
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

THE EXTEND SIMULATION ENVIRONMENT

David Krahl

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119, U.S.A.

ABSTRACT

The Extend simulation environment provides an integrated
structure for building simulation models and developing
new simulation tools. This environment supports simula-
tion modelers on a wide range of levels. Model builders
can use Extend’s pre-built modeling components to
quickly build and analyze systems without programming.
Simulation tool developers can use Extend’s built-in, com-
piled language, ModL, to develop new reusable modeling
components. All of this is done within a single, self-
contained software program that does not require external
interfaces, compilers, or code generators.

1 INTRODUCTION

Over the last decade, there has been a convergence in the
simulation industry. Simulation languages have become eas-
ier to use, often adding a user interface layer similar to that
traditionally found in simulators. Simulators have added
functionality to the point where their power and flexibility
rival that of traditional languages. Because of this, it has be-
come difficult for an individual to determine the advantages
of one product over the others based strictly on a feature
comparison.

In this confusing marketplace, Extend stands out as a
product whose basic design provides a combination of
unparalleled ease of use, power, and extensibility (Krahl
1999). It exists as:

• A stand-alone simulation tool which can be used to
create complex discrete event and continuous models
without programming.

• A simulation authoring package where model inter-
faces can be easily created to enhance productivity
and ease of use; again no coding is necessary.

• A development environment for building sets of cus-
tom reusable and integrated components. This pro-
gramming environment allows the modeler to create
their own simulator.
217
2 SIMULATION PHILOSOPHY

Extend is the first simulation program to successfully bring
simulation to the desktop. Originally released in 1988, Ex-
tend brought capabilities to analysts that were previously
available only on mainframe computers. The vision which
lead to the first graphical user-interface based simulation
environment continues today.

Imagine That! believes that working with its custom-
ers is the best way to guarantee success. Technical support
to those who have purchased the full version of Extend is
generous in its scope. This includes all aspects of the simu-
lation process including installation, questions about spe-
cific features, troubleshooting model problems, program-
ming in the ModL language, and even if they are just seek-
ing guidance in how best to build their model.

In the process of developing and enhancing Extend,
Imagine That! has scored a number of “firsts” in the simu-
lation industry. Table 1 illustrates a few of the pioneering
features in Extend.

Table 1: Firsts for the Extend Simulation Software
Year Innovation
1988 First template-based (library) simulation system
1988 First open source modeling components
1988 First simulation software designed for a GUI
1992 First hierarchical modeling environment
1992 First message based discrete event architecture
1995 First Windows/Macintosh simulation system
1998 First DDE scriptable simulation environment
2001 First open source optimizer
2001 First drag and drop ActiveX support
2001 First integrated support for Proof Animation
2001 First integrated network communication support

In fact, Extend continues to be unique in its use of

open source and an integrated development environment.
This allows model builders to create their own components
based on the standard components from Imagine That!

Krahl

Table 2: The Extend Product Family
Extend Product Description Typical use
Extend Drag and drop simulation for continuous

models
Continuous modeling of scientific and engineering
systems

Extend+BPR Business process reengineering package Modeling business processes
Extend+Manufacturing Advanced discrete event modeling compo-

nents
Manufacturing, healthcare, and communications

Extend+Industry Adds an integrated database and high speed
systems modeling to Extend+Manufacturing

High speed processes and complex systems where
it is useful to separate the model data from the
structure

Extend Suite Proof Animation and Stat::Fit as well as the
BPR and Manufacturing modules

Organizations which need to model complex proc-
esses and build high quality animations

Industry Suite Extend Suite and the added benefit of the
Industry module

The ultimate in simulation support, combining
continuous, discrete event, rate, embedded data-
base, and sophisticated animation in one package

Imagine That! is also notable for what it does not do.

We do not provide consulting services, as that would dis-
tract us from our primary mission of developing high qual-
ity software. Our sales processes are simple and straight-
forward, performed directly from our San Jose, CA office.
This allows us to price Extend more competitively.

