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ABSTRACT 

Screening is the first phase of an experimental study on 
systems and simulation models. Its purpose is to eliminate 
negligible factors so that efforts may be concentrated upon 
just the important ones. Successfully screening more than 
about 20 or 30 factors has been investigated only in the 
past 10 or 15 years with most improvements in the past 5 
years. A handful of alternative methods including sequen-
tial bifurcation, iterated fractional factorial designs, and the 
Trocine Screening Procedure are described and evaluative 
and comparative results are presented. 

1 INTRODUCTION 

Simulation models, as with any system under study, in-
volve many inputs, referred to as independent variables or 
factors, and one or more outputs, referred to as the depend-
ent variables or responses. We focus on a single response 
in this paper. For a new approach to multiple responses, 
please see Grimes (2001). 

In order to improve or optimize the response or output 
of the system, the best settings of the independent variables 
must be determined. This requires an understanding of the 
relationships between and among the variables. One ap-
proach to learning about a system is to passively observe it. 
A better approach is to systematically experiment on the 
system by setting the independent variables to levels and 
observing the response. Such an approach employs an ex-
perimental design followed by statistical analyses in order 
to make inferences about the underlying relationships be-
tween and among the inputs and outputs.  

Myers and Montgomery (1995) refer to the initial 
phase of an experimental study as the screening phase. 
They call it Phase 0. After screening is done, a first-order 
linear model is constructed in Phase 1. Subsequent phases 
involve second-order terms and honing in on the optimum 
region. Screening is critically important because if it is not 
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done well, all subsequent experimentation may yield erro-
neous results. 

The most efficient screening designs use only two dis-
crete levels for each factor. The full factorial designs in 
two levels require 2k runs and can measure not only the ef-
fects of each of the k factors but can also measure all com-
binations of the interaction effects between and among the 
k factors. Because full factorial designs require a large 
number of runs (for as few as 5 factors 32 runs are re-
quired), fractional factorial designs were developed. Two 
level fractional factorial designs, denoted as 2k-p, are very 
efficient and generally effective. These designs use many 
fewer runs than full factorial designs and can estimate 
main effects and some two-way interaction effects. How-
ever, they have not and cannot be used for more than about 
20 factors. Software cannot generate them and their use-
fulness is limited because of the number of runs required. 
Ivanova, Malone, and Mollaghasemi (1999) showed that 
the results of screening 17 factors with a fractional facto-
rial design were inconclusive when compared with a group 
screening experiment on the same 17 factors. 

This paper provides an overview of screening methods 
available for screening more than 20 independent variables 
including two-stage group screening, sequential bifurca-
tion, iterated fractional factorial designs (IFFD), supersatu-
rated designs (SSDs) and a promising new method called 
the Trocine screening procedure (TSP). These methods 
will be compared and contrasted in terms of efficiency, ef-
fectiveness, and robustness defined in the next section on 
cases from the literature and on simulation models devel-
oped by the authors. 

2 PURPOSE OF SCREENING 

Like a sieve or a screen that is used to find chunks of gold 
in dust and dirt, the purpose of factor screening is to elimi-
nate negligible factors in favor of concentrating experi-
mental efforts on those factors that are important. This is 
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possible because of the parsimony principle that says that 
only a few factors are responsible for most of the effect in 
a response while most are not. This is equivalent to the 
Pareto rule used in quality studies. The vital few are se-
lected with the largest expected returns. It is also unrealis-
tic to believe that all factors affect a response equally.  

After screening is completed, we expect to have re-
duced a large and complex problem into a simpler one with 
a few important factors.  

2.1 Criteria for Screening Methods 

In choosing a screening method there are three or four 
main criteria to consider. The criteria are efficiency, effec-
tiveness, robustness, and ease of use.  

The first criterion is how efficient the method is. Effi-
cient screening methods are those that require a manageable 
number of runs. Efficiency is a qualitative measure that de-
pends on the size of the problem (i.e. number of factors).  

