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ABSTRACT

Taking into account input-model, input-parameter, and
stochastic uncertainties inherent in many simulations, our
Bayesian approach to input modeling yields valid point and
confidence-interval estimators for a selected posterior mean
response. Exploiting prior information to specify the prior
plausibility of each candidate input model and to construct
prior distributions on the model’s parameters, we combine
this information with the likelihood function of sample data
to compute posterior model probabilities and parameter dis-
tributions. Our Bayesian Simulation Replication Algorithm
involves: (a) estimating parameter uncertainty by sampling
from the posterior parameter distributions on selected runs;
(b) estimating stochastic uncertainty by multiple indepen-
dent replications of those runs; and (c) estimating model
uncertainty by weighting the results of (a) and (b) using the
corresponding posterior model probabilities. We allocate
runs in (a) and (b) to minimize final estimator variance
subject to a computing-budget constraint. An experimental
performance evaluation demonstrates the advantages of this
approach.

1 INTRODUCTION

The widespread application of stochastic discrete-event sim-
ulations is accompanied by a widespread concern about
quantifying the uncertainties prevailing in their use. There
are three main sources of uncertainty in a simulation ex-
periment (Zouaoui and Wilson 2001a):

1. Stochastic uncertainty. This source of variation
arises from the dependence of the simulation output
on the uniform random variates (random numbers)
that are generated within the simulation and then
used to sample nonuniform random variates from
the input models driving each simulation run.

2. Model uncertainty. This source of variation typi-
cally occurs when choosing between different input
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models that adequately fit the available sample data
or subjective information.

3. Parameter uncertainty. This source of variation
arises because the parameters of the selected input
model(s) are unknown and must be estimated from
available sample data or subjective information.

Using the same symbolism to describe the layout of
probabilistic simulation experiments that was introduced
in Zouaoui and Wilson (2001a), we initially assume for
the sake of simplicity that the target simulation experi-
ment involves a single univariate input process for which
the probabilistic input model M (with corresponding c.d.f.
GM (·, θM ) and dM -dimensional parameter vector θM ) is
subject to uncertainty. For example, in a queueing sim-
ulation with a prescheduled sequence of customer arrival
times, GM (·, θM ) might represent the service-time distribu-
tion, which is thought to be either exponential or lognormal;
and the parameters of these alternative input models must
be estimated from expert opinion and limited sample data.
Thus the model and parameter uncertainty are represented
by the random variables M and θM , respectively, both of
which are assumed to depend only on the available subjective
information or sample data; and the stochastic uncertainty
depends only on the randomness of the vector of uniform
variates (random numbers) u that are used to generate sam-
ples from GM (·, θM ) during each simulation run. In this
situation an output quantity of interest from the simulation
run, y, can be regarded as an unknown complicated function
of u, M , and θM ,

y = y(u, M, θM ). (1)

Let

η(M, θM ) = E(y|M, θM ) =
∫

y(u, M, θM ) du, (2)
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be the expected value of y, given the input model M and
the corresponding parameter vector θM .

The objective of the classical simulation experiment
is generally to estimate η(M0, θ0), where θ0 is the true
but unknown value of the parameter vector θM0 under the
true model M0, estimated separately from the simulation
experiment using real data. In general this approach fails to
assess and propagate model and parameter uncertainty and
may lead to miscalibrated uncertainty assessments about y
(Draper 1995). The δ-method (Stuart and Ord 1994) and the
bootstrap method (Cheng and Holland 1997) are possible
ways to account for parameter uncertainty. However, in
addition to their failure to incorporate relevant information
other than the observed data points, it is unclear that these
methods can be extended to account for model uncertainty
(Zouaoui and Wilson 2001a).

In this paper, we present the Bayesian Model Averaging
(BMA) approach as a coherent mechanism to account for all
sources of uncertainty in a simulation experiment (Hoeting
et al. 1999). The basic ingredients of the BMA approach for
conducting simulation experiments are discussed in Section
2. In Section 3 we develop a “BMA-Based Simulation
Replication Algorithm” to estimate the posterior mean re-
sponse and assess the variability of the resulting estimator.
In Section 4 we use the output of the algorithm to estimate
the components of this variance that are due to each source
of uncertainty. In Section 5 we develop a replication allo-
cation procedure that optimally allocates simulation runs to
input models so as to minimize the variance of the estimated
posterior mean response subject to a budget constraint on
the total amount of simulated experimentation or computer
time that is available. Finally in Section 6, we conduct
a Monte Carlo experiment on a computer communications
network application to evaluate the performance of the BMA
approach versus conventional techniques for estimating the
posterior mean response and assessing its variability. For
a more complete discussion of the results presented in this
paper (including proofs of all theorems), see Zouaoui and
Wilson (2001b).