3 EXTEND PRODUCTS

The Extend product family is designed to meet the needs of
the entire enterprise. Table 2 illustrates the range of Extend
based products sold directly by Imagine That! In addition
to these, third-party developers have created their own ver-
tical market modules in diverse areas such as chemical
processing, supply chain, pulp and paper manufacturing,
and others. All products based on Extend include:

• Drag and drop modeling using the Extend built-in
modeling components.

• A full suite of interprocess communication tools for
communicating with other application such as Micro-
soft Excel.

• Hierarchical modeling capabilities.
• Evolutionary optimization.
• Animation.
• The innovative ModL language for development of

vertical market simulation solutions.

4 THE EXTEND MODELING ENVIRONMENT

Before looking into how Extend can be used to build mod-
els, it is helpful to understand the Extend modeling envi-
ronment (Imagine That, Inc. 2001)
218
Extend models are constructed with library-based
iconic blocks. Each block describes a calculation or a step
in a process. Block dialogs are the mechanism for entering
model data and reporting block results. Blocks reside in
libraries. Each library represents a grouping of blocks with
similar characteristics such as Discrete Event, Plotter,
Electronics, or Business Process Reengineering. Blocks are
placed on the model worksheet by dragging them from the
library window onto the worksheet. The flow is then estab-
lished between the blocks. Figure 2 illustrates the overall
structure of an Extend model.

There are two types of logical flows between the Ex-
tend blocks. The first type of flow is that of “items”, which
represent the objects that move through the system. Items
can have attributes and priorities associated with them.
Examples of items include parts, patients, or a packet of
information. The second type of logical flow is “values”,
which will change over time during the simulation run.
Values represent a single number. Examples of values in-
clude the number of items in queue, the result of a random
sample, and the level of fluid in a tank.

Each block has connectors that are the interface points
of the block. Figure 1 shows the connector symbols for the
value and item connectors.

Item InputValue Input

Value Output Item Output

Figure 1: Value and Item Connectors

Krahl

ActiveX and other
software
Input data

Simulation results
Interface

Behavior (code)

Drag blocks from
libraries into model

Model Worksheet

Libraries of blocks
Dialog

Behavior (code)
Help
Icon

Default data

Block dialogs
Input data

Simulation results

Figure 2: Extend Modeling Structure

Connections are lines used to specify the logical flow
from one connector to another. Double lines represent item
connections and single lines represent value connections. The
concept of value connections in addition to item connections
is unique to Extend. Other contemporary simulation applica-
tions require that a function be written whenever a simulation
input is based on a value from another point in the model. In
Extend, this type of logic is performed without programming
of any type. More importantly, the logic of the model is visi-
ble to anyone examining the model structure.

Figure 2 illustrates the relationship between the librar-
ies, blocks, worksheet and any external programs (such as
an ActiveX object, Excel, or a DLL) which may be linked
to Extend. It also shows the visual nature of an Extend
model. Note that the Input Random Number blocks can be
clearly recognized as providing the delay (D connector) for
the activities.

5 SINGLE SERVER, SINGLE QUEUE EXAMPLE

The following example is of a single server, single queue
system. For the purpose of illustration, the model of a car
wash will be used. This car wash will include one wash bay
and one waiting line. The model for this car wash is shown
in Figure 3.

The block on the far left is a Generator block that peri-
odically creates items (in this case dirty cars). Following this
is a Queue, FIFO block that holds the cars until requested by
219
the next block. The wash bay is represented by the Activity
Delay block with a limited capacity of one processing unit.
The delay for the activity is specified by an Input Random
Number block (connected to the “D” or delay connector).
Each time a car arrives to the activity, a new value is sampled
from the Input Random Number block. The last block in the
model is an Exit block that removes the cars from the system.

Figure 3: A Single Server Single Queue Model

5.1 Graphical Output

A Discrete Event Plotter graphically displays model met-
rics (values). In this example (Figure 4), the Plotter will
graph the contents of the Queue (the number of dirty cars
waiting in line) over time. Here the length connector (L) on
the Queue FIFO is connected to an input on the Plotter.
Figure 6 illustrates a sample plot from this model.