The second criterion is effectiveness. In the literature 
much less emphasis is placed on effectiveness because it is 
more difficult to measure. In practical problems, the under-
lying coefficients of the effects are unknown, so we cannot 
measure the effectiveness of a method directly. We can 
compare alternative methods and hope for confirmation of 
findings. Simulated cases, with known coefficients, can be 
used to measure effectiveness directly; however, this yields 
only empirically observed results. Analytic results are not 
generally tractable.  

The third criterion is herein referred to as robustness. 
Some methods may only be applied if certain conditions of 
the problem are known to exist. In practice, however, the 
conditions of the problem are what is sought! Thus we de-
sire screening methods that work well without prior 
knowledge of the problem. For example, sequential bifur-
cation requires that the direction of the signs of all the ef-
fects in the problem are oriented in the same way. In gen-
eral this is not the case. 

The last criterion is desirable but is not necessary. An 
easy to use method is certainly easier for the experimenter 
but can be forsaken in exchange for effective, efficient, and 
robust methods. Statistically designed experiments and 
analyses require a great deal of skill and interpretation and 
are not considered easy by non-statisticians! 

2.2 Design and Analysis 

Screening methods involve two major components. The 
first is the design. The design has coded levels for each of 
the factors. There are numerous construction methods for 
numerous types of designs. There are even numerous crite-
ria for selecting designs! The second component is the 
analysis. After the responses are observed for each run in 
the design, the data must be analyzed in order to make in-
ferences about which factors are important. Numerous 
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analysis methods are available, some involving plots of the 
data and others computations on the data. Examples are 
normal probability plots, regression analyses, effects esti-
mates, and so forth. All the many design construction 
methods and various analyses methods are beyond the 
scope of this paper and are discussed in a plethora of text-
books including Montgomery (2001), Wu and Hamada 
(2000), and Myers and Montgomery (1995). The five 
methods mentioned in section 1 are explained in some de-
tail in the next section.  

3 SCREENING METHODS  

In the first section, we introduced the factorial designs 
which have a long history and proven record of being effi-
cient, effective, and robust when screening problems with 
up to about 15 to 20 factors. With fractional factorial de-
signs, a one-half or one-quarter fraction (of runs) of the 
larger full factorial design is selected for screening. Choos-
ing the design and the arrangement of columns may be 
done in such a way as to improve the design. Regardless 
these designs are constructed before any observations are 
made. We call this prior design. After all the observations 
are made for the entire design, the entire data set is ana-
lyzed. Analyses include effects estimates, normal probabil-
ity plots, and standard least squares regression. Regression 
is used to estimate the coefficients of effects up to one 
fewer than the number of runs in the design. These analy-
ses allow us to make inferences about the importance of 
the factors.  

Because the subject of this paper is screening large 
numbers of factors, which we define to be more than 15 or 
20, we refer the reader to Myers and Montgomery (1995) for 
a more complete discussion of methods with fewer factors, 
including the fractional factorial and Plackett-Burman de-
signs. Next we present an overview of five methods for larger 
numbers of factors. For each method we describe how the 
design is constructed and how the analyses are conducted.  

3.1 Super Saturated Designs (SSDs) 

Designs are called supersaturated when they aim to esti-
mate more effects than they have runs. If n is the number 
of factors and m is the number of runs for screening then m 
< n. SSDs are prior constructed designs like both fractional 
factorial designs and Plackett-Burman designs. These are 
intentionally constructed to be supersaturated for the sake 
of efficiency. Thus we not only have a problem with con-
founding of effects but also of insufficient degrees of free-
dom to apply traditional analyses such as regression. We 
refer the reader to two papers by Holcomb, Montgomery, 
and Carlyle (2000a, 2000b) that describe the state of the art 
of supersaturated designs. The latter paper discusses sev-
eral construction methods while the former compares sev-
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eral alternative analyses methods. The options for analyses 
are stepwise regression, all models regression, normal 
probability plots, the contrast variance method and a boot-
strapped contrasts method. Holcomb, Montgomery, and 
Carlyle (2000a) conclude that SSDs should be used with 
caution. Our interpretation of their findings is that you 
might get good results using them if you are lucky. You 
will have had to choose the right design, match the factors 
and columns in the design the right way, and choose and 
use the right analysis method in the right way. Hence we 
do not generally consider SSDs to be reliable.  