2 THE BMA APPROACH

Assume that we have Q random inputs driving our simula-
tion model. We observe the sample data X = (x1, . . . , xQ),
where xq = (xq1, . . . , xqnq ) is the vector of observations
based on a random sample of size nq for the qth random
input. Even though stochastic dependencies among simu-
lation inputs will not affect our formulation, we assume for
simplicity that these random inputs are independent. Let
M�,q represent the �th adequate model of the qth random
input with prior probability p(M�,q) for � = 1, . . . , Kq so

that
∑Kq

�=1 p(M�,q) = 1 for q = 1, . . . , Q. In practice, most
of the Kq ’s will be one, and only the random inputs with
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high model uncertainty and enough information to assess
such an uncertainty will have Kq ’s larger than one.

To simplify the notation, we define the set of candidate
modelsM to consist of models {Mk : k = 1, . . . , K }, where
K = K1 × · · · × KQ is the total number of different input
model combinations each having prior probability of the
form p(Mk) =∏Q

q=1 p(M�qk ,q) for some �qk ∈ {1, . . . , Kq}
and for q = 1, . . . , Q and k = 1, . . . , K . OnceM is chosen,
we let θk denote the dk-dimensional vector of parameters
under model Mk ∈ M with prior distribution p(θk|Mk),
where k = 1, . . . , K .

Although the choice of alternative models in the set
M = {Mk : k = 1, . . . , K } is highly dependent on the
specific application, Zouaoui and Wilson (2001b) provide
general comments in the simulation input modeling context.
Theorem 1 establishes the expected value of the target
response, y.

Theorem 1. If the simulation output response has the form
(1), then

E(y|X) =
K∑

k=1

p(Mk |X)

∫
η(Mk , θk) p(θk|X, Mk) dθk .

(3)

There are thus three ingredients for the implementation
of the BMA approach in discrete-event simulations:

1. The specification of the prior probabilities {p(Mk) :
k = 1, . . . , K } over which model uncertainty is
propagated, and the selection of the prior distri-
butions {p(θk|Mk) : k = 1, . . . , K } for the model
parameters.

2. The computation of the posterior distributions
{p(θk|X, Mk ) : k = 1, . . . , K }.

3. The computation of the posterior model probabil-
ities {p(Mk |X) : k = 1, . . . , K }.

Each of these components is addressed in the subsections
that follow.

2.1 Specification of Priors

The specification of the prior model probabilities {p(Mk)}
is typically context specific. When there is little prior
information about the relative plausibility of the models
considered, the assumption that all models are equally likely
a priori is a reasonable choice (Madigan and Raftery 1994).
Different prior probabilities can be viewed as derived from
previous data and representing the relative success of the
models in predicting those previous data.

The easiest way to deal with the problem of specifying
the prior distributions p(θk|Mk) on the model parameters
is to ignore them and simply use the Schwarz criterion
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(Schwarz 1978). Although this will lead to appropriate
conclusions in “sufficiently large” samples, there is not
much available guidance on the operational meaning of the
qualifying phrase “sufficiently large.” Typically, these dis-
tributions are specified based on information accumulated
from past studies, or from expert opinions. In order to sim-
plify the subsequent computational burden, experimenters
often limit this choice somewhat by restricting priors to some
familiar distributional family. An even simpler alternative,
available in some cases, is to endow the prior distribution
with little information content, so that the data from the
current study will be the dominant factor in determining the
posterior distribution. We address each of these approaches
in Zouaoui and Wilson (2001b) and in Zouaoui (2001).

2.2 Computation of Posterior Parameter Distributions

The second ingredient for the implementation of the
BMA approach is to compute the posterior distributions
{p(θk|X, Mk), k = 1, . . . , K }. Conditioning on the known
value of the data X and using Bayes’ rule, we obtain the
posterior density,

p(θk|X, Mk) = p(θk|Mk) p(X|Mk , θk)

p(X|Mk)
,

where p(X|Mk) is the marginal distribution of the data X ,
given model Mk .