Krahl

Figure 4: Discrete Event Plotter Added to Model

5.2 Model Results

During and after the simulation run, the results of the simu-
lation are reported within the blocks, displayed on plotters,
sent to reports, and exported to other applications. Double-
clicking on each block reveals the information collected
from the simulation run. For example, double-clicking on
the Queue, FIFO block opens a dialog showing the follow-
ing information about the state of the block:

Figure 5: Dialog of Queue FIFO

The Plotter block shows the number of items stored in the
Queue, FIFO over time in both graphical and tabular format:

Figure 6: Plot of Queue Length

220
Simulation results may be stored in a table, plotted,
cloned to a different area of the worksheet, exported to
another program such as a spreadsheet or database, dis-
played in an animation, or even used to control some as-
pect of the outside world through external device drivers.

5.3 Communication with Other Applications

The term interprocess communication (IPC) describes the
act of two applications communicating and sharing data
with one another. This feature allows the integration of
external data and applications into and out of Extend mod-
els. Automatic communication between Extend and other
applications can take one of five forms:

• “Paste-Link” where the information is automatically
updated between Extend and Excel. Setting up this
type of communication only requires copying the
value in one application (Extend or Excel) and select-
ing paste-link in the other application. This produces
a “live” link that updates whenever the value in the
host application changes. These updates even occur
when the model is running and can be used to display
data or graphs in Excel that “animate” while the
simulation model is running.

• Blocks that utilize the IPC functions to communicate
directly with other applications. The IPC library in
Extend allows models to send data to, get data from,
and execute macros within other applications, includ-
ing Excel spreadsheets. These blocks can respond to
simulation events and traverse the spreadsheet.

• ODBC (Open DataBase Connectivity). Extend can
access database information through ODBC. As with
all of Extend’s interprocess communication features,
this is available both on a block level (accessible with
no programming required) and on an API level within
Extend’s ModL programming environment.

• Embedded ActiveX or OLE (Object Linking and
Embedding) objects. These retain their native user in-
terface, but reside with the Extend model worksheet
or blocks. All of the features and the interface of the
embedded application are directly available within
Extend. Figure 7 shows an ActiveX Excel spread-
sheet embedded in an Extend model. Extend’s paste-
link functionality was used to connect the cells in the
spreadsheet to the dialogs in the Extend blocks.

• DLL (Dynamic-Link Library). A separate application
in the form of a DLL can be called from the ModL
code. This library can be written in any one of a
number of popular programming languages including
FORTRAN, C, C++, or Pascal.

Krahl

Figure 7: ActiveX Excel Spreadsheet Embedded in Extend

5.4 Integrated Database

The Extend+Industry package contains an integrated rela-
tional database. This database provides a complete data
management system for model input and output. The data-
base is built directly into the model to house product data,
process information, and experiment with scenarios.

By separating your data from the model, the database
enables fast scenario implementation, flexible analysis and
improved project management.

• Configure tables for experiments and reports.
• Use database-aware blocks to build powerful model

constructs.
• Assign strings to items using database-aware attrib-

utes.
• Leverage dates, times and other data formats such as

currency.

The Industry database is relational and parent-child re-

lationships can be used to better organize the information
in the model. For example, each entry in a table of part
types can reference its own unique routing table. This is an
extremely powerful feature for organizing the information
used in complex simulation models.

5.5 Data Analysis

Extend offers a number of methods for analyzing both in-
put and output data. These range from internal analysis
features to built-in interfaces with other applications.

An interface to distribution-fitting programs is pro-
vided to aid users in selecting the appropriate statistical
distributions based on empirical data collected in the field.

In addition, sensitivity analysis can be performed to de-
termine how sensitive a system is to changes in specific in
221
put parameters. For example: to determine how sensitive the
car wash is to changes in the inter-arrival time of dirty cars,
sensitivity analysis can be performed on the inter-arrival
mean parameter of the Generator block. By selecting the
inter-arrival time dialog item and choosing Sensitize Pa-
rameter from the Edit menu, the change in the parameter
value from one run to the next is defined. Simulation pa-
rameters such as the number of runs and simulation end time
can be specified in the Simulation Setup dialog under the
Run menu. By cycling through different inter-arrival times
for the dirty cars and comparing the results from the differ-
ent runs, an understanding of how sensitive the car wash is
to the arrival rate of dirty cars can be obtained.