3.2 Two-Stage Group Screening 

Two-stage group screening has been used for screening 
roughly 15 to 50 factors. The experimenter uses experience 
and knowledge of the problem and the factors to arrange 
the factors into logical groups. Then a fractional factorial 
design is run on the groups. Upon identification of impor-
tant groups, the factors within that group are separated into 
smaller groups or individual factors and a new fractional 
factorial design on the subgroups is run until the important 
factors are identified. The results of the first stage are ana-
lyzed and used to design the second stage. Hence, this 
screening method is iterative. In order for this to work, the 
factors and the interactions between and among factors in a 
group must not cancel each other through opposing signs-
of-effects. Otherwise, the group may be considered unim-
portant and eliminated. Also, interactions between factors 
in different groups are not measured and if they exist may 
confound the results of the groups.  

Two-stage group screening was successfully demon-
strated on simulated cases by Mauro (1984) and Mauro and 
Smith (1984). Ivanova, Malone, and Mollaghasemi (1999) 
reported the results of comparing two screening methods 
on a simulation model of a 17 factor semiconductor manu-
facturing process. Two-stage group screening was per-
formed, using a total of 64 runs, and led to a set of impor-
tant factors. A separate 64 run fractional factorial design 
was run on the same simulation model resulting in a very 
different set of important factors. The authors also tried 
analyzing both data sets using different alpha values for 
inclusion of variables without improvement in matching 
the results of the two screening methods.  

3.3 Sequential Bifurcation 

Bettonvil and Kleijnen (1996) developed sequential bifur-
cation from an earlier idea by Jacoby and Harrison (1962). 
The design is constructed one point at a time using feed-
back from all prior points to direct the search for the im-
portant factors. Before the design begins, the factors are all 
arranged so that the direction of their effects is all positive 
(or negative). The method also requires that the response 
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function is nondecreasing (or nonincreasing). Thus all 
main effects and all interaction effects are nonnegative (or 
nonpositive). If these conditions are not met, sequential bi-
furcation will give erroneous results. However, if they are 
met, as can often be done with simulation models, sequen-
tial bifurcation is extremely efficient.  

First the point where all factors are set to the high 
level is run. Then the point where all factors are set to the 
low level is run. If the difference between the responses is 
considered to be significant, then some factors in the group  
(of all factors) are significant and the procedure continues. 
Cheng (1997) offers an approach for deciding whether the 
difference between two responses of these two points is 
significant or not by choosing an indifference value, δ, 
based on prior knowledge of the problem. We suggest that 
if there is not prior knowledge, that one or two replicates of 
one of these two points could be used for a rough estimate 
of the variability of the experimental region, similar to TSP 
in section 3.5 below.  

If the difference is significant, then the point where the 
first half of the factors is set to the low level and the sec-
ond half of the factors is set to the high level is run. If the 
response is about the same as one of the two earlier run 
points, then half of the factors can be eliminated. We char-
acterize this as a divide and conquer approach.  

Using Bettonvil’s notation, we denote y(j) as the point 
where all factors 1 through j are set to low and factors j+1 
to n are set to high. A group is eliminated if the parameter 
βij is insignificant. A group βij is divided in half again and 
responses are compared until the significant factors are iso-
lated. We show an example of the process on a simulated 
problem from Trocine (2001). See Equation 1. There are 
20 factors in this problem, A, B, C,…,T. Factors C, G, and 
M have nonzero coefficients. The tree of decisions made to 
identify the three important factors is shown in Figure 1. 
Each y(j) is a run. There were a total of 12 runs to find 3 
significant out of 20 initial factors. We chose δ to be 1, 
which worked correctly and consistently for this problem. 
Results may be less accurate with a different δ value. 
 

( )4.02444 , MGCy −+×+×+×= N   (1) 
 

Cheng (1997) reused a 24 factor case of unknown ori-
gin first reported in Bettonvil and Kleijnen (1996). Betton-
vil and Kleijnen (1996) also reported a 281 factor ecology 
model screened in 144 runs finding 15 important effects. A 
128 factor problem screened in 16 runs was reported in 
Bettonvil and Kleijnen (1996).  

