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ABSTRACT

We provide results about stopping simulation paths early
as a variance reduction technique, adding to our earlier
work on this topic. The problem of pricing a financial
instrument with cashflows at multiple times, such as a
mortgage-backed security, motivates this approach, which is
more broadly applicable to problems in which early steps are
more informative than later steps of a path. We prove a limit
theorem that demonstrates that this relative informativeness
of simulation steps, not the number of steps, determines the
effectiveness of the method. Next we consider an extension
of the idea of stopping simulation paths early, showing how
early stopping can be random and depend on the state a
path has reached, yet still produce an unbiased estimator.
We illustrate the potential effectiveness of such estimators,
and describe directions for future research into their design.

1 INTRODUCTION

In a standard simulation for a purpose such as pricing a
financial derivative, every simulated path reaches each of
a fixed number of time steps. We consider simulations
that estimate an expected total reward, for concreteness
focusing on a sum of discounted cashflows that a derivative
security pays. When discounted cashflows at early steps
are more important than those at later steps, devoting equal
computational resources to simulation at early steps and
later steps seems to be a suboptimal allocation of resources.

An example is a mortgage-backed security, whose
monthly cashflows are the sum of all payments made on
a pool of mortgages. These payments are nominally con-
stant, but the value of discounted cashflows tends to decline
because of the time value of money and because some
homeowners prepay their mortgages, thus exiting the pool.

In previous work, we showed how to find a policy
of early stopping, with some paths scheduled to terminate
before the final time step, that minimizes the variance of an
estimator with a fixed computational budget (Glasserman
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and Staum 2001b). In Section 2, we review the formalism
and main results of the previous paper, including the use
of the method for some problems to which it is seemingly
inapplicable, such as those with only a terminal cashflow.
Section 3 contains a new theorem, which proves that the
variance reduction obtained by early stopping depends not
on the number of time steps, but on the shape of the
covariance matrix of discounted cashflows. An extension
of early stopping occupies Section 4: here we introduce
a method where the decision to stop is randomized and
depends on the current state, rather than being planned in
advance. We then suggest directions for future research
into its effective use.

2 REVIEW OF EARLY STOPPING

This section presents without proof a result of Glasserman
and Staum (2001b). Motivated by the problem of pricing
a mortgage-backed security, we consider a simulation to
estimate the expectation of a sum X = ∑m

k=1 Xk , interpret-
ing the terms X1, . . . , Xm as discounted cashflows. When
some paths stop early, there are nk paths that reach step k,
producing the observations X1k, . . . , Xnk k .

The numbers of paths reaching each step must satisfy a
monotonicity constraint: nk ≥ nk+1. Let the cost of step k
be ck and the total computational budget be C . The budget
constraint is

∑m
k=1 cknk ≤ C .

The obvious estimator of the mean µ = E[X] is now

µ̂ =
m∑

k=1

1

nk

nk∑
i=1

Xik (1)

We want to minimize over all feasible choices of n1, . . . , nm

the variance of µ̂, which is Var[µ̂] = ∑m
k=1 vk/nk where

vk = Var[Xk] + 2Cov


Xk,

m∑
j=k+1

X j


 .
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The “variance components” v1, . . . , vm on which the solu-
tion is based are typically unknown, but they can be esti-
mated from a set of initial simulated paths, and the optimal
resource allocation applied to the rest of the simulation.

The resource allocation problem is

min
m∑

k=1

vk

nk
s.t.

m∑
k=1

cknk ≤ C (2)

and nk ≥ nk+1, k = 1, . . . , m − 1

The solution to problem (2) involves the convex hull
of a graph determined by the costs ck and the variance
components vk . Define the partial sums

Vk =
k∑

j=1

v j and Ck =
k∑

j=1

c j

and the graph

V = {(Ck, Vk)|k = 0, . . . , m}.

Let the function V ∗ be the upper convex hull of this graph,
and let V ∗

k denote V ∗(Ck). The solution is based on the
slopes u∗

k = v∗
k /ck where v∗

k is the increment V ∗
k − V ∗

k−1.
Here we restate Theorem 1 of Glasserman and Staum
(2001b).

Theorem 1. The solution to the resource allocation problem
(2) is

nk =
√

u∗
k

ν

ν =
(

1

C

m∑
k=1

ck

√
u∗

k

)2

and the ratio of optimal variance to standard variance is

R =
∑m

i=1
∑m

j=1 vi c j

√
u∗

j/u∗
i∑m

i=1
∑m

j=1 vi c j
.

