
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

SOFTWARE FOR UNIFORM RANDOM NUMBER GENERATION:
DISTINGUISHING THE GOOD AND THE BAD

Pierre L’Ecuyer

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal, H3C 3J7, CANADA
ABSTRACT

The requirements, design principles, and statistical testing
approaches of uniform random number generators for sim-
ulation are briefly surveyed. An object-oriented random
number package where random number streams can be cre-
ated at will, and with convenient tools for manipulating the
streams, is presented. A version of this package is now
implemented in the Arena and AutoMod simulation tools.
We also test some random number generators available in
popular software environments such as Microsoft’s Excel
and Visual Basic, SUN’s Java, etc., by using them on two
very simple simulation problems. They fail the tests by a
wide margin.

1 WHAT ARE WE LOOKING FOR?

1.1 Introduction

The aim of (pseudo)random number generators (RNGs) is
to implement an imitation of the abstract mathematical con-
cept of mutually independent random variables uniformly
distributed over the interval [0, 1] (i.i.d. U [0, 1], for short).
Such RNGs are required not only for stochastic simulation,
but for many other applications involving computers, such
as statistical experiments, numerical analysis, probabilistic
algorithms, computer games, cryptology and security proto-
cols in communications, gambling machines, virtual casinos
over the internet, and so on. Random variables from other
distributions than the standard uniform are simulated by ap-
plying appropriate transformations to the uniform random
numbers (Law and Kelton 2000).

Various RNGs are available in computer software li-
braries. These RNGs are in fact small computer programs
implementing (ideally) carefully crafted algorithms, whose
design should be based on solid mathematical analysis. Are
these RNGs all reliable? Unfortunately, despite repeated
warnings over the past years about certain classes of genera-
tors, and despite the availability of much better alternatives,
95
simplistic and unsafe RNGs still abound in commercial
software. Concrete examples are given in Section 4 of this
paper.

A single RNG does not always suffice for simulation. In
many applications, several “independent” random number
streams (which can be interpreted as distinct RNGs) are
required, with appropriate tools to jump around within these
streams, for instance to make independent runs and to
facilitate the implementation of certain variance reduction
techniques (Bratley, Fox, and Schrage 1987; Law and Kelton
2000). Packages implementing such RNG streams are now
available. One of them, which we describe in Section 5,
has been implemented in the most recent releases of the
Arena and AutoMod simulation environments.

In the remainder of this section, we give a mathematical
definition of an RNG, then we discuss design principles,
quality criteria, and statistical testing. In Section 2, we
review a few important classes of RNGs based on linear
recurrences in modular arithmetic. In Section 3, we de-
scribe two very simple simulation problems which can be
used as statistical tests (because a very good approximation
of the exact answer is known). In Section 4, we see how
certain widely-used generators perform on these tests. Sec-
tion 5 gives a quick overview of an object-oriented RNG
package with multiple streams and substreams. It offer
facilities that should be included, we believe, in every se-
rious general-purpose discrete-event stochastic simulation
software. Implementations are available in C, C++, and
Java.

1.2 Definition

Mathematically, an uniform RNG can be defined (see
L’Ecuyer 1994) as a structure (S, µ, f, U, g), where S is a
finite set of states, µ is a probability distribution on S used
to select the initial state s0 (called the seed), f : S → S
is the transition function, U = [0, 1] is the output set, and
g : S → U is the output function.

L’Ecuyer
The state evolves according to the recurrence si =
f (si−1), for i ≥ 1, and the output at step i is ui = g(si) ∈ U .
These ui are the so-called random numbers produced by
the RNG. Because S is finite, the generator will eventually
return to a state already visited (i.e., sl+ j = sl for some
l ≥ 0 and j > 0). Then, si+ j = si and ui+ j = ui for all
i ≥ l. The smallest j > 0 for which this happens is called
the period length ρ. It cannot exceed the cardinality of
S. In particular, if b bits are used to represent the state,
then ρ ≤ 2b. Good RNGs are designed so that their period
length is close to that upper bound.

Formally, this deterministic construction certainly dis-
agrees with the concept of i.i.d. U [0, 1] random variables.
But from a practical viewpoint, this is very convenient and
experience indicates that this works fine.

1.3 Design Principles and Measures of Uniformity

How should RNGs be constructed? One obvious require-
ment is that the period length must be guaranteed to be
extremely long, to make sure that no wrap-around over the
cycle can occur in practice. The RNG must also be efficient
(run fast and use little memory), repeatable (the ability of
repeating exactly the same sequence of numbers is a major
advantage of RNGs over physical devices, e.g., for program
verification and variance reduction in simulation (see Law
and Kelton 2000), and portable (i.e., work the same way in
different software/hardware environments). The availability
of efficient methods for jumping ahead in the sequence by
a large number of steps, i.e., to quickly compute the state
si+ν for any large ν, given the current state si , is also an
important asset. It permits one to partition the sequence
into long disjoint streams and substreams and to construct
an arbitrary number of virtual generators from a single
backbone RNG (see Section 5).

These requirements do not suffice. For example, the
RNG defined by si+1 = si + 1 if si < 2500 − 1, si+1 = 0
otherwise, and ui = si/2500, satisfies them but is certainly
not to be recommended.