Finally, the Statistics library helps users to collect and
analyze output data. Blocks from the Statistics library
automatically gather data from the specific blocks and cal-
culate confidence intervals.

5.6 Optimization

Until now, optimization of a simulation model has been a
process of trial and error. Extend’s Evolutionary Optimizer
employs powerful “enhanced evolutionary” algorithms to
determine the best possible model configuration. Using a
drag and drop interface, performance metrics and parame-
ters that can be varied are entered into the Optimizer block.
These parameters are used in an equation that defines the
objective function. When the model is run, the Optimizer
block generates alternatives and locates the statistically
best configuration. Unlike external optimizers, Extend’s
optimization is well integrated into the program. For ex-
ample, when the optimization process is complete, model
parameters are automatically set to the optimal configura-
tion. In addition, because the optimizer has been imple-
mented in a block, the source code is available for exami-
nation and modification.

6 CUSTOMIZING EXTEND

The above discussion illustrates the highly graphical and
interactive nature of Extend. However, Extend can also
take the shape of the modeled system. Interfaces, compo-
nents, and graphics can be created which tailor the model
to a specific application area.

The most visible aspect of a custom model is the user
interface. By modifying an existing interface or creating a
new one, the simulation modeler is able to create a model
which can be exercised by someone more familiar with the
system than with the simulation tool. This means that mod-
els can be built that fit naturally into the conceptual frame-
work of the person using the model. The following sections
will describe some of the tools provided in Extend that
facilitate customization.

Krahl

6.1 Animation

Animation is a powerful presentation and debugging tool
that can greatly increase model clarity. In Extend, anima-
tion icons moving from block to block represent the flow
of items through the system. Users can choose from a
number of icons provided with Extend, create their own in
an external drawing package, or import them.

For example, adding animation to show cars traveling
from block to block in the car wash model is done by se-
lecting the appropriate icon in the Animate tab of the Gen-
erator block. From here, the picture representing all of the
items created by the Generator is defined. Each block that
the items pass through has the capability of changing the
item’s animation icon. Every item exiting the Generator
block can be represented with a picture of a dirty car. As
the items pass through the wash bay, the Activity Delay
block changes each item’s animation picture to a clean car,
providing visual cues of how the items are changing as
they progress through the model.

In addition, custom animation can be added to display
pictures and text, level indicators, and pixel maps.

An interface also exists between Wolverine Software’s
animation package, Proof Animation and Extend. Activi-
ties, Resources, Generators, and Exit blocks each have
specific functionality to send information to the Proof ani-
mation during simulation execution (Wolverine Software
Corporation 1995). Additional animation features in Proof
can be accessed in Extend through the Proof library of
blocks. This allows Extend modelers to easily utilize the
industry’s most sophisticated animation package.

6.2 Hierarchical Modeling

In the past, there have been at least two definitions of hier-
archy in simulation modeling. The first definition, coined
by Imagine That, Inc in 1992 describes the grouping or
aggregation of system components (blocks) into a single
object. The second definition, first referred to later in 1992,
(Pegden and Davis 1992) describes a modeling system in
which new primitive modeling constructs can be created
from existing primitives provided by the simulation sys-
tem. It appears that, as other simulation software packages
have matured and added features, the first definition has
become the standard (Bapat and Swets 2000).

Extend provides unlimited layers of hierarchy, created
using a simple menu command. Hierarchy allows models
to be subdivided into logical components or sub-models,
represented by a single descriptive icon. Double-clicking
on the hierarchical block opens a new window displaying
the sub-model. This greatly simplifies the representation of
a model and allows the user to hide and show model details
as appropriate for the target audience.