We go on to describe two methods that can enhance the
effectiveness of early stopping and make it more broadly
applicable. The first involves the statistical perspective on
missing data. Viewing the simulation as an experiment, the
data table has many missing observations Xik when path i
stops before reaching step k. The theory of missing data
leads to estimators which are superior to µ̂ because they take
advantage of dependence between the variables X1, . . . , Xm

and use information about the more frequently observed
variables to learn about those less frequently observed.
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The other approach is to study new random variables
X ′

1, . . . , X ′
m that satisfy the following two properties.

• At step k of the simulation, X ′
k can be computed.

• The sum
∑m

k=1 X ′
k = X = ∑m

k=1 Xk .

The estimator (1) based on the new random variables has
the same expectation µ, but different variance components
v1, . . . , vm , which may render early stopping more effec-
tive. The optimal choice of X ′

1, . . . , X ′
m would satisfy∑k

j=1 X ′
j = E[X | Fk], but of course this conditional ex-

pectation is unknown. However, there are many problems
for which we have a decent approximation to the conditional
expectation E[X | Fk], and this enables early stopping to
provide more variance reduction. It is this perspective to
which we will return in Section 4 as we develop methods
of random early stopping.

3 CONTINUOUS LIMIT

This section shows that the “shape” of the covariance matrix
of discounted cashflows determines the solution and effec-
tiveness of the resource allocation problem (2). First define
a sequence of resource allocation problems with convergent
shape as follows. Let v be a positive, continuous function on
[0, 1], and let V (t) = ∫ t

0 v(s) ds. The sequence of problems
is indexed by size m: in the mth problem, C(m) is the bud-

get and V (m) is the point set
{(

C(m)
k , V (m)

k

)
|k = 0, . . . , m

}
,

where

C(m)
k = kC(m)

m

V (m)
k = V (m)(k/m)

V (m)(t) =
∫ t

0
v(m)(s) ds

v(m)(t) = v([tm]/m)

The mth problem has variance components v
(m)
k = v((k −

1)/m)/m and equal costs c(m)
k = C(m)/m.

Let V (m)∗ be the upper convex hull of V (m) and V ∗ be
the upper convex hull of V . We will prove in the lemmas in
the Appendix that this sequence of problems has convergent
shape, as described by V (m), and that the upper convex hulls
V (m)∗ and their slopes v(m)∗ also converge respectively to
V ∗ and its derivative v∗.

Then Theorem 2 asserts that this sequence of problems
has solution and effectiveness that also converge. To make
this precise, we define

n(m)(t) =
√

v(m)∗(t)∫ 1
0

√
v(m)∗(s) ds

(3)
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and

F (m) =
(∫ 1

0

√
v(m)∗(s) ds

)(∫ 1

0

v(m)(s)√
v(m)∗(s)

ds

)
. (4)

These are the quantities of interest.

Lemma 1. The mth problem of form (2) has solution given
by n(m)

k = n(m)(k/m) and its optimal variance objective is
F (m).

Proof. Because V (m) is continuous and piecewise linear,
so is its upper convex hull V (m)∗, and v(m)∗ is piecewise
constant. We have

v
(m)∗
k = v(m)∗((k − 1)/m)/m

just like v
(m)
k = v(m)((k − 1)/m)/m. By Theorem 1, the

solution to the mth problem is

n(m)
k =

√√√√ v
(m)∗
k

νc(m)
k

= C(m)

√
v

(m)∗
k /c(m)∗

k∑m
j=1

√
c(m)

j v
(m)∗
j

=
√√√√ v(m)∗((k − 1)/m)

1
m

∑m
j=1

√
v(m)∗(( j − 1)/m)

.

Because v(m)∗ is piecewise constant, n(m)
k is indeed equal to

n(m)(t) as defined in equation (3) for t ∈ [(k −1)/m, k/m).
The variance objective of the mth problem is

m∑
k=1

v
(m)
k

n(m)
k

=

 1

m

m∑
j=1

√
v

(m)∗
j




 m∑

k=1

v
(m)
k√
v

(m)∗
k




=


 1

m

m∑
j=1

√√√√v(m)∗
(

j−1
m

)
m






m∑
k=1

1
m v(m)

(
k−1

m

)
√

1
m v(m)∗

(
k−1

m

)



=


 1

m

m∑
j=1

√√√√v(m)∗
(

j−1
m

)
m




 1

m

m∑
k=1

v(m)
(

k−1
m

)
√

v(m)∗
(

k−1
m

)



and again because v(m)∗ is piecewise constant, this equals
F (m) as defined in equation (4). �
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Also define n(t) and F as in equations (3) and (4), but
without the superscript (m). Now we can state the main
theorem, whose proof, involving many lemmas, is deferred
to the Appendix.

Theorem 2. For t ∈ (0, 1), lim n(m)(t) = n(t); also
lim F (m) = F.