We must remember that our goal is to imitate inde-
pendent uniform random variables. That is, the successive
values ui should appear uniform and independent. They
should behave (in appearance) as if the null hypothesis
H0: “The ui are i.i.d. U [0, 1]” was true. This hypoth-
esis is equivalent to saying that for each integer t > 0,
the vector (u0, . . . , ut−1) is uniformly distributed over the
t-dimensional unit cube [0, 1]t . Clearly, H0 cannot be for-
mally true, because these vectors always take their values
only from the finite set

�t = {(u0, . . . , ut−1) : s0 ∈ S},

whose cardinality cannot exceed that of S. If s0 is random,
�t can be viewed as the sample space from which vectors
96
of successive output values are taken randomly. When
several t-dimensional vectors are produced by an RNG by
taking non-overlapping blocks of t output values, this can
be viewed in a way as picking points at random from �t ,
without replacement.

The idea then is to require that �t be very evenly
distributed over the unit cube, so that H0 be approximately
true for practical purposes, at least for moderate values of
t . This suggests that the cardinality of S must be huge, to
make sure that �t can fill up the unit hypercube densely
enough. This is in fact a more important reason for having
a large state space than just the fear of wrapping around
the cycle because of too short a period length.

How do we measure the uniformity of �t ? We need
computable and convenient figures of merit that measure
the evenness of its distribution. In practice, these figures
of merit are often defined as measures of the discrepancy
between the empirical distribution of the point set �t and
the uniform distribution over [0, 1]t (Niederreiter 1992;
Hellekalek and Larcher 1998). There are several ways to
define the discrepancy. This is closely related to goodness-
of-fit test statistics for testing the hypothesis that a certain
sample of t-dimensional points comes from the uniform
distribution over [0, 1]t . An important criterion in choosing
a specific measure is the ability to compute it efficiently
without generating the points explicitly (we must keep in
mind that �t is usually too large to be enumerated), and
this depends on the mathematical structure of �t . For this
reason, different figures of merit (i.e., different measures
of discrepancy) are used in practice for analyzing different
classes of RNGs. The selected figure of merit is usually
computed in dimensions t up to some arbitrary integer t1
chosen in advance. Examples of practical figures of merit
are given in Section 2.2.

One may also examine certain sets of vectors of non-
successive output values of the RNG. That is, for a fixed
set of non-negative integers I = {i1, i2, · · · , it }, measure
the uniformity of the t-dimensional point set

�t (I) = {(ui1 , . . . , uit) | s0 ∈ S}, (1)

and do this for different choices of I . L’Ecuyer and Couture
(1997) explain how to apply the spectral test in this general
case. An open question is: What are the important sets
I that should be considered? It is of course impossible
to consider them all. As a sensible heuristic, one may
consider the sets I for which t is below a certain threshold
and the indices i j ’s are not too far away from each other
(L’Ecuyer and Lemieux 2000). One may also consider
far apart indices that correspond to the starting points of
disjoint streams of random numbers produced by the same
underlying generator and used in parallel in a simulation.

Some would argue that �t should look like a typical
set of random points over the unit cube instead of being too

L’Ecuyer
evenly distributed, i.e., that its structure should be chaotic,
not regular. But chaotic structures are hard to analyze
mathematically. It is probably safer to select RNG classes
for which the structure of �t can be analyzed and understood,
even if this implies more regularity, rather than selecting
an RNG with a chaotic but poorly understood structure.

1.4 Empirical Statistical Testing

Once an RNG has been constructed and implemented, based
hopefully on a sound mathematical analysis, it is customary
and good practice to submit it to a battery of empirical
statistical tests that try to detect empirical evidence against
the hypothesis H0 defined previously. A test is defined
by a test statistic T , function of a finite set of ui ’s, and
whose distribution under H0 is known. An infinite number
of different tests can be defined. There is no universal
battery of tests that can guarantee, when passed, that a
given generator is fully reliable for all kinds of simulations.
Passing a lot of tests may (heuristically) improve one’s
confidence in the RNG, but never proves that the RNG is
foolproof. In fact, no RNG can pass all statistical tests.
Perhaps the proper way of seeing things is that a bad RNG is
one that fails simple tests, whereas a good RNG is one that
fails only complicated tests that are very hard to find and run.
This can be formalized in the framework of computational
complexity, but we will not go in that direction here.

Ideally, the statistical tests should be selected in close
relation with the target application, i.e., be based on a
test statistic T that closely mimics the random variable of
interest. But this is usually impractical, especially when
designing and testing generators for general purpose software
packages. For a sensitive application, it is recommended
that the user tests the RNG specifically for his (or her)
problem, or tries RNGs from totally different classes and
compares the results.

Specific tests for RNGs are proposed by Knuth (1998),
Hellekalek and Larcher (1998), Marsaglia (1985), Mascagni
and Srinivasan (2000), Soto (1999), and other references
given there. Experience shows that RNGs with very long
periods, good structure of their set �t , and based on re-
currences that are not too simplistic, pass most reasonable
tests, whereas RNGs with short periods or bad structures
are usually easy to crack by standard statistical tests.

2 SOME POPULAR FAMILIES OF RNG’S

2.1 Generators Based on Linear Recurrences

The most widely used RNGs by far are based on linear
recurrences of the form

xi = (a1xi−1 + · · · + ak xi−k) mod m, (2)
97
where the modulus m and the order k of the recur-
rence are positive integers, the coefficients al belong to
Zm = {0, 1, . . . , m − 1}, and the state at step i is
si = (xi−k+1, . . . , xi). If m is a prime number and if
the al’s satisfy certain conditions, the sequence {xi , i ≥ 0}
has the maximal period length ρ = mk − 1 (Knuth 1998).

One way of defining the output function, in the case
where m is large, is simply to take

ui = xi/m. (3)

The resulting RNG is known under the name of multi-
ple recursive generator (MRG). When k = 1, we obtain
the classical linear congruential generator (LCG). Imple-
mentation techniques for LCGs and MRGs are discussed
by L’Ecuyer and Côté (1991), L’Ecuyer (1999a), L’Ecuyer
and Simard (1999), L’Ecuyer and Touzin (2000), and the
references given there.