Even a medium-sized call center model can become
difficult to maintain if all of the modeling components
222
must be at the same level. Extend’s hierarchy allows the
modeler to decompose the model into smaller, more man-
ageable segments. Additionally, new model segments can
be added by dropping in a new hierarchical block. Figure 8
illustrates the use of hierarchy to organize a model where
each icon encapsulates a separate model segment.

Figure 8: Call Center Model with Hierarchical Blocks

By selecting a group of blocks and choosing Make Se-
lection Hierarchical from the Model menu, a section of the
model can be encapsulated within a hierarchical block.
Extend’s hierarchy fully encapsulates the enclosed block
and does not require the renaming of variables and connec-
tions. All of the connection names within the hierarchical
block are local to that block. This allows multiple instances
of identical hierarchical blocks in the same model (Pidd
and Castro 1998). The hierarchical blocks can be copied
within a model or saved to a library to be used again in
other models. The icon for the hierarchical block can be
modified by using the built-in icon editor or by importing
an existing picture. Figure 8 shows the Call Center model
with hierarchical blocks encapsulating the major operations
of the model. While the representation of the model is
more intuitive and simple than a non-hierarchical model,
all of the detail of the model can still be accessed by dou-
ble-clicking on any of the hierarchical blocks to display the
underlying sub-model.

6.3 Dialog Cloning and the Notebook

As noted earlier, input and output parameters associated
with the model can be found in the dialogs of the appropri-
ate blocks. While this provides an intuitive association
between system metrics and the constructs used to model
them, it can make searching for specific data cumbersome.
This is especially true when working with large models
containing many layers of hierarchy. An effective way of

Krahl

dealing with this is to use the Extend notebook and cloning
feature. With the notebook, a single custom interface can
be created that consolidates critical parameters, results, and
model control to a central location.

The notebook is a separate window associated with
each model. Initially, the notebook is a blank worksheet to
which text, pictures, and clones can be added. Clones are
direct links to dialog parameters and are created by select-
ing the Cloning Tool from the tool bar and using it to drag
a dialog parameter from a block dialog to the notebook or
model worksheet. Once a clone is created, any changes to
the clone are immediately reflected in the block and vice-
versa. Therefore, it is no longer necessary to access the
block’s dialog to change an input parameter or view up-
dated results. Creative use of the notebook can result in a
simple yet effective interface for a large, complex model.
As an illustration of how the notebook can be used to con-
solidate important parameters into one location, Figure 9
shows the notebook for the Call Center model.

Figure 9: Notebook for Call Center Model

6.4 Block Development

The block development environment is one of Extend’s
most powerful features. While the majority of Extend users
find the pre-built constructs sufficient for their needs, the
block development environment provides a way for users
to expand their modeling capabilities to perform unusual or
highly specialized tasks. It typically takes only minutes for
someone with any programming experience to learn the
basics of building modeling components in Extend.

Extend’s open source architecture allows access to the
structure of most blocks that are shipped with Extend. By
opening the structure, the icon, dialog, help text, and pro-
gramming code of the block can be edited. The interface
and functionality of any block can be modified or a new
block created from scratch.

ModL is the powerful and flexible language used to
define the behavior of each block. This language provides
high-level functions and features while having a familiar
look and feel for users with experience programming in C.
223
In addition, external XCMDs and DLLs can be called from
within ModL, giving the option of programming in any
language which supports this feature (such as C or Pascal).

The ModL development environment with its interface
for editing the dialog, help, icons, connectors, and code, is
illustrated in Figure 10. Other tools include block perform-
ance profiling, “include” files, and an interactive debugger.

Figure 10: ModL Block Development Environment

This level of extensibility has prompted many users to
develop libraries of custom blocks for specific industries.
Users and third-party developers have created libraries for
modeling many systems including high-speed production
systems, chemical processes, silicon wafer fabrication,
pulp and paper mills, environmental processes, and radio
and microwave communication systems. Some blocks
coded by customers can be found on the company web site
(http://www.imaginethatinc.com).

6.5 Scripting

Since Extend was created from the ground up as a graphical
simulation tool, much of the process of defining a model
was originally dependent on user interaction. For example,
the user places blocks on the model worksheet, connects
blocks together by drawing a connection between them,
defines the block’s behavior by double-clicking the block to
open its dialog and entering the appropriate parameters, etc.