For some models, with a specific choice of a prior dis-
tribution such as a conjugate prior, the posterior distribution
can easily be recognized from the unnormalized posterior
density, p(θk|X, Mk ) ∝ p(θk|Mk) p(X|Mk, θk). This re-
moves the burden of computing the normalizing constant
p(X|Mk). However, we cannot limit the choices of priors
to specific distributional families in all applications, and
we will generally have some unnormalized densities that
do not belong to any of the well-known distributions. To
generate a sample from the posterior distribution, we should
compute the exact form of its density. This requires some
high-dimensional numerical integrations or asymptotic ap-
proximations (Gelman et al. 1995). Markov Chain Monte
Carlo (MCMC) methods have been used increasingly for
dealing with such problems. The basic philosophy behind
MCMC is to take a Bayesian approach and carry out the
necessary numerical integrations using Monte Carlo simu-
lation; see Gilks, Richardson, and Spiegelhalter (1996) for
background. Instead of calculating exact or approximate
estimates of the posterior density, this computer-intensive
technique generates a stream of simulated values from the
posterior distribution of any parameter or quantity of inter-
est. These computations can be easily coded in the BUGS
statistical package (Spiegelhalter et al. 1996) using a small
set of BUGS commands.
292
2.3 Computation of Posterior Model Probabilities

The posterior model probabilities p(Mk |X) are computed
as follows:

p(Mk |X) = p(Mk) p(X|Mk)∑K
j=1 p(M j ) p(X|M j )

for k = 1, . . . , K . The evaluation of these probabilities
comes down to computing the marginal data density given
model Mk ,

p(X |Mk) =
∫

p(X|Mk , θk) p(θk|Mk) dθk . (4)

The integral in (4) may be evaluated analytically for dis-
tributions in the regular exponential family with conjugate
priors. However, (4) is generally intractable and thus must
be computed by numerical methods. In Zouaoui and Wilson
(2001b) and Zouaoui (2001), we review various numerical
integration strategies and provide good asymptotic approx-
imations.

3 ESTIMATING MEAN RESPONSE

In our inference about the output quantity of interest, y, we
focus on estimating its mean response given by equation
(3) and assessing its variability. Chick (1999) proposed
an algorithm for estimating the output mean response. He
suggested that for the r th simulation run, we need to sample
a model Mr from its discrete posterior probability mass
function {p(Mk |X) : k = 1, . . . , K } and then sample its
vector of parameters θ r

Mr from its posterior distribution
p(θMr |X, Mr ). The mean response estimate would be
the average of all output responses {yr : r = 1, . . . , R},
computed using the randomly sampled input models {Mr :
r = 1, . . . , R} and their corresponding randomly sampled
parameter vectors {θ r

Mr : r = 1, . . . , R}.
This algorithm gives a good estimate of the mean re-

sponse for a large number of runs, but we believe that it
has several deficiencies that makes it of limited use to sim-
ulation practitioners. Most importantly, Chick’s algorithm
cannot accommodate more models without repeating all the
simulation runs. If for some reason we decide to expand
our summation in (3) to have more than K models, then we
need to repeat all the runs with the new sampled models and
their parameters to obtain a new estimate for the posterior
mean response.

Figure 1 summarizes an algorithm which implements
the BMA approach for designing simulation experiments
and overcomes all the above deficiencies. The net effect of
the algorithm is to account for the full extent of the model
and parameter uncertainty as well as the usual stochastic
uncertainty. The innermost loop of the algorithm will be used
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for k = 1, . . . , K

set input model M ← Mk

for r = 1, . . . , Rk

generate the r th sample θ r from p(θ |X, M)

set the parameter vector θ ← θ r

for j = 1, . . . , m

set the random-number input u← u j

perform the j th run using u, M , and θ

calculate the response ykr j = y(u, M, θ)

end loop

compute ykr =
∑m

j=1 ykr j /m

end loop

compute the model mean yk =
∑Rk

r=1 ykr /Rk

end loop

compute the weighted mean
∑K

k=1 p(Mk |X)yk

as an estimate for E(y|X)

Figure 1: BMA-Based Simulation Replication Algorithm

to generate estimates for the stochastic uncertainty, whereas
the middle loop will assess the parameter uncertainty for
each input model. Finally, the outermost loop will be used
to estimate the model uncertainty.

Every model in the set M can have a different predic-
tive inference on the output of interest y, and the composite
inference will be a weighted average of the predictive dis-
tributions p(y|X, Mk ) for k = 1, . . . , K . This explains our
idea of not resampling the input model M and its associ-
ated parameter vector θM prior to each replication. If the
simulation model is costly in terms of computing time and
the number of possible input models is large, then we can
eliminate the models which explain the data far less than
others using the Occam’s window method (Madigan and
Raftery 1994).