Another approach is to take a small value of m, say m =
2, and construct each output value un from L consecutive
x j ’s by

ui =
L∑

j=1

xis+ j−1m− j , (4)

where s and L ≤ k are positive integers. If (2) has pe-
riod length ρ and gcd(ρ, s) = 1, (4) has period length ρ

as well. For m = 2, ui is thus constructed from L suc-
cessive bits of the binary sequence (2), with a spacing of
s − L bits between the blocks of bits used to construct ui

and ui+1. The resulting RNG is called a linear feedback
shift register (LFSR) or Tausworthe generator (Tausworthe
1965; Niederreiter 1992). Its implementation is discussed
by Fishman (1996), L’Ecuyer (1996b), L’Ecuyer and Pan-
neton (2000), and Tezuka (1995). Important variants of the
LFSR are the generalized feedback shift register (GFSR)
generator and the twisted GFSR (Fushimi and Tezuka 1983;
Tezuka 1995; Matsumoto and Kurita 1994; Matsumoto and
Nishimura 1998; Nishimura 2000). The latter provides a
very fast implementation of a huge-period generator with
good structure.

Combined MRGs can be constructed by running two or
more MRGs in parallel and adding their outputs modulo 1
(L’Ecuyer 1996a). This gives just another MRG with large
modulus (equal to the product of the individual moduli) and
large period. Similarly, combining several LFSR generators
by adding their outputs bitwise modulo 2 (i.e., by a bitwise
exclusive or) yields another LFSR generator whose period
length can reach the product of the periods of its components,
if the latter are pairwise relatively prime (L’Ecuyer 1996b;
L’Ecuyer 1999c). GFSR and twisted GFSR generators can
be combined in a similar way. In both cases, combination
can be seen as an efficient way of implementing RNGs with
huge period lengths. These RNGs are usually designed so

L’Ecuyer
that their individual components have a fast implementation,
whereas the combination has a complicated recurrence and
excellent structural properties in the sense that its point set
�t is well distributed over the unit hypercube [0, 1]t for
moderate values of t .

Other types of generators used in practice include the
lagged-Fibonacci generators, the add-with-carry, subtract-
with-borrow and multiply-with-carry generators, and several
classes of nonlinear generators. The latter introduce non-
linearities either in the transition function f or in the output
function g. Nonlinear generators are generally slower than
the linear ones for a comparable period length, but some of
them tend to behave better (empirically) in statistical tests be-
cause of the less regular structure of their point sets �t . For
more details about these different types of generators, see,
e.g., (Eichenauer-Herrmann 1995; Eichenauer-Herrmann,
Herrmann, and Wegenkittl 1997; Hellekalek 1998; Knuth
1998; L’Ecuyer 1994; L’Ecuyer 1998; Lagarias 1993).

2.2 Practical Figures of Merit

For the MRG (2)–(3), it is well known that �t = Lt ∩[0, 1)t ,
where Lt is a lattice in the t-dimensional real space, in
the sense that it can be written as the set of all integer
linear combinations of t independent vectors in R

t . This
implies that �t lies on a limited number of equidistant
parallel hyperplanes, at a distance (say) dt apart (Knuth
1998). For �t to be evenly distributed over [0, 1)t , we
want that distance dt to be small. This dt turns out to be
equal to the inverse of the (Euclidean) length of a shortest
nonzero vector in the dual lattice L∗

t to Lt , and computing
dt is called the spectral test (Dieter 1975; Knuth 1998;
L’Ecuyer and Couture 1997).

To define a figure of merit for MRGs, one can choose
an integer t1 > k (arbitrarily) and put

Mt1 = min
t≤t1

d∗
t /dt ,

where d∗
t is an absolute lower bound on dt given the cardi-

nality of �t (Fishman 1996; L’Ecuyer 1999b). This figure
of merit is between 0 and 1 and we seek a value close to 1
if possible. L’Ecuyer (1999a) provides tables of combined
MRGs selected via this figure of merit, together with com-
puter implementations. For non-successive indices, the set
�t (I) defined in (1) also has a lattice structure to which
the spectral test can be applied in the same way as for
successive indices (L’Ecuyer and Couture 1997; Entacher
1998).

For generators based on linear recurrences modulo 2,
such as LFSR and twisted GFSR generators, we do not
have the same kind of lattice structure so different figures
of merit must be used. In this case, the cardinality of �t is
2k . Suppose that we consider the � most significant bits of t
successive output values ui , . . . , ui+t−1 from the generator.
98
There are 2t� possibilities for these bits. If each of these
possibilities occurs exactly 2k−t� times in �t , for all � and
t such that t� ≤ k, the RNG is called maximally equidis-
tributed (ME) or asymptotically random (Tootill, Robinson,
and Eagle 1973; L’Ecuyer 1996b). Explicit implementa-
tions of ME or nearly ME generators are given by L’Ecuyer
(1999c) and Tezuka (1995). A property closely related to
ME is that of a (t, m, s)-net, where one requires equidistri-
bution for a more general class of partitions of [0, 1)t into
rectangular boxes, not only cubic boxes. See Niederreiter
(1992) and Owen (1998) for details and references.

3 TWO SIMPLE TEST PROBLEMS

In this section, we describe two simple simulation problems
which we turn into statistical tests. This can be done
because we know in advance the answer to these problems.
The corresponding statistical tests are not new: They are
the collision test, studied by Knuth (1998) and L’Ecuyer,
Simard, and Wegenkittl (2001), and the birthday spacings
test, discussed by Marsaglia (1985), Knuth (1998) and
L’Ecuyer and Simard (2001).