3.4 Iterated Fractional Factorial Designs 

The Canadian agency AECL had constructed a simulation 
model of a nuclear waste disposal problem with over 3000 
independent variables (Goodwin et al, 1994). AECL
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Figure 1: Branches taken by Sequential Bifurcation 
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needed a method to screen the 3000 variables. Andres and 
Hajas (1993) described a new method called IFFD, for it-
erated fractional factorial designs, that was used to screen 
the variables in this problem. They used 512 runs alto-
gether and found 8 significant factors. 

The method starts with the construction of a fractional 
factorial design and with factors randomly assigned to 
groups. A third level is introduced by setting 25% of the 
runs to 0 while the remaining runs are equally split between 
+1 and –1. The process is repeated with factors assigned 
again randomly to (different) groups in the same way. After 
several iterations the data set is analyzed using forward 
stepwise regression. See Andres (1997) for a thorough ex-
planation of how to use IFFD. Upon completion of the ex-
periments and analysis, the significant factors are identified.  

Andres (1997) used a novel approach to check the ac-
curacy of IFFD in finding the significant factors in the 
simulation model. Three sets of runs were observed. The 
first set randomly assigned the levels of all the factors. The 
second set had randomly assigned levels for the factors that 
were not selected by IFFD while the selected ones were 
held at constant values. The third set of runs had randomly 
assigned levels for the selected factors while the other fac-
tors were set to constant values. Next pairwise compari-
sons were made between results of the first and second set 
and the first and third set. The results were then plotted. 
The plot showed that changes only to the selected factors 
resulted in a plot accounting for the variation in the re-
sponses. The plot comparing the first and second set 
showed that little variation in the responses was due to this 
set. See Andres (1997) Table 2, Figure 2 and Figure 3.  
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According to Andres (2000), other cases demonstrat-
ing the use of IFFD on large problems have not been pub-
lished. Also, the method is designed for very large prob-
lems such as the nuclear waste disposal simulation model 
and may not be efficient on problems with as few as 100 
factors. Andres and Hajas (1993) also stated that the 
method works best when a small number of factors domi-
nate. We note that 8 of 3000 is less than 1% of the total. 

3.5 Trocine Screening Procedure 

Simulation is an accepted and viable method of understand-
ing and experimenting with large, complex systems, safely 
and with good application of results back to the physical 
problem. Simulation has allowed experimenters to study lar-
ger and more complex problems. But experimental designs 
have not kept the pace with these larger problems except for 
the work by Bettonvil and Kleijnen and Andres and Hajas, 
and those studying supersaturated designs. As we have 
shown, each of these three approaches has its own limita-
tions as to the size or type of problem, and the accuracy of 
the results. We therefore have been researching the problem 
of screening many factors in an efficient and effective way 
while being robust to various types of problems.  

The ideas behind TSP (Trocine screening procedure) 
are to use a genetic algorithm to generate points to observe 
and to experiment iteratively using feedback from prior ob-
servations. During the process of researching the approach, a 
handful of other heuristics were employed, and a new itera-
tive analysis method was developed. All the many pieces are 
put together in a framework for screening many factors.  
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Figure 2 shows a high-level flow diagram of TSP’s 
framework. In the first step, 3 replicates of the single point 
where all factors are set to the high level are run. The mean 
and range of the three responses are computed and used 
both in computing the fitness of points for the genetic algo-
rithm and in analyzing the results. In the second step, an 
initial set of points is run. The number of points is depend-
ent on the total number of factors in the problem. For 15 
factors, 4 initial points are run. For 16 to 31 factors, 5 ini-
tial points are run. These points are constructed in such a 
way that no two factors are totally positively aliased with 
each other. This means that no two columns of levels of +1 
and –1 are identical. Whereas there are factors that are to-
tally negatively aliased because the column of one is –1 
times the column of the other. See Table 1. Column N is 
totally negatively aliased with C but by inspection, no two 
columns are identical.  