The total sample sizes {Rk : k = 1, . . . , K } respectively
generated from the posterior distributions {p(θk|X, Mk) :
k = 1, . . . , K } may not be necessarily the same, because
the effect of parameter uncertainty on the variability of the
output response, given model Mk , is usually different for
different input models. Theoretically, the accuracy of our
estimate of the posterior mean response improves as all
the Rk’s get large. However, we are usually restricted in
practice by a fixed number of simulation runs N . In Section
5, we propose a method to specify the {Rk} that optimally
allocates the total simulation effort to the different models,
based on the minimization of the variance of the estimator
of the posterior mean response subject to a constraint on
the total number of simulation runs N .
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4 ASSESSING OUTPUT VARIABILITY

In this section, we seek to assess the variability of the
simulation-generated output based on a decomposition of the
posterior variance Var(y|X). To simplify the notation, we
denote our posterior model probabilities as pk = p(Mk |X)

for k = 1, . . . , K . In view of equation (1), we have the
following representation for the simulation output response
ykr j :

ykr j = y(u j , Mk , θ
r
k ) (5)

= η(Mk , θ
r
k )+ e j (u j , Mk , θ

r
k )

for k = 1, . . . , K ; r = 1, . . . , Rk ; and j = 1, . . . , m.
The error variable e j is the random difference between
the simulation output response ykr j and η(Mk , θ

r
k ). We

generally assume that

E(e j |Mk , θ
r
k ) = 0 and Var(e j |Mk, θ

r
k ) = τ 2

k , (6)

so that E(ykr j |Mk , θ
r
k ) = η(Mk , θ

r
k ). Here we assume that τ 2

k
does not depend on θ r

k because we are interested in obtaining
a measure of the average variability in the output due to
stochastic uncertainty. The effect of the randomness in θ r

k
will be captured instead by the randomness in η(Mk , θ

r
k ),

which will give a measure of the output variability due
to parameter uncertainty. Moreover, given that our main
objective is to estimate the overall mean response, we can
further assume that

η(Mk , θ
r
k ) = βk + δkr (Mk , θ

r
k ), (7)

where βk = Eθr
k

[
η(Mk , θ

r
k )
]= ∫ η(Mk , θk)p(θk|X, Mk )dθk

= E(y|X, Mk), using Theorem 1, and

Eθr
k
(δkr |Mk) = 0 and Varθr

k
(δkr |Mk) = σ 2

k . (8)

Based on these assumptions, Theorem 2 shows that the
posterior variance is the sum of three variances measuring
the model, parameter and stochastic uncertainty.

Theorem 2. If (5), (6), (7), and (8) hold, then

Var(y|X) =
K∑

k=1

pk(βk − β)2 +
K∑

k=1

pkσ
2
k +

K∑
k=1

pkτ
2
k ,

where E(y|X) =∑K
k=1 pk βk = β.

The response surface model given by (5)–(8) for each
input model Mk is known in the statistical literature as
the classical random-effects model (Rao 1997), where one
estimates βk , τ 2

k , and σ 2
k from the output of the algorithm
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in Figure 1 as follows:

β̂k = yk,

τ̂ 2
k =

Rk∑
r=1

m∑
j=1

(ykr j − ykr )
2

Rk(m − 1)
, (9)

and

σ̂ 2
k =

Rk∑
r=1

(ykr − yk)
2

(Rk − 1)
− τ̂ 2

k

m
. (10)

From the above estimates, we can estimate the three variance
components of Theorem 2 as

V̂mod =
K∑

k=1

pk(β̂k − β̂)2, where β̂ =
K∑

k=1

pkβ̂k,

V̂par =
K∑

k=1

pk σ̂
2
k , and V̂sto =

K∑
k=1

pk τ̂
2
k .


In Subsection 5.3, we present a method for constructing

an approximate 100(1 − α)% confidence interval for the
posterior mean response under any scheme for allocating
the sample sizes {Rk : k = 1, . . . , K } among the input
models.

5 REPLICATION ALLOCATION PROCEDURES

We describe in this section two methods to determine the
sample sizes {Rk : k = 1, . . . , K } that are respectively
allocated to the models {Mk : k = 1, . . . , K } based on the
practical assumption that the total computational effort is
generally limited by a fixed number of simulation replica-
tions N . We assume further that the stochastic variability
can be assessed by a small number of replications m that
are fixed prior to the simulation experiment.