We start by cutting the interval [0, 1) into d equal
segments, for some positive integer d . This partitions [0, 1)t

into k = dt cubic boxes. We then generate n points in [0, 1)t ,
independently. We define the random variable C as the
number of times a point falls in a box that already had a point
in it. This random variable occurs in an important practical
application: It corresponds to the number of collisions for
a perfectly uniform hashing algorithm where n keys are
hashed into k memory addresses. Our first problem is to
estimate E[C], the mathematical expectation of C .

For our second problem, suppose that the k boxes are
labeled from 0 to k − 1, say by lexicographic order of the
coordinates of their centers. Let I(1) ≤ I(2) ≤ · · · ≤ I(n)

be the labels of the cells that contain the points, sorted by
increasing order. Define the spacings S j = I(j+1) − I(j),
for j = 1, . . . , n − 1, and let Y be the number of values
of j ∈ {1, . . . , n − 2} such that S(j+1) = S(j), where
S(1), . . . , S(n−1) are the spacings sorted by increasing order.
This is the number of collisions between the spacings. Here,
the n points can be viewed as the birthdays of n random
people in a world where years have k days, whence the name
birthday spacings (Marsaglia 1985). Our second problem
is to estimate E[Y].

To simulate this model, we simply take n non-
overlapping vectors of t successive output values produced
by the generator. Each vector corresponds to one of the n
points. In a real simulation study, we would have to repeat
this scheme, say, N times, independently, then compute the
sample average and variance of the N values of C and Y ,
and compute confidence intervals on the expectations E[C]
and E[Y].

L’Ecuyer
These expectations are actually known to a very good
approximation when k is large, which we assume here.
Indeed, for large k, C and Y follow approximately the
Poisson distribution with means λ1 = n2/(2k) and λ2 =
n3/(4k), respectively (Marsaglia 1985; L’Ecuyer, Simard,
and Wegenkittl 2001; L’Ecuyer and Simard 2001).

In the next section, to check the robustness of certain
generators for these simulation problems, we simulate just
a single value of C and Y for each of several parameter
sets (t, k, n), with each generator. These two random vari-
ables actually define statistical tests for the generators. We
call them the collision test and the birthday spacings test,
respectively. If c and y denote the values taken by these
random variables in the experiment, the right p-values of
the corresponding tests are

p+(c)
def= P[X ≥ c | X ∼ Poisson(λ1)] (5)

and

p+(y)
def= P[X ≥ y | X ∼ Poisson(λ2)], (6)

respectively. By replacing ≥ by ≤ in these definitions, one
obtains the left p-values p−(c) and p−(y). If one of these
p-values turns out to be extremely close to 0, this would
indicate a problem with the generator (e.g., the points of
�t are too regularly spread over the hypercube and this
shows up when we simulate C or Y). This would mean that
this generator gives a wrong answer for the corresponding
simulation problem. In case of doubt, we may want to
repeat the experiment several times, or with a larger sample
size, to see if the suspect behavior is consistent or not.

4 HOW YOUR FAVORITE RNG
FARES IN THOSE TESTS?

4.1 Some Popular Generators

We consider here the following widely-used generators.
Java. This is the generator used to im-

plement the method nextDouble in the class
java.util.Random of the Java standard library
(see http://java.sun.com/j2se/1.3/docs/
api/java/util/Random.html) It is based on a
linear recurrence with period length 248, but each output
value is constructed by taking two successive values from
the linear recurrence, as follows:

xi+1 = (25214903917 xi + 11) mod 248

ui = (227�x2i/222	 + �x2i+1/221)/253.

Note that the generator rand48 in the Unix standard library
uses exactly the same recurrence, but produces its output
simply via ui = xi/248.
99
VB. This is the generator used in Microsoft Vi-
sual Basic (see http://support.microsoft.com/
support/kb/articles/Q231/8/47.ASP). It is an
LCG with period length 224, defined by

xi = (1140671485 xi−1 + 12820163) mod 224,

ui = xi/224.

Excel. This is the generator found in Mi-
crosoft Excel (see http://support.microsoft.
com/directory). It is essentially an LCG, except that
its recurrence

ui = (9821.0 ui−1 + 0.211327) mod 1

is implemented directly for the ui ’s in floating point arith-
metic. Its period length actually depends on the numerical
precision of the floating point numbers used for the imple-
mentation. This is not stated in the documentation and it is
unclear what it is. Instead of implementing this generator
in our testing package, we generated a large file of random
numbers directly from Excel and feeded that file to our
testing program.

LCG16807. This is the LCG defined by

xi = 16807xi−1 mod (231 − 1),

ui = xi/(231 − 1),

with period length 231−2, and proposed originally by Lewis,
Goodman, and Miller (1969). This LCG has been widely
used in many software libraries for statistics, simulation,
optimization, etc., as well as in operating system libraries.
It has been suggested in several books, e.g., Bratley, Fox,
and Schrage (1987) and Law and Kelton (1982). Interest-
ingly, this RNG was used in Arena and similar one was
used in AutoMod (with the same modulus but with the mul-
tiplier 742938285) until recently, when the vendors of these
products had the good idea to replace it with MRG32k3a
(below). It is still used in several other simulation software
products.

MRG32k3a. This is the generator proposed in Fig-
ure 1 of L’Ecuyer (1999a). It combines two MRGs of order
3 and its period length is near 2191.

MT19937. This is the Mersenne twister generator
proposed by Matsumoto and Nishimura (1998). Its period
length is huge: 219937 − 1.