Scripting is a feature that allows models to be created
and/or modified through a suite of ModL functions. With
this functionality, users can create objects that automati-
cally build and modify models. With scripting, users can
develop their own model building “wizards” or self-
modifying models. Without having to rely on general-
purpose “wizards” provided by the software vendor, users
can develop “wizards” specific to their needs and can have
complete control over the level of detail and accuracy re-
sulting from automated model building.

Krahl

Coupled with Extend’s ability to communicate with
other applications using interprocess communication (IPC),
scripting provides an easy way to allow other applications to
control every aspect of Extend, including building the model,
importing/exporting data, and running the simulation.

7 DISCRETE EVENT ARCHITECTURE

Extend utilizes a message-based architecture which allows for
more natural model building than is possible in other simula-
tion tools. Messages are used to pass information to connected
blocks about the state and actions of the block sending the
messages. For example, as soon as a queue receives an item it
will send a “wants” message to the downstream blocks to see
if any of them can accept an item. The messaging system is
applied to the item as well as the value connectors. Because of
this, complex models and logic can be built without resorting
to “dummy” resources or “synthetic” workstations

In using a modern, message-based system, Extend al-
lows the modeler to focus on the modeling task rather than
the simulation tool.

• Complex model segments can be built from simple,
elemental blocks. These segments can then be saved
in a library for use in other models. This type of
model construction eliminates the need for “kitchen
sink” modeling components in which every possible
permutation must be programmed by the developer
(making the interface unnecessarily complex) or re-
quiring programming to enhance the capabilities of
the modeling component.

• Easier rescheduling of events. Because blocks, not
items (entities), are entered into the event calendar,
changing an event time is a simple assignment. In
other simulation tools, the event calendar must be
searched for a specific item before the change can be
made.

• Events do not have to be item based. Blocks can post
themselves on the event calendar even if they do not
handle items. This reduces the overhead in the model
because items do not have to be generated or proc-
essed when an event occurs.

• Blocking can be done through decisions. Extend
automatically determines which path an item takes
before it arrives at the decision point. The alternative
to this would be adding “dummy” resources to pre-
vent the item from moving forward if space was not
available.

• Queues can be separated from activities. Any number
of blocks that do not hold items (passing blocks) can
be positioned between a queue and the next activity.

• Conditions do not need to be “time checked”. Mes-
sages are sent to connected blocks whenever a condi-
tion changes and the condition is evaluated immedi-
ately.
224
• Model logic is represented graphically and is visible
as part of the model structure.

• User-defined “sub-executives” can be added to react
to specific simulation events. For example, a block
could be connected to the Executive that checked a
condition at the end of every simulation event.

8 WHAT MAKES EXTEND UNIQUE

Extend provides features and capabilities not found in
other simulation software. This allows the modeler to con-
centrate on the modeling process and quickly produce a
model that is easy to manipulate and communicate to oth-
ers. These features include:

• An integrated development environment for building
modeling components that fit naturally into the user
interface.

• Graphical logic that makes the model easier to under-
stand and communicate.

• An unparalleled level of interactivity. Model parame-
ters can be changed and results viewed during simu-
lation execution. This is done through the graphical
user interface; there is no need to enter a debugging
mode or enter cryptic debugging commands.

• Superior hierarchy. Extend’s hierarchy allows for
animation and reuse, and can be any number of levels
deep. This gives modelers an excellent tool for orga-
nizing large models and reusing model segments in
other models.

• An innovative discrete event architecture which
makes model building more intuitive.

9 APPLICATIONS

Since Extend is a general purpose simulation program, it
has been applied in a wide range of areas. The two applica-
tion examples included here are medical laboratory auto-
mation and supply chain management.