With no early stopping, the variance objective of the
mth problem would be V (m)

m , which is the m-step Riemann
approximation to the integral

∫ 1
0 v(t) dt; these converge

because we assumed v is continuous on the compact set
[0, 1]. Therefore the convergence of the optimal variance
objectives F (m) to F is equivalent to convergence of the
variance reduction ratios F (m)/V (m)

m .
The next theorem states that these limits of solutions

to discrete optimization problems are also the solutions to
a continuous optimization problem that is a limit of the
discrete problems. Its proof is similar to that of the discrete
result Theorem 1 of Glasserman and Staum (2001b), but
simpler and more elegant.

Theorem 3. If v∗ is continuously differentiable, then the
limits n and F are the solution and objective of the calculus
of variations problem

min
∫ 1

0

v(t)

n(t)
dt s.t.

∫ 1

0
n(t) dt ≤ 1

and n nondecreasing and continuously differentiable on
(0, 1).

Proof. Because n is differentiable, the monotonicity con-
straint is n′ ≤ 0, so the Lagrangian integrand function
is

v(t)/n(t) + νn(t) + λ(t)n′(t).

The Euler-Lagrange equation is then

−v(t)/n(t)2 + ν − λ′(t) = 0.

Complementary slackness is λ(t)n′(t) = 0.
We will show that

ν =
(∫ 1

0

√
v∗(t) dt

)2

n(t) =
√

v∗(t)
ν

λ(t) = V ∗(t) − V (t)

n(t)2

satisfy these conditions as well as the constraints. Mono-
tonicity holds because the slope v∗ of the upper convex
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hull V ∗ must be nonincreasing. Because v is positive, so is
v∗, and as it is continuously differentiable, n must also be
continuously differentiable on (0, 1). The budget constraint∫ 1

0 n(t) dt ≤ 1 is satisfied because the numerator of n(t)
integrates to

√
ν.

As for complementary slackness, where V ∗(t) = V (t),
λ(t) = 0. It remains to consider intervals [a, b] where V ∗
and V are equal at the endpoints but not on the interior.
Here the upper convex hull V ∗ must be linear, i.e. its
second derivative (v∗)′ is zero, so n′ is also zero, and
complementary slackness is satisfied.

Turning to the Euler-Lagrange equation,we differentiate
λ to get

λ′(t) = v∗(t) − v(t)

n(t)2 − 2(V ∗(t) − V (t))n′(t)
n(t)3

= ν − v(t)

n(t)2 − 2λ(t)n′(t)
n(t)

By complementary slackness, the third term is zero, and
the Euler-Lagrange equation is verified. �

The assumption that v∗ be continuously differentiable is
technical: it simplifies the use of the calculus of variations.
Likewise the constraint that n be continuously differentiable
does not seem to be central to the result.

4 STATE-DEPENDENT STOPPING

The early stopping methodology of Section 2 succeeds when
the unconditional variance components v are decreasing. It
allocates more computational resources to early steps at
which their expenditure produces more variance reduction.
Next we investigate how it might be possible to allocate
resources on the basis of conditional variance. This is
potentially much more effective because the conditional
variance of future cashflows often varies greatly across the
possible states at one time.

For instance, if a barrier option gets knocked out, then it
is certain that all future cashflows are zero, and it is obvious
that a simulated path should stop at this step. More generally,
when a path reaches a state with low conditional variance,
it might be advantageous to do less work in simulating the
rest of the path, which will provide little information about
the expectation being estimated. But how can a lesser but
positive amount of work be done conditional on the current
simulated state, when the only choice can be to simulate the
next step of this path or not? One possibility is to randomize
the decision whether or not to continue simulating this path,
with the probability of continuation positively related to the
benefit of continuation.

We formalize such a scheme by introducing a new
cemetery state � to the state space �. From the probability
measure P for the state vector path (S1, . . . , Sm), we define
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a new a probability measure P∗ by

P∗[Sk+1 ∈ Q | Sk = s] = p(s)P[Sk+1 ∈ Q | Sk = s]

for any event Q ⊆ � and state s ∈ �,

P∗[Sk+1 = � | Sk = s] = 1 − p(s)

for any state s ∈ �, and

P∗[Sk+1 = � | Sk = �] = 1.

That is, at each step k of the simulation there is state-
dependent probability 1 − p(Sk) of entering an absorbing
cemetery state, but if that does not happen, the transition
probabilities are the same. Define the indicator variable

Ak = 1{Sk �= �}

which has the value 1 when a path is still “alive.”
This is the opposite of the approach of Glasserman and

Staum (2001a), where we considered conditioning on the
event that the state vector not enter a real cemetery state,
for instance, that a barrier option not knock out. There we
introduced a scheme to reduce estimator variance, despite
doing more work per path, by replacing the indicator variable
Ak with a likelihood ratio

Lk =
k−1∏
j=0

p(Sj )

which expresses the probabilitity of surviving up to step k
given the path (S1, . . . , Sk−1). Here the goal is to achieve
variance reduction, despite increased variance per path, by
doing less work per path and thus running more paths with
a fixed computational budget.