4.2 Results of the Collision Test

Table 1 gives the results of the collision test (our first
simulation problem) applied to these generators, for t = 2,
d = n/16, and n equal to different powers of 2. With this
choice of d as a function of n, we have k = n2/256, and the

L’Ecuyer
expected number of collisions is approximately λ1 = 128
regardless of n. Note that only the b = log2(d) most
significant bits of each output value ui is used to determine
the box in which a point belongs. In the table, c represents
the observed number of collisions and p+(c) or p−(c) the
corresponding p-value. The value of c and the p-value
are given only when the (left or right) p-value is less than
0.01. The blank entries thus correspond to non-suspicious
outcomes. For the generators not given in the table, namely
Java, MRG32k3a, and MT19937, none of the results were
suspicious.

The VB generator clearly fails the test for all n ≥ 215:
the number of collisions is much too small. Note that the
test with n = 216 requires only 131072 random numbers
from the generator, which is much much less than its period
length, and yet the left p-value is smaller than 10−15, which
means that it is extremely improbable to observe such a
small number of collisions (38) just by chance. For n = 217

and more, we observed no collision at all! Actually, we ran
the test for higher powers of 2 (the results are not shown
in the table) and there was no collision for n up to 223, but
8388608 collisions (way too many) for n = 224. We also
repeated the test with the VB generator by throwing away
the first 10 bits of each output value and using the following
bits instead, that is, replacing each ui by 210ui mod 1. The
result was that there was way too many collisions, with the
right p-values being smaller than 10−15 for all n ≥ 214.
For example, there was already 8192 collisions for n = 214

and 253952 collisions for n = 218. The explanation is that
the VB generator is an LCG with power-of-2 modulus, and
for these generators (in general) the least significant bits
have a much smaller period length than the most significant
ones (e.g., L’Ecuyer 1990).

The Excel generator starts failing for slightly larger
sample sizes: The right p-value is less than 10−9 for
n = 218 (approximately a quarter of a million) and less
than 10−15 for n = 219 (just over half a million). In this
case, there are too many collisions. LCG16807 starts to
fail at n = 219 (half a million points). The other generators
passed all these tests.

4.3 Results of the Birthday Spacings Test

For the birthday spacings problem, we first took t = 2 and
d2 = n3/4, so that the expected number of collisions was
λ2 = 1 for all n. Again, the first b = log2(d) bits of each
ui are used to determine the boxes where the points fall.
Table 2 gives the test results.

The Java, VB, Excel, and LCG16807 generators start
failing decisively with n = 218, 210, 214, and 214, respec-
tively. These are quite small numbers of points. For as few
as n = 214 = 16384 points, the number of collisions was
already 11129 for VB, 71 for Excel, and 150 for LCG16807.
The probability that a Poisson random variable with mean
100
1 takes any of these values is so tiny that we cannot believe
this occurred by chance.

Table 3 gives the results of three-dimensional birthday
spacings tests (t = 3) with d = n/2, for which λ2 = 2 for
all n. Table 4 gives the results for the same tests, but with
each ui replaced by 210ui mod 1; i.e., the first 10 bits of
each ui are thrown away and the test uses the next log2(d)

bits.
The VB generator fails very quickly in these tests,

especially when we look at the less significant bits (Table 4):
With as few as n = 256 points, we already have 52 collisions
and a p-value smaller than 10−15. The Excel generator starts
failing decisively at n = 217. The Java generator passes
these tests when we take its most significant bits, but starts
failing at n = 215 points when we throw away the first
10 bits. The LCG16807 generator starts failing decisively
already for n = 214 (some sixteen thousand points), in both
Tables 3 and 4. MRG32k3a and MT19937 gave no suspect
p-value.

Looking at the test results in the tables, we observe
the following kind of behavior: When the sample size n
is increased for a given test-RNG combination, the test
starts to fail decisively when n reaches some critical value,
and the failure is clear for all larger values of n. This
kind of behavior is typical and was also observed for other
statistical tests and other classes of generators (L’Ecuyer
and Hellekalek 1998). Can we predict this critical value
beforehand? What we have in mind here is a relationship
of the form, say,

n0 ≈ Kργ ,

for a given type of test and a given class of generators,
where ρ is the period length of the generator, K and γ are
constants, and n0 is the minimal sample size for which the
generator clearly fails the test.

This has been achieved by L’Ecuyer and Hellekalek
(1998), L’Ecuyer, Simard, and Wegenkittl (2001), L’Ecuyer,
Cordeau, and Simard (2000), and L’Ecuyer and Simard
(2001) for certain classes of RNGs and tests. For LCGs
and MRGs with good spectral test behavior, for example,
we have obtained the relationships n0 ≈ 16 ρ1/2 for the
collision test and n0 ≈ 16 ρ1/3 for the birthday spacings
test. This means that if we want our LCG or MRG to be safe
with respect to these tests, we must construct it with a period
length ρ large enough so that generating ρ1/3 numbers is
practically unfeasible. For example, ρ > 2150 satisfies this
requirement, but ρ ≈ 232 or even ρ ≈ 248 does not satisfy
it. In particular, keeping an LCG with modulus 231 −1 and
changing the multiplier 16807 to another number does not
cure the problem.

