
function for time-independent models, an appropriate 2-
parameter distribution to consider would be one with a
hazard function that increases initially, then decreases. A

log-logistic process, for example, with intensity function
(Lawless 1982)

e (Ap)K1

MO =14 (1)<

t >0,
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Figure 9: Empirical and Fitted Power Law Estimators for
the Cumulative Intensity Function

for A > 0 and « > 0, would certainly be more appropri-
ate. More generally, the EPTMP (exponential-polynomial-
trigonometric function with multiple periodicities) model,
originally given by Lee, Wilson and Crawford (1991) and
generalized by Kuhl, Damerdji and Wilson (1998) with
intensity function

m p
A(t) = exp |:Z aiti + Z Yk sin(wgt + ¢k)i| t > 0.

i=0 k=1
can model a nonmonotonic intensity function.

4 SOFTWARE

The typical input modeling software is capable of fitting
several distributions to a data set and evaluating goodness
of fit. A symbolic, Maple-based probability package named
APPL, developed by Glen, Evans and Leemis (2001), is
briefly illustrated here to show the modeling flexibility gained
by using a computer algebra system. The package allows a
user to define and manipulate random variables, as opposed
to numerical procedures applied to data. The package allows
a user to calculate expected values, distributions of order
statistics, transformations of random variables, distributions
of sums of independent random variables, etc. Although
initially written to solve probability problems, the software
has been extended to address input modeling problems as
well. The following eight subsections contain examples that
illustrate the use of the language. The first six introduce the
probability side of the language and the last two are input
modeling applications. The Maple prompt > is included
with the APPL statements.
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4.1 Convolutions

Let X1, X5, ..., X0 be independent and identically dis-
tributed U(0,1) random variables. Find

10
Pr(4<ZXi<6>.

i=1

The typical approaches to a question of this type are central
limit theorem, which is approximate, and Monte Carlo sim-
ulation, which, although it converges to the exact solution,
requires custom coding and each additional digit of accuracy
requires a 100-fold increase in computational effort. The
APPL statements to solve this problem are

> n :=

> X := UniformRV (0, 1);
> Y := ConvolutionIID(X,
> CDF (Y, 6) - CDF(Y, 4);

10;

n);

which yield

655177
907200’

or approximately 0.722. The central limit theorem yields
only one digit of accuracy in this case due to the small value
of n and the non-normality of the population distribution.
The ConvolutionIID procedure determines the PDF of
the sum, and the CDF procedure determines the value of
the CDF at the values indicated.

4.2 Symbolic Parameters

APPL is capable of handling symbolic parameters, in addi-
tion to the numeric parameters from the previous example.
Let X have the triangular distribution with parameters a,
b, and c. Find the CDF of X.

The APPL statements to determine the CDF are

> X := TriangularRV(a, b, c);
> CDF (X) ;
which yield
0 x<a
N2
7( (x)(Z) ) a<x<b
_ c—a)b—a
Fx) = (c —x)
- 7 b<x<c
(c—a)(c—Db)
1 X >c
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4.3 Non-Standard Distributions

The uniform and triangular distributions have been used
in the previous examples. Cases will arise where a non-
standard distribution will be needed, as illustrated in this
example. Let the random variable T have hazard function
(Lawless, 1982)

A 0<t<l1
hT(I):{M t>1

for A > 0. Find the survivor function (the complement of
the CDF).

The APPL statements require inputting the hazard func-
tion for T as a list of three sublists

> assume (lambda > 0);

(

> T := [[t -> lambda, t -> lambda * t],
[0, 1, infinity],
["Continuous", "HF"]11;

> SF(T) ;

which yield the survivor function

¢ e M 0<t<1
(=1 a+ne (> 1.

4.4 Products

Let X ~U(1,3) and Y ~ U(1, 2). Assume that X and Y
are independent. Find the distribution of V = XY.
The APPL statements to solve this problem are

> X := UniformRV (1, 3);
> Y := UniformRV (1, 2);
> V := Product (X, Y);

which return the probability density function of V as

%logv l<v<?2
fr(v) = %logZ 2<v<3
%log(6/v) 3<wv<b6.

More complicated distributions than the uniform can be
input in a similar manner.

4.5 Minimums, Maximums, Moments

The Kolmogorov—Smirnov test statistic in the all parameters
known case has a piecewise polynomial CDF, and is referred
to here as a KS random variable. Let X be a KS random
variable with n = 6. Let Y be a KS random variable with
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n = 4. Assuming that X and Y are independent, find
Var [max {X, Y}].

The APPL statements to solve this problem are

> X := KSRV (6) ;

> Y := KSRV (4);

> 7 := Maximum(X, Y);
> Variance(Z) ;

which yield the variance as exactly

1025104745465977580000192015279
83793210145582989309719976345600°

or approximately 0.0122337.
4.6 Order Statistics

Fifteen values are sampled with replacement from a geo-
metric population with p = 2/5. Find the probability that
the maximum order statistic from the sample is seven.

APPL handles discrete random variables with an internal
data structure that is quite similar to the continuous case.
The statements to solve this problem are

> X := GeometricRV(1 / 3);
> Y := OrderStat (X, 15, 15);
> PDF (Y, 7);
ieldin 19120529999425587086503291891100284387002471961024
y g 125236737537878753441860054533045969266612127846243

or approximately 0.1527.
4.7 Maximum Likelihood Estimation

Maximum likelihood estimators can also be calculated in
APPL. Consider the n = 23 service times from Section
3.1. Find the maximum likelihood estimators for A and
associated with the inverse Gaussian distribution.

Using the APPL procedure MLE

> stimes := [105.84,28.92,...,33.00];
> X := InverseGaussianRV (lambda, mu) ;
> hat := MLE(X, stimes, [lambda, mul) ;

The variable hat is assigned the list [231.6740936,
72.22434782] corresponding to the MLEs
A =231.67 and Q=72.22.

The value of APPL over traditional input modeling
software is the ability to create new random variables. The
user could, for example, fit the reciprocal of the square
root of an exponential random variable to the service time
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data set. The additional APPL statements required to find
the distribution of the reciprocal of the square root of an
exponential random variable, the MLE for the unknown
parameter, and the Kolmogorov—Smirnov goodness-of-fit
statistic for this distribution and the service time data set
are

> unassign(’lambda’) ;

> X := ExponentialRV (lambda) ;

> g := [[x -> 1/sqgrt(x)], [0,infinity]];
> Y := Transform(X, g);

> hat := MLE(Y, stimes, [lambdal);

> KSTest (Y, stimes, [lambda = hat[1l]1]);

which calculate the MLE A = 2244.50 and Kolmogorov—
Smirnov value 0.1416. The function g is used to find the
distribution of ¥ = g(X) = 1//X.

4.8 Fitting NHPPs

Fit the arrival times to the lunchwagon from Section 3.2 to
a power law process in APPL. The statements required to
fit the NHPP are

> arrtimes := [0.2152,0.3494,...,4.374];

> X := WeibullRV (lambda, kappa) ;
> hat := MLENHPP (X, arrtimes,
[lambda, kappal, 4.5);

The last argument in MLENHPP tells the procedure that the
failures were observed over the interval (0, 4.5] hours. The
additional APPL statement

> PlotEmpVsFittedCIF (X, arrtimes,
[lambda=hat[1], kappa=hat[2]]1,0,4.5);

produces a plot (similar to Figure 9) of the empirical cu-
mulative intensity function and the power law cumulative
intensity function.

Additional examples of the use of APPL in input mod-
eling are in Evans and Leemis (2000).
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