Let Fk be the sigma-algebra generated by (S1, . . . , Sk)

and let Ak be the event {Ak = 1}.
Lemma 2. The Radon-Nikodym derivative of the probability
measure P with respect to the restriction of P∗ to Ak (which
is merely a measure) relative to Fk is 1/Lk, i.e.

E∗[X Ak/Lk] = E[X]

for any Fk-measurable random variable X such that E[X]
exists and is finite.

This lemma strongly resembles well-known results of
importance sampling, and the technicalities of its proof are
analogous to those of Lemma 1 of Glasserman and Staum
(2001a).

The state-dependent probability of continuation p(Sk)

controls how much expected work will be done on the rest
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of a path which has reached state Sk . We can construct
an unbiased estimator, using the likelihood ratio Lk , even
though the simulation is less likely to reach some states
than others. States which are unlikely tend to be reached
with a low value of Lk , and receive a correspondingly large
weight.

Let τ = max{k | Ak = 1} be the random step at which
the simulated path stops. If it is less than m, the number
of steps, there is early stopping, and we have not generated
the total sum of discounted cashflows X = ∑m

k=1 Xk , but
we have learned something about it. Let Yτ represent a
guess at the expected value of X given this information;
this guess could be a sophisticated approximation based on
knowledge about the simulation problem, or as simple as∑τ

k=1 Xk , or even just zero. That is, for each value of
k, Yk = Yk(S1, . . . , Sk) is a deterministic function of the
path to date, which is generally not equal to the unknown
conditional expectation E[X | Fk]. However, we require
Ym = X .

An estimator of E[X] under P∗ is

X∗ = Yτ

Lτ

−
τ−1∑
j=1

(
1 − 1

p(Sj )

)
Y j

L j
.

The intuition is that Yτ is our best guess at what X would be
if we were to continue the simulation rather than stopping
at step τ . This guess deserves a weight 1/Lτ to make up
for the hazard of early stopping before reaching this step.
To avoid bias, we must subtract something to make up for
the guesses that we would have made had we stopped at
earlier steps.

Although this way of writing the estimator is most
intuitive, another expression is more useful for theory. Let
Y0 denote 0.

Lemma 3. The estimator X∗ also equals

m∑
j=1

A j

L j
(Y j − Y j−1).

Proof. The indicator function for the event that the path
stops at step j is A j − A j+1. That is, Aτ − Aτ+1 = 1 while
j �= τ implies A j − A j+1 = 0. Therefore

X∗ = Yτ

Lτ

−
τ−1∑
j=1

(
1 − 1

p(Sj )

)
Y j

L j

= Yτ

Lτ

+
τ−1∑
j=1

Y j

(
1

L j
− 1

L j+1

)

=
m∑

j=1

A j

L j
(Y j − Y j−1). �
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Using this, we can prove the key theorem.

Theorem 4. The estimator X∗ is unbiased under the P∗
simulation scheme, i.e. E∗[X∗] = E[X].
Proof. Using the formulation of Lemma 3,

E∗[X∗] = E∗

 m∑

j=1

A j

L j
(Y j − Y j−1)




=
m∑

j=1

E∗[Y j A j/L j − Y j−1 A j/L j ]

=
m∑

j=1

E[Y j ] − E[Y j−1]

= E[Ym ] − E[Y0] = E[X] − 0.

The third equality is justified by Lemma 2 since Y j and
Y j−1 are both F j -measurable. �

This approach is closely related to the methodology of
introducing new variables X ′

1, . . . , X ′
m , described at the end

of Section 2. Just as there, the optimal choice of Y j is the
unknown conditional expectation E[X |F j ], and in practice
one must attempt to use knowledge about the simulation
problem to construct a good approximation. Here we also
face two more challenges: finding a good randomized stop-
ping policy P∗, and designing a computationally efficient
algorithm.

The problem of finding the variance-minimizing P∗
given a policy of guesses Y1, . . . , Ym appears difficult. How-
ever, preliminary investigations suggest that the optimal
continuation probabilities p(Sk) are large when proceeding
to step k + 1 from state Sk yields a large reduction in the
sum of the conditional variance of remaining discounted
payoffs and the squared bias of the guess for the value of re-
maining discounted payoffs. As before, these quantities are
unknown, but a decent guess at them produces an unbiased
estimator with reduced variance that is merely suboptimal in
the sense of not providing the maximum possible variance
reduction.

5 CONCLUSIONS

In this paper we provided further analysis and an extension
of the idea of stopping simulated paths early as a variance
reduction technique. We proved that when paths stop early
independent of the