L’Ecuyer
Table 1: Results of the Collision Tests

n d VB Excel LCG16807

c p−(c) c p+(c) c p+(c)
215 211 75 3.1 × 10−7

216 212 38 < 10−15

217 213 0 < 10−15 170 2.2 × 10−4

218 214 0 < 10−15 202 9.5 × 10−10

219 215 0 < 10−15 429 < 10−15 195 2.2 × 10−8

220 216 0 < 10−15 — — 238 < 10−15

Table 2: Results of the Birthday Spacings Tests with t = 2

n d Java VB Excel LCG16807

y p+(y) y p+(y) y p+(y) y p+(y)

210 214 10 1.1 × 10−7

212 217 592 < 10−15 5 3.7 × 10−3

214 220 11129 < 10−15 71 < 10−15 150 < 10−15

216 223 64063 < 10−15 558 < 10−15 10066 < 10−15

218 226 18 < 10−15 261604 < 10−15 4432 < 10−15 183764 < 10−15

Table 3: Results of the Birthday Spacings Tests with t = 3

n d Java VB Excel LCG16807

y p+(y) y p+(y) y p+(y) y p+(y)

210 29

211 210 23 < 10−15

212 211 188 < 10−15

213 212 1159 < 10−15 10 4.6 × 10−5

214 213 5975 < 10−15 92 < 10−15

215 214 21025 < 10−15 799 < 10−15

216 215 55119 < 10−15 9 2.4 × 10−4 5995 < 10−15

217 216 123181 < 10−15 33 < 10−15 34697 < 10−15

218 217 8 1.1 × 10−3 256888 < 10−15 117 < 10−15 139977 < 10−15

Table 4: Results of the Birthday Spacings Tests with t = 3, with the First 10 Bits Thrown Away

n d Java VB Excel LCG16807

y p+(y) y p+(y) y p+(y) y p+(y)

28 27 52 < 10−15

210 29 672 < 10−15

212 211 3901 < 10−15

213 212 8102 < 10−15 7 4.5 × 10−3

214 213 16374 < 10−15 96 < 10−15

215 214 18 6.2 × 10−12 32763 < 10−15 736 < 10−15

216 215 76 < 10−15 65531 < 10−15 7 4.5 × 10−3 6009 < 10−15

217 216 709 < 10−15 — — 34 < 10−15 34474 < 10−15

218 217 685 < 10−15 — — 186 < 10−15 140144 < 10−15
101

L’Ecuyer
5 A MULTIPLE-STREAM PACKAGE

What kind of software do we need for uniform random
number generation in a general-purpose discrete-event sim-
ulation environment? The availability of multiple streams
of random numbers, which can be interpreted as indepen-
dent RNGs from the user’s viewpoint, is a must in modern
simulation software (Law and Kelton 2000). Such multi-
ple streams greatly facilitate the implementation of certain
variance reduction techniques (such as common random
numbers, antithetic variates, etc.) and are also useful for
simulation on parallel processors.

One way of implementing such multiple streams is to
compute seeds that are spaced far apart in the RNG sequence,
and use the RNG subsequences starting at these seeds as
if they were independent sequences (or streams) (Bratley,
Fox, and Schrage 1987; Law and Kelton 2000; L’Ecuyer
and Côté 1991; L’Ecuyer and Andres 1997). These streams
are viewed as distinct independent RNGs. In some of the
software available until a few years ago, N seeds were
precomputed spaced Z steps apart, say, for small values of
N such as (for example) N = 10 or N = 32.

In the Java class java.util.Random, RNG streams
can be declared and constructed dynamically, without limit
on their number. However, no precaution seems to have
been taken regarding the independence of these streams. A
package with multiple streams and which supports different
types of RNGs is also proposed by Mascagni and Srinivasan
(2000). Its design differs significantly from the one we will
now discuss.

L’Ecuyer, Simard, Chen, and Kelton (2001) have re-
cently constructed an object-oriented RNG package with
multiple streams, where the streams are also partitioned
into disjoint substreams, and where convenient tools are
provided to move around within and across the streams
and substreams. The backbone generator for this pack-
age is MRG32k3a, mentioned in Section 4. The spac-
ings between the successive streams and substreams have
been determined by applying the spectral test to the
set �t (I) of vectors of non-successive output values of
the form (un, . . . , un+s−1, uh , . . . , un+h+s−1, un+2h , . . . ,

un+2h+s−1, . . .), for different values of h, s, and t . The
spacings were chosen as large values of h for which the
spectral test gave good results for all s ≤ 16 and t ≤ 32
(these upper bounds for s and t were chosen arbitrarily).
The successive streams actually start Z = 2127 steps apart,
and each stream is partitioned into 251 adjacent substreams
of length W = 276.

Let us denote the initial state (seed) of a given stream
g by Ig . If s0 = I1 is the initial seed of the generator
and f its transition function, then we have I2 = T Z (s0),
I3 = T Z (I2) = T 2Z (s0), etc. The first substream of stream
g starts in state Ig , the second one in state T W (Ig), the third
one in state T 2W (Ig), and so on. At any moment during a
102
simulation, stream g is in some state, say Cg . We denote
by Bg the starting state of the substream that contains the
current state, i.e., the beginning of the current substream,
and Ng = T W (Bg) the starting state of the next substream.

The software provides tools for creating new streams
(without limit, for practical purposes), and to reset any given
stream to its initial seed, or to the beginning of its current
substream, or to its next substream. This kind of frame-
work with multiple streams and substreams was already
implemented in L’Ecuyer and Côté (1991) and L’Ecuyer
and Andres (1997), but with a predefined number of streams
and based on different (smaller) generators.

Figure 1 describes a Java version of the RNG package of
L’Ecuyer, Simard, Chen, and Kelton (2001). (These authors
describes a C++ version.) Implementations in C, C++, and
Java, as well as test programs, are available at http://
www.iro.umontreal.ca/˜lecuyer. A C version of
this package is now implemented in the most recent releases
of Arena (release 5.0) and AutoMod (release 10.5) simulation
environments (see http://www.arenasimulation.
com and http://www.autosim.com/index.asp).
The author is also working on implementations of RNG
classes with the same interface (except for a few details),
but based on different types of RNGs.