9.1 Medical Laboratory Equipment

The Medical Laboratory model shown in Figure 11 simulates
an entire lab analysis operation. While the model looks like
just a picture of an analyzer, in reality the “picture” is an Ex-
tend hierarchical block. Double-clicking on the Immulite 2000
icon reveals a lower-level layer composed of three additional
hierarchical blocks joined together much like a jigsaw puzzle
(“Taking a Closer Look”). The Pre-analytical, Analytical, and
Post-Analytical blocks each simulate their portion of the lab’s
operation. The user can change aspects of the model to more
closely resemble their actual operations, and explore opportu-
nities for improving testing processes.

Opening (double-clicking) a hierarchical block reveals
its underlying model. For example, the Pre-analytical section

Krahl

models specimen receipt, including STAT and routine ac-
cessions, accession number, specimen receipt time, and the
number of tests to be performed. The Analytical hierarchical
gathers information about the number of accessions and tests
performed by the analyzer and determines turn-around-times
and utilization for all instruments. The Post-Analytical block
exports pertinent data to a Microsoft Excel spreadsheet for
analysis and reporting. Communication between the model
and the spreadsheet is handled automatically by Extend’s
IPC (InterProcess Communication) library. This application
was created by Solution Consulting Service.

Figure 11: Medical Laboratory Model

9.2 Supply Chain Management

The US Marine Corps is undergoing a revolution in the way
they conduct combat operations. There are many ideas re-
garding how the tactical supply chain must change to pro-
vide the necessary logistical support. The challenge has been
described as “warehouses that move”, referring to the chang-
ing location of supply ships and depots (Hamber 1999).

The TLoaDS model (Figure 12) has been developed to
explore the ability of existing, evolutionary, or revolution-
ary methods and equipment for this mission.

Figure 12: Supply Chain Model
225
10 SUMMARY

As demonstrated above, Extend’s design provides a supe-
rior simulation environment. By incorporating an intuitive
interface, an extensive authoring and development envi-
ronment, and a more advanced simulation technology, Ex-
tend has succeeded in defining its position as the leader in
simulation software.

REFERENCES

Bapat, V. and Swets, N. 2000. The Arena Product Family:
Enterprise Modeling Solutions. In Proceedings of the
2000 Winter Simulation Conference Proceedings, ed.
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fish-
wick, 163-169. IEEE, Piscataway, NJ.

Hamber, R. 1999. CloaDS & TloaDS. 1999 Simulation
Solutions Conference. Institute of Industrial Engineers,
Norcross, GA.

Imagine That, Inc. 1992. Extend Software Manual. San
Jose, CA.

Imagine That, Inc. 2001. Extend User’s Guide. San Jose,
CA.

Krahl, D. 1999. Modeling with Extend. In Proceedings of
the 1999 Winter Simulation Conference Proceedings,
ed. P. A. Farrington, H. B. Nembhard, D. T. Sturrock,
and G. W. Evans, 188-195. IEEE, Piscataway, NJ.

Pegden, C. D. and Davis, D. C. 1992. Arena: A
SIMAN/Cinema-Based Hierarchical Modeling Sys-
tem. In Proceedings of the 1992 Winter Simulation
Conference, ed. J.J. Swain, D. Goldsman, R. C. Crain,
J. R. Wilson, 390-399. IEEE, Piscataway, NJ.

Pidd, M and Castro, RS. 1998. Hierarchical Modeling in
Discrete Simulation. In Proceedings of the 1998 Win-
ter Simulation Conference, ed. D. J Medeiros, E. F.
Johnson, J. S. Carson, M. S. Manivannan, 383-389.
IEEE, Piscataway, NJ.

Wolverine Software Corporation. 1995. Using Proof Ani-
mation. Annandale, VA.

AUTHOR BIOGRAPHY

DAVID KRAHL, Lead Engineer with Imagine That, Inc.,
is responsible for Extend block architecture, development,
and support. He received a MS in Project and Systems
Management in 1996 from Golden Gate University and a
BS in Industrial Engineering from the Rochester Institute
of Technology in 1986. Mr. Krahl has worked extensively
with a range of simulation programs and is actively in-
volved in the simulation community. His email and web
addresses are <davek@imaginethatinc.com> and
<www.imaginethatinc.com>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