In the third step of TSP, new points are generated. 
First the fitness of the observed points is computed. The 
fitness is defined to be the absolute difference of the re-
sponse from the endpoint of the range about the mean of 
the replicates’. Thus the larger the difference of the re-
sponse from the replicates’ the more information is being 
derived by the point, thus it has a higher fitness. Points that 
have a response value within the range about the mean do 
not provide any useful information about which factors 
might be significant and hence their fitness is set to zero. 
The genetic algorithm applies the standard operators of se-
lection, mutation, and crossover. Parents are selected with 
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probability proportional to their fitness over the total fit-
ness of all observed points. Mutation occurs by flipping a 
level of a single factor between +1 and –1 of a single fac-
tor. Crossover occurs between two selected parents by se-
lecting factor levels from either parent with 50% probabil-
ity for each. 

Other heuristics are applied to the offspring points af-
ter the genetic algorithm is run. These heuristics balance 
the number of instances of +1 and –1 in each factor’s col-
umn so that no level appears 6 more times than the other 
level. Aliases among the four most highly aliased factors 
are artificially broken in the new runs and replicates of 
previously observed points are prevented. For each itera-
tion four new points are added to the design and observed. 
The process repeats after the experimenter enters the re-
sponses.  

Also at each iteration, the data set is analyzed to see 
which factors appear to be significant, which appear not to 
be significant, and which are still questionable. Those that 
are not significant are discarded so that subsequent ex-
perimentation will concentrate on the questionable ones. 
For each factor a data structure called the scorecard is kept 
that contains four tallies and one accumulator. Compari-
sons are made for every pair of points to see how different 
their responses are and whether the factor levels are differ-
ent as well. If a factor’s level changes but the response did 
not then that factor may have negligible effect and so an 
increment to a corresponding tally is made. On the other 
hand, if the responses are widely different and a factor 
Fitness

Budget

All Factors Replicates

Step 1

Update Scorecard

Step 4

Initial Points

Step 2 Genetic Algorithm and
Heuristics

Step 3

Responses

Mean
Range

Subset with Signficiant
Factors

Step 5

Fitness Points

Iterate

Responses

Rank
Stabilization

 
 

Figure 2: Flow of TSP 

Table 1: Initial Points for 15 Factor Problem in TSP 

A B C D E F G H I J K L M N O
-1 -1 -1 -1 1 -1 -1 -1 1 1 1 -1 1 1 1
-1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1
-1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1
-1 1 -1 -1 -1 1 1 -1 1 -1 -1 1 1 1 -1  
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level changed, then a different tally is incremented to record 
the fact. Two other tallies track the direction of the effect of 
a factor and the accumulator adds up the portion of the 
change in the response attributed to a factor. All these values 
taken together form a total score for each factor. 

After each iteration the total score of each factor is 
ranked. If the ranks of the factors change significantly be-
tween iterations then TSP continues to derive useful infor-
mation about the problem. If, on the other hand, the ranks 
are not changing much, no new information is being de-
rived so the procedure stops. It selects those factors that 
have greater than average proportion of the total of all 
scores. This is about 25% of the total number of factors in 
the problem. Alternatively, TSP will stop if a preset budget 
is reached and select the factors in the same way. See Tro-
cine (2001) for a complete discussion of how TSP works.  

4 SIMULATED CASES  

In order to demonstrate the performance of TSP some simu-
lated cases were constructed. These cases were implemented 
as simulation models in Microsoft Excel. Each factor has a 
coefficient. The response is computed by summing the 
product of the coefficient with the factor’s level and adding 
the error term to it. This is based on the assumption made in 
screening that a first order linear model is a good 
approximation of the underlying model for the purpose of 
screening. The error terms were normally distributed in all 
cases but one where exponential error terms were used. 
Again in screening we assume that error terms are normally 
distributed. The variability of the responses were constant 
throughout the experimental region in these simulated cases. 
This is consistent with our practice of ensuring that a process 
is in control before we tinker with it.  

The cases are listed in Table 2 and ordered roughly by 
the number of significant factors in the problem. The cases 
range in total number of factors from 16 to 100. They 
range in number of significant factors from 1 to 15. And 
the range of the proportion of significant factors to total 
factors was from 2% to 37%. Recall the parsimony princi-
ple that states that only a few are important and most are 
not. We would not employ screening at all if we did not 
believe that this principle holds true. There are columns 
that show whether the signs of the effects are in the same 
direction or opposing directions, the coefficient of varia-
tion, and whether comparisons were made with other 
methods. These cases were constructed to represent a vari-
ety of problem sizes and conditions so that TSP could be 
evaluated across these conditions.  