6 CONCLUSION

Do not trust the random number generators provided in
popular commercial software such as Excel, Visual Basic,
etc., for serious applications. Some of these RNGs give
totally wrong answers for the two simple simulation prob-
lems considered in this paper. Much better RNG tools are
now available, as we have just explained in this paper. Use
them. If reliable RNGs are not available in your favorite
software products, tell the vendors and insist that this is a
very important issue. An expensive house built on shaky
foundations is a shaky house. This applies to expensive
simulations as well.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada Grant No.
ODGP0110050 and FCAR-Québec Grant No. 00ER3218.
The author thanks Richard Simard, who ran the statistical
tests and helped improving the paper. George Fishman
and Steve Roberts suggested looking at the Excel and VB
generators and provided pointers to their documentation.
David Kelton and Jerry Banks helped convincing the vendors
of Arena and AutoMod to change their generators for the
better.

L’Ecuyer
public class RandMrg {

public RandMrg()
Constructs a new stream.

public RandMrg (String name)
Constructs a new stream with identifier name.

public static void setPackageSeed (long seed[])
Sets the initial seed for the class RandMrg to the six integers in the vector seed[0..5].
This will be the seed (initial state) of the first stream. By default, this seed is
(12345, 12345, 12345, 12345, 12345, 12345).

public void resetStartStream ()
Reinitializes the stream to its initial state: Cg and Bg are set to Ig .

public void resetStartSubstream ()
Reinitializes the stream to the beginning of its current substream: Cg is set to Bg.

public void resetNextSubstream ()
Reinitializes the stream to the beginning of its next substream: Ng is computed, and Cg and Bg
are set to Ng .

public void increasedPrecis (boolean incp)
If incp = true, each RNG call with this stream will now give 53 bits of resolution instead of
32 bits (assuming that the machine follows the IEEE-754 floating-point standard), and will advance
the state of the stream by 2 steps instead of 1.

public void setAntithetic (boolean a)
If a = true, the stream will now generate antithetic variates.

public void writeState ()
Prints the current state of this stream.

public double[] getState()
Returns the current state of this stream.

public double randU01 ()
Returns a U [0, 1] (pseudo)random number, using this stream, after advancing its state by one step.

public int randInt (int i, int j)
Returns a (pseudo)random number from the discrete uniform distribution over the integers {i, i +
1, . . . , j}, using this stream. Calls randU01 once.

}

Figure 1: The Java Class RandMrg, which Provides Multiple Streams and Substreams of Random Numbers
103

L’Ecuyer
REFERENCES

Bratley, P., B. L. Fox, and L. E. Schrage. 1987. A guide to
simulation. Second ed. New York: Springer-Verlag.

Dieter, U. 1975. How to calculate shortest vectors in a lattice.
Mathematics of Computation 29 (131): 827–833.

Eichenauer-Herrmann, J. 1995. Pseudorandom number gen-
eration by nonlinear methods. International Statistical
Reviews 63:247–255.

Eichenauer-Herrmann, J., E. Herrmann, and S. Wegenkittl.
1997. A survey of quadratic and inversive congru-
ential pseudorandom numbers. In Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing,
ed. P. Hellekalek, G. Larcher, H. Niederreiter, and
P. Zinterhof, Volume 127 of Lecture Notes in Statis-
tics, 66–97. New York: Springer.

Entacher, K. 1998. Bad subsequences of well-known linear
congruential pseudorandom number generators. ACM
Transactions on Modeling and Computer Simulation 8
(1): 61–70.

Fishman, G. S. 1996. Monte Carlo: Concepts, algorithms,
and applications. Springer Series in Operations Re-
search. New York: Springer-Verlag.

Fushimi, M., and S. Tezuka. 1983. The k-distribution of
generalized feedback shift register pseudorandom num-
bers. Communications of the ACM 26 (7): 516–523.

Hellekalek, P. 1998. Good random number generators are
(not so) easy to find. Mathematics and Computers in
Simulation 46:485–505.

Hellekalek, P., and G. Larcher. (Eds.) 1998. Random and
quasi-random point sets, Volume 138 of Lecture Notes
in Statistics. New York: Springer.

Knuth, D. E. 1998. The art of computer programming, vol-
ume 2: Seminumerical algorithms. Third ed. Reading,
Mass.: Addison-Wesley.

Lagarias, J. C. 1993. Pseudorandom numbers. Statistical
Science 8 (1): 31–39.

Law, A. M., and W. D. Kelton. 1982. Confidence intervals
for steady-state simulation, ii: A survey of sequential
procedures. Management Science 28:550–562.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling
and analysis. Third ed. New York: McGraw-Hill.

L’Ecuyer, P. 1990. Random numbers for simulation. Com-
munications of the ACM 33 (10): 85–97.

L’Ecuyer, P. 1994. Uniform random number generation.
Annals of Operations Research 53:77–120.

L’Ecuyer, P. 1996a. Combined multiple recursive random
number generators. Operations Research 44 (5): 816–
822.

L’Ecuyer, P. 1996b. Maximally equidistributed combined
Tausworthe generators. Mathematics of Computation 65
(213): 203–213.
104
L’Ecuyer, P. 1998. Uniform random number generators. In
Proceedings of the 1998 Winter Simulation Conference,
97–104: IEEE Press.

L’Ecuyer, P. 1999a. Good parameters and implementations
for combined multiple recursive random number gen-
erators. Operations Research 47 (1): 159–164.