The first replication allocation method is based on mini-
mizing the variance of our posterior mean response estimate.
Assuming that all the simulation replications are indepen-
dent, we have the following result.

Theorem 3. If (5), (6), (7), and (8) hold, then the BMA-
Based Simulation Replication Algorithm of Figure 1 yields

Var(β̂) =
K∑

k=1

p2
k
σ 2

k

Rk
+

K∑
k=1

p2
k

τ 2
k

m Rk
. (11)
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5.1 Optimal Allocation Procedure

To minimize the variance (11) subject to a budget constraint
on the total number of runs, we must solve the following
optimization problem,

min{Rk :1≤k≤K }

K∑
k=1

p2
k

Rk

[
σ 2

k + τ 2
k /m

]

subject to:
K∑

k=1

Rk = N/m = N ′.


(12)

We reformulate (12) as an unconstrained optimization prob-
lem using the method of Lagrange multipliers to show that,
modulo rounding, the optimal sample sizes are given by

R∗k = N ′ pk
√

ϑk∑K
i=1 pi

√
ϑi

for k = 1, . . . , K , (13)

where ϑk = σ 2
k + τ 2

k /m for k = 1, . . . , K . Note that R∗k
depends on the ϑk values, which are unknown and usually
estimated after observing the actual output responses. We
suggest a two-phase replication allocation procedure that
exploits the above result. In the first phase, we can make a
small, equal number of pilot runs at each model Mk ; and then
for k = 1, . . . , K , we estimate ϑk by ϑ̂k = σ̂ 2

k +τ̂ 2
k /m, where

τ̂ 2
k and σ̂ 2

k are estimated using (9) and (10), respectively. In
the second phase, we allocate the rest of the runs according to
(13). Assuming that the variance estimates are constant from
the first phase to the second phase, we see that the two-phase
replication allocation procedure delivers a smaller variance
for the mean response compared to the equal allocation
scheme

Rk = N ′

K
for k = 1, . . . , K . (14)

5.2 Proportional Allocation Procedure

One feasible solution to the optimization problem (12) is
the proportional allocation procedure

Rk = pk N for k = 1, . . . , K , (15)

which is also optimal if all the ϑk’s in (14) happen to be
equal. This allocation scheme can be easily implemented
prior to making the simulation runs, and it overcomes the
problem of having to estimate the variances in the optimal
allocation procedure (13). Moreover, the mean estimator
β̂pa, computed from the BMA-Based Simulation Replication
Algorithm given in Figure 1 and the allocation scheme (15),
has a smaller variance compared to the mean estimator
β̂srs computed using the Simple Random Sampling (SRS)
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procedure. The SRS procedure is similar to Chick’s (1999)
approach described in Section 3, where we randomly sample
a new input model and its vector of parameters from their
posterior distributions prior to each run, and then perform
m independent runs for a total of N ′ runs. We formally
state this result in the following theorem.

Theorem 4. If (5), (6), (7), and (8) hold, then with the
proportional allocation scheme (15) we obtain the following
reduction in variance of the posterior mean estimator versus
simple random sampling:

Var(β̂srs)− Var(β̂pa) = 1

N ′
K∑

k=1

pk(βk − β)2 > 0.

5.3 Confidence Interval for the Posterior
Mean with Any Allocation Procedure

In this subsection we derive a t-type confidence interval
for β based on estimating the variance of our posterior
mean estimate β̂ =∑K

k=1 pk yk . This interval can be used
with any of the allocation schemes described in the above
subsections. We proved in Theorem 3 that the variance of
our mean estimate is given by

Var(β̂) =
K∑

k=1

p2
k
σ 2

k

Rk
+

K∑
k=1

p2
k

τ 2
k

m Rk
,

so that we have the following estimator for the variance of
the posterior mean estimator β̂:

V̂ar(β̂) =
K∑

k=1

p2
k

(
σ̂ 2

k

Rk
+ τ̂ 2

k

m Rk

)

=
K∑

k=1

p2
k V̂k, (16)

where we combine equations (9) and (10) to obtain the
auxiliary variance estimators

V̂k =

Rk∑
r=1

(ykr − yk)
2

Rk(Rk − 1)
for k = 1, . . . , K .