Additionally, cases 15 and 16 were taken from the lit-
erature. Case 15-Cheng was published in Cheng (1997) 
and Bettonvil and Kleijnen (1996). This problem had 24 
factors; the coefficients were all positive and are plotted in 
Figure 3. Bettonvil and Kleijnen applied sequential bifur-
cation deterministically on this case (without error terms) 
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to find the most significant factors. Cheng (1997) proposed 
an improvement to sequential bifurcation where a δ value 
is chosen by the experimenter based on prior knowledge of 
the problem. The δ is referred to as the indifference zone 
and serves the purpose of distinguishing responses as sig-
nificantly different or not. In TSP we use the range of the 
replicates responses’ for this same purpose. Thus we pro-
pose that δ may be chosen without prior knowledge when 
using sequential bifurcation by running 3 replicates of a 
single point and computing the range or some other meas-
ure of the variability.  

Case 16-Holcomb was taken from Holcomb, Mont-
gomery, and Carlyle (2000a). It was based on the Williams 
(1968) rubber making process that was again published by 
Lin (1993). In this case a Plackett-Burman design in 23 
factors was constructed and then analyzed with alternative 
methods for dealing with supersaturated design sets. Wil-
liams concluded there were 7 factors significant and pub-
lished the coefficients. As Holcomb, Montgomery, and 
Carlyle (2000a) did, we simulated the case using the pub-
lished coefficients and their own error terms. The coeffi-
cients are shown in Table 2. Both of these cases have a 
high proportion of significant factors (37.5 % and 30.4%, 
respectively).  

For each of the 16 cases, five replications of the use of 
TSP on the case were run. The results were consistent 
across the replications. Thus averages of the five replica-
tions are presented next in the evaluation of performance. 
For more details, please see Trocine (2001).  

5 EVALUATION OF PERFORMANCE 

In this section, we present several charts. These charts il-
lustrate how TSP performed on the 16 cases described in 
the last section on both efficiency and effectiveness. Both 
Type I and Type II errors were recorded for the cases in 
much the same way as described in Holcomb, Montgom-
ery, and Carlyle (2000). Ideally, a screening method will 
always select the significant factors and never select the 
insignificant factors. However, if a screening method se-
lects an insignificant factor, this is called a Type I error. 
Type I errors are computed by the taking the number of se-
lected insignificant factors and dividing them by the total 
number of insignificant factors. In all cases the average 
Type I errors were less than 19% with TSP. A Type II er-
ror occurs when we fail to select a significant factor. Type 
II errors are computed by dividing the number of signifi-
cant factors that the method failed to select by the total 
number of significant factors in the problem. Note that the 
scales of Type I and Type II measures are different. 

There are always fewer significant factors than insig 
nificant ones so when a significant factor fails to be se-
lected the error rate is much higher than when one insig-
nificant factor is selected. 
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Table 2: Simulated Cases Used to Evaluate TSP 

Case Name

Verification/ 
Contrived/ 
Literature

Number of 
Signficant 

Factors
Total Number 

of Factors

Proportion of 
Signficant 

Factors
Interaction 

Terms Signs
Smallest 

Coef/StDev
Replications 

Run
1-EN50-1 C 1 50 2.0% -- Equal 8.33 5
2-ON16-3 C 3 16 18.8% -- Oppose 8.33 5
3-ON20-2 V 2 20 10.0% -- Oppose 8.57 5
4-EN20-3 V 3 20 15.0% -- Equal 10.00 5
5-EE20-3 C 3 20 15.0% -- Equal -- 5
6-VN50-3 C 3 50 6.0% -- Same 18.00 5
7-VN16-5 C 5 16 31.3% -- Same 10.00 5
8-ON20-5 C 5 20 25.0% -- Oppose 13.33 5
9-ON50-5 C 5 50 10.0% -- Oppose 8.57 5
10-VN50-10 C 10 50 20.0% -- Same 7.14 5
11-ON100-10 C 10 100 10.0% -- Oppose 6.00 5
12-VN50-15 C 15 50 30.0% -- Same 6.25 5
13-VN100-15 C 15 100 15.0% -- Same 7.14 5
14-VN20-3I C -- 25 -- one 2-way Same 10.00 5
15-Cheng L 9 24 37.5% -- Same 4.33 5
16-Holcomb L 7 23 30.4% -- Oppose 11.38 5  