L’Ecuyer, P. 1999b. Tables of linear congruential generators
of different sizes and good lattice structure. Mathematics
of Computation 68 (225): 249–260.

L’Ecuyer, P. 1999c. Tables of maximally equidistributed
combined LFSR generators. Mathematics of Computa-
tion 68 (225): 261–269.

L’Ecuyer, P., and T. H. Andres. 1997. A random number
generator based on the combination of four LCGs.
Mathematics and Computers in Simulation 44:99–107.

L’Ecuyer, P., J.-F. Cordeau, and R. Simard. 2000. Close-
point spatial tests and their application to random num-
ber generators. Operations Research 48 (2): 308–317.

L’Ecuyer, P., and S. Côté. 1991. Implementing a random
number package with splitting facilities. ACM Trans-
actions on Mathematical Software 17 (1): 98–111.

L’Ecuyer, P., and R. Couture. 1997. An implementation
of the lattice and spectral tests for multiple recursive
linear random number generators. INFORMS Journal
on Computing 9 (2): 206–217.

L’Ecuyer, P., and P. Hellekalek. 1998. Random number
generators: Selection criteria and testing. In Random
and Quasi-Random Point Sets, ed. P. Hellekalek and
G. Larcher, Volume 138 of Lecture Notes in Statistics,
223–265. New York: Springer.

L’Ecuyer, P., and C. Lemieux. 2000. Variance reduction via
lattice rules. Management Science 46 (9): 1214–1235.

L’Ecuyer, P., and F. Panneton. 2000. A new class of linear
feedback shift register generators. In Proceedings of the
2000 Winter Simulation Conference, ed. J. A. Joines,
R. R. Barton, K. Kang, and P. A. Fishwick, 690–696.
Pistacaway, NJ: IEEE Press.

L’Ecuyer, P., and R. Simard. 1999. Beware of linear
congruential generators with multipliers of the form
a = ±2q ± 2r . ACM Transactions on Mathematical
Software 25 (3): 367–374.

L’Ecuyer, P., and R. Simard. 2001. On the performance
of birthday spacings tests for certain families of ran-
dom number generators. Mathematics and Computers
in Simulation 55 (1–3): 131–137.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2001.
An object-oriented random-number package with many
long streams and substreams. Submitted.

L’Ecuyer, P., R. Simard, and S. Wegenkittl. 2001. Sparse
serial tests of uniformity for random number generators.
SIAM Journal on Scientific Computing. To appear. Also
GERAD report G-98-65, 1998.

L’Ecuyer, P., and R. Touzin. 2000. Fast combined multiple
recursive generators with multipliers of the form a =

L’Ecuyer
±2q ±2r . In Proceedings of the 2000 Winter Simulation
Conference, ed. J. A. Joines, R. R. Barton, K. Kang,
and P. A. Fishwick, 683–689. Pistacaway, NJ: IEEE
Press.

Lewis, P. A. W., A. S. Goodman, and J. M. Miller. 1969. A
pseudo-random number generator for the system/360.
IBM System’s Journal 8:136–143.

Marsaglia, G. 1985. A current view of random number gen-
erators. In Computer Science and Statistics, Sixteenth
Symposium on the Interface, 3–10. North-Holland, Am-
sterdam: Elsevier Science Publishers.

Mascagni, M., and A. Srinivasan. 2000. Algorithm 806:
SPRNG: A scalable library for pseudorandom num-
ber generation. ACM Transactions on Mathematical
Software 26:436–461.

Matsumoto, M., and Y. Kurita. 1994. Twisted GFSR gener-
ators II. ACM Transactions on Modeling and Computer
Simulation 4 (3): 254–266.

Matsumoto, M., and T. Nishimura. 1998. Mersenne twister:
A 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on Mod-
eling and Computer Simulation 8 (1): 3–30.

Niederreiter, H. 1992. Random number generation and
quasi-Monte Carlo methods, Volume 63 of SIAM
CBMS-NSF Regional Conference Series in Applied
Mathematics. Philadelphia: SIAM.

Nishimura, T. 2000. Tables of 64-bit Mersenne twisters.
ACM Transactions on Modeling and Computer Simu-
lation 10 (4): 348–357.

Owen, A. B. 1998. Latin supercube sampling for very
high-dimensional simulations. ACM Transactions of
Modeling and Computer Simulation 8 (1): 71–102.

Soto, J. 1999. Statistical testing of random number genera-
tors. Available at http://csrc.nist.gov/rng/
rng5.html.

Tausworthe, R. C. 1965. Random numbers generated by
linear recurrence modulo two. Mathematics of Compu-
tation 19:201–209.

Tezuka, S. 1995. Uniform random numbers: Theory and
practice. Norwell, Mass.: Kluwer Academic Publish-
ers.

Tootill, J. P. R., W. D. Robinson, and D. J. Eagle. 1973. An
asymptotically random Tausworthe sequence. Journal
of the ACM 20:469–481.

AUTHOR BIOGRAPHY

PIERRE L’ECUYER is a professor teaching simula-
tion in the “Département d’Informatique et de Recherche
Opérationnelle”, at the University of Montreal, Canada.
He received a Ph.D. in operations research in 1983, from
the University of Montréal. He obtained the prestigious
E. W. R. Steacie Grant in 1995-97 and the Killam Grant in
2001. His main research interests are random number gener-
105
ation, quasi-Monte Carlo methods, efficiency improvement
via variance reduction, sensitivity analysis and optimiza-
tion of discrete-event stochastic systems, and discrete-event
simulation in general. His recent research articles are
available on-line at http://www.iro.umontreal.
ca/˜lecuyer.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