Assuming that {Rk : k = 1, . . . , K } are fixed quantities,
we can use the approximation of Satterthwaite (1946), who
showed that the complex variance estimator (16) has a dis-
tribution that is approximately chi-squared with “effective”
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Figure 2: A Communication Network
with Q = 4 Nodes and L = 4 Links

degrees of freedom given by

feff =



(
K∑

k=1

p2
k V̂k

)2

K∑
k=1

p4
k V̂2

k

(Rk − 1)

 .

Thus an approximate 100(1− α)% confidence interval for
β =∑K

k=1 pkβk is

K∑
k=1

pk yk ± t1−α/2, feff

(
K∑

k=1

p2
k V̂k

)1/2

. (17)

We will use (17) to evaluate the performance of the propor-
tional allocation procedure (15) and the optimal allocation
procedure (13) empirically using a Monte Carlo experiment
of a computer communication network.

6 MONTE CARLO EXPERIMENT

6.1 Description

In this example we consider a simulation of a computer
communications network (Kleinrock 1976). It is a collec-
tion of Q nodes consisting of computing resources which
communicate with each other along a set of L links (the data
communication channels). The aim of the simulation study
is to measure the delay in messages transmitted between
nodes via the communication channels. Figure 2 illustrates
a network with Q = 4 and L = 4.

The L communication channels are assumed to be
noiseless, and have a capacity of Ci bits per second for the
i th channel. The Q nodes carry out the administration tasks
such as message reassembly and routing. It is assumed that
the nodal processing times are constant with value Ti for
the i th node. In addition there are channel queueing and
transmission delays. Traffic entering the network from any
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node forms a Poisson process with rate γ (i, j) (messages
per second) for those messages originating at node i and
destined for node j . Each message is assumed to have
a length X that is independently sampled from a mixture
distribution given by

f (x) = π1 f1(x)+ π2 f2(x)+ π3 f3(x) for all x, (18)

where the mixture (18) is composed of exponential, lognor-
mal, and uniform probability density functions, respectively:

f1(x) = λe−λx (x ≥ 0),

f2(x) = 1√
2πσ x

e−(log x−µ)2/(2σ 2) (x ≥ 0),

f3(x) = 1

b − a
(a ≤ x ≤ b).

We assume that all nodes have unlimited storage capac-
ity and that all messages are directed through the network
on fixed paths. In high speed networks spanning large
geographical regions, it may be important to include the
propagation time Hi , which is the time required for the en-
ergy representing a single bit to propagate down the length
of the i th channel. The speed of energy propagation, v

miles per second, is a significant fraction of the speed of
light depending on the particular type of channel used. If
the i th channel has length li miles, then Hi = li/v. Thus
if a message has X bits then the time it occupies the i th
channel will be Hi + X/Ci seconds.

Some of the parameters in the network were known ex-
actly: Ti = 0.001 seconds (i = 1, . . . , Q), Ci = 275, 000
bits/second (i = 1, . . . , Q), li = i × 100 miles (i =
1, . . . , L), and v = 150, 000 miles/second. The traffic ar-
rival rates were: γ (1, 2) = 60, γ (1, 3) = 40, γ (1, 4) = 50,
γ (2, 1) = 80, γ (2, 3) = 65, γ (2, 4) = 20, γ (3, 1) = 100,
γ (3, 2) = 22, γ (3, 4) = 26, γ (4, 1) = 40, γ (4, 2) = 50,
γ (4, 3) = 60. The true parameters of the mixture dis-
tribution (18) are: π0,1 = 0.6, λ0 = 1/300, π0,2 = 0.3,
µ0 = 5.46, σ0 = 0.7, π0,3 = 0.1, a0 = 290, b0 = 310.

6.2 BMA Analysis

The true distribution of the message lengths was unknown
in the simulation, and only data samples of size n = 1000
were observed. We considered three candidate input mod-
els for the (assumed independent) message lengths that
commonly arise in probabilistic simulation studies—namely
model M1 was the Exponential(λ1) distribution; model M2
was the Normal(µ2, σ2) distribution; and model M3 was
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the Lognormal(µ3, σ3) distribution:

p(xi |M1, λ1) = λ1e−λ1xi (xi ≥ 0),

p(xi |M2, µ2, σ2) = e−(xi−µ2)2/(2σ 2
2 )

√
2πσ2

,

p(xi |M3, µ3, σ3) = e−(log xi−µ3)2/(2σ 2
3 )

√
2πσ3xi

(xi ≥ 0).