 

Figure 3: Magnitude of Coefficients in 24 Factor Case 
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Figure 4: Magnitude of Coefficients of 23 Factor Case 
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Figure 5 shows the average Type I and Type II errors 

by the total number of factors in the problem. Figure 6 
shows the average Type I and Type II errors by the number 
of significant factors in the problem. The interpretation of 
these two charts is that the Type I errors in TSP depend on 
the total number of factors in the problem while Type II 
errors do not. As the total number of factors increases, the 
Type I errors also increase. The Type II errors on the other 
hand increase when the number of significant factors in-
creases as shown in Figure 6. We point out, however, that 
when there were 15 significant factors of 100, TSP identi-
fied about 6 on average. Also, in all cases but 16-Holcomb, 
TSP always identified 3 of the significant factors. And in 
problems with 3 or fewer significant factors, TSP always 
selected them. Thus TSP works best on these problems and 
opportunities exist to improve it when the number of sig-
nificant factors is greater.  
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Figure 5: Average Observed Errors 
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Figure 6: Average Observed Errors 

 
Figure 7 and Figure 8 show that TSP performed 

equally well regardless of the signs of the effects. Figure 7 
plots Type I errors for all runs of cases in two groups, one 
with all same signs of effects (n=45), the second with 
mixed signs of effects (n=33). Though the number of in-
stances is unequal, the shapes of both histograms is the 
same. Figure 8 shows similar curves for Type II errors. 
This is important to note because sequential bifurcation, 
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which is more efficient, cannot work on problems with 
mixed signs or when the signs are unknown.  
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Figure 7: Type I Errors by Signs of Effects 
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Figure 8: Type II Errors by Signs of Effects 

 
Figure 9 shows that TSP is acceptably efficient for all 

cases. The vertical axis is the average number of observa-
tions per case which ranged from 32 runs to 70 runs. The 
horizontal axis corresponds to the individual cases ordered 
by the total number of factors in the case. As expected, the 
average number of runs increases as the total number of 
factors increases.  y
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Figure 9: Efficiency of TSP 
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A result that is not shown in these charts is that TSP is 
by far much easier to use than all the other methods dis-
cussed herein. The experimenter only enters the number of 
factors, the budget, and the responses. The entire design is 
constructed by the software and all the analyses and inter-
pretations are conducted by the TSP software. The results 
presented in the section did not involve construction of 
plots, interpretation of plots, nor running regression analy-
ses, choosing alpha values, and so forth. TSP produces a 
list of factors. The charts show how the list TSP produced 
matched the factors with significant coefficients. 

6 OPPORTUNITIES AND CONCLUSIONS 

Bert Gunter (2001) made a comment at the Spring Re-
search Conference on Statistics in Industry and Technol-
ogy this year that 90% of what we do is screening. His 
point is that it is therefore very important to get screening 
right. We believe there are many more opportunities to im-
prove screening methods for large numbers of variables 
and that this is a valuable research area. The methods we 
presented: fractional factorial designs, supersaturated de-
signs, sequential bifurcation, iterated fractional factorial 
designs, and the Trocine screening procedure, all make an 
impact and all can be improved. TSP, however, has been 
shown to be robust to the various types of cases used 
herein particularly in identifying the top 3 most significant 
factors. Because of its ease of use, we recommend those 
with limited statistical training consider using TSP and 
those with statistical training to apply it to cases, evaluate 
its performance, and compare its performance with other 
methods or with known coefficients. Software will be 
made available on the website www.venutekllc.com.  

Simulation models will continue to be constructed for 
larger and more complex problems. Experimentation on 
these models should always be tackled in a systematic way 
to maximize information derived from a minimum number 
of runs. We therefore strongly encourage practitioners to 
use an available screening method.  
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