We chose the above models because they appear often
in simulation applications, and they are available in all
input modeling and simulation software systems. Moreover,
the posterior model probabilities for these candidate input
models can be computed analytically; otherwise estimation
of these probabilities may be time-consuming to do using
MCMC methods for each data set. Note that these three
models {Mk : k = 1, 2, 3} are not nested, so that model
comparison may not be conclusive in a classical framework.
They also can represent very different behavior in terms of
message lengths. Finally, we assume that we do not have
any prior information to favor one model over the other and
assign equal prior probabilities to all candidate models (i.e.
p(Mk) = 1/3 for k = 1, 2, 3).

To construct proper priors from the standard noninfor-
mative priors on the model parameters, we generate a train-
ing sample (Berger and Perricchi 1996) of size T = 100
from the true sampling distribution (18). We denote by
z = {z1, . . . , zT } the observations in the training sample,
and x = {x1, . . . , xn} the observations in the data sample.

For M1, the standard noninformative prior is
p(λ1|M1) = 1/λ1. This yields a Gamma posterior dis-
tribution with shape parameter T and scale parameter
1/(
∑T

t=1 zt ). The marginal density of the data x given
the exponential model M1 is

p(x|M1) = 
(n + T )


(T )

(
∑T

t=1 zt )
T

(
∑T

t=1 zt +∑n
i=1 xi )n+T

.

The standard noninformative prior for M2 is
p(µ2, σ

2
2 ) = 1/σ 2

2 . This yields an inverse-gamma pos-
terior distribution for σ 2

2 with shape parameter (T − 1)/2

and scale parameter
∑T

t=1(zt − z)2/2, and a generalized
student-t distribution for µ2, having the following density

p(µ2|z, M2) =

(T/2)

√
T

(
1+ T

T−1

(
µ2−z

Sz

)2
)−T/2


((T − 1)/2)
√

(T − 1)πSz
,

where z = ∑T
t=1 zt/T and S2

z =
∑T

t=1(zt − z)2/(n − 1).
The marginal density of the data x given the normal model
M2 is given in Zouaoui and Wilson (2001b).
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The analysis of the lognormal model is similar to that
of the normal model, by working with the logarithm of the
data observations instead of the original observations.

6.3 Simulation Design

A basic simulation run was of 50 seconds in length and this
was repeated m = 10 times for each model and its sampled
parameters. The sample sizes {Rk : k = 1, 2, 3} generated
from the posterior distribution of the parameters were taken
to be 100. In practice larger values of Rk are recommended,
typically 1000. However, Rk = 100 is sufficiently large
in this case because the observed coverages are stable,
indicating the satisfactory behavior of the method. In each
case the experiment was repeated 200 times so that 200
confidence intervals were generated.

The “true” value β0 of the average delay of a message
in this communication network cannot be computed analyt-
ically. So we used a preliminary Monte Carlo experiment
involving direct simulation of the network to estimate β0
to within ±0.05% of its true value with 99% confidence
(Law, Kelton, and Koenig 1981). The final estimate was
found to be β0 = 0.006585.

6.4 Simulation Results

Table 1 summarizes the results of the BMA analysis. For
each candidate model Mk (k = 1, 2, 3), we show the average
posterior probability p(Mk |x) over all the Monte Carlo
experiments. We also present for each model Mk the mean
estimate β̂k , the stochastic variance estimate τ̂ 2

k , and the
parameter variance estimate σ̂ 2

k of the average delay of
messages in the network. In terms of posterior probabilities,
the exponential model is the least favorite, but we cannot
really favor the lognormal model over the normal model.
Note also that in terms of mean response estimates, the
behavior of the lognormal model is completely different
from the other two models. This is a situation where model
uncertainty is the dominating uncertainty factor since it
accounts for about 99% of the overall uncertainty, so that a
simulation analyst can have a completely different response
choosing a priori one model over the other.

Table 1: Posterior Probability, Mean and Variance Esti-
mates for Each Candidate Model of Message Lengths in
the Communication Network of Figure 2

Model p(Mk |x) β̂k τ̂ 2
k σ̂ 2

k

Exp. 0.123 8.19E-03 6.20E-09 4.58E-08
Norm. 0.396 8.57E-03 7.17E-09 2.30E-08
Logn. 0.481 4.55E-03 1.08E-10 1.08E-11

To study the effect of model uncertainty, we analyzed
three different approaches to input-model selection: clas-
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sical frequentist, partial Bayes, and BMA. In the classical
frequentist approach, we made the simulation runs at a
fixed model and a fixed parameter estimated using MLE.
In the partial Bayes approach, we fixed the model but we
accounted for parameter uncertainty by resampling the pa-
rameters prior to each set of m simulation runs. Finally in
the BMA approach, we used the algorithm of Figure 1 to
account for both model and parameter uncertainty. For the
BMA approach, we considered three replication allocation
procedures. The first procedure allocates the same num-
ber of runs to each model; the second procedure uses the
Proportional Allocation Procedure (PAP) given in (15); and
the third procedure uses the Optimal Allocation Procedure
(OAP) given in (13). To find the optimal allocations of
the simulation runs to models, we used the final variance
estimates of the equal allocation scheme and we limited
our computing effort to the total number of replications in
a single Monte Carlo experiment.

Table 2 shows the performance of the mean estimate
of the message delay in the communication network in
terms of the Absolute Percentage Error 100|β̂ − β0|/β0
and the Mean Squared Error E[(β̂ − β0)

2]. As expected,
the classical frequentist and partial Bayes approaches show
almost similar performance because of the small number
of unknown parameters in the network and our choice of
noninformative priors. However, both of these approaches
show extremely poor performance compared to the BMA
approach. The mean estimate of the BMA approach is
very close to the target mean, having less than 2% absolute
percentage error and negligible mean squared error. The
optimal allocation procedure delivered the most precise mean
estimate, showing almost 50% reduction in mean squared
error compared to the equal allocation procedure. However,
the performanceof the proportionalallocation procedure was
almost as good as the optimal one. This suggests that the
proportional scheme may be more applicable in practice
given its simplicity.

Table 2: Absolute Percentage Error (APE) and Mean
Squared Error (MSE) for the Estimator of Average Mes-
sage Delay in the Communication Network of Figure 2

Approach Model Mean APE MSE
Classical Exp. 8.18E-03 24.16 2.57E-06
Frequentist Norm. 8.57E-03 30.04 3.98E-06

Logn. 4.55E-03 30.98 4.17E-06
Partial Exp. 8.19E-03 24.35 2.61E-06
Bayes Norm. 8.57E-03 30.12 4.00E-06

Logn. 4.55E-03 30.86 4.17E-06
BMA Mix. 6.60E-03 1.78 2.00E-08
BMA+PAP Mix. 6.59E-03 1.35 1.20E-08
BMA+OAP Mix. 6.59E-03 1.35 1.20E-08
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In addition to point estimation, we studied the per-
formance of the different approaches in terms of interval
estimation. Table 3 summarizes the nominal 90% con-
fidence interval lengths (CIL) and coverage probabilities
(CP). Although the classical and partial Bayes approaches
have much tighter confidence bands, they have zero cover-
age probabilities. This shows that their intervals are built
around the wrong expected mean response. The BMA
approach on the other hand has a much higher coverage
probability, at a reasonable length, and centered at the right
mean response. The replication allocation procedures de-
liver intervals with a higher coverage probability compared
to the equal allocation BMA approach. This justifies the
benefits of running more replications at models with higher
posterior probability and smaller output response variance.

Table 3: Performance of Nominal 90% Confidence Inter-
val for the Average Message Delay in the Communication
Network of Figure 2

Approach Model CIL CV(CIL) CP
Classical Exp. 8.32E-05 2.62E-01 0%
Frequentist Norm. 9.40E-05 2.93E-01 0%

Logn. 1.21E-05 2.29E-01 0%
Partial Exp. 6.90E-04 1.19E-01 0%
Bayes Norm. 4.89E-04 1.48E-01 0%

Logn. 1.05E-05 8.32E-02 0%
BMA Mix. 2.57E-04 1.31E-01 75%
BMA+PAP Mix. 2.89E-04 1.16E-01 81%
BMA+OAP Mix. 2.87E-04 1.13E-01 82%

7 CONCLUSIONS

In this paper we have proposed a framework based on a
Bayesian Model Averaging (BMA) approach to account for
model and parameter uncertainty as well as the conventional
stochastic uncertainty in discrete-event stochastic simula-
tion. Our computational experience with this approach has
been very promising.

With the recent advances in Bayesian computations,
we believe that the introduction of Bayesian techniques
into routine practice is a much more attainable goal than
previously thought. However, much more work remains to
be done in a number of areas to reach this goal. Correlated
sampling schemes for improving the efficiency of the Sim-
ulation Replication Algorithm needs further exploration. A
more comprehensive experimental performance evaluation
and the implementation of a user-friendly software tool are
also important steps for the widespread use of the Bayesian
techniques in simulation input modeling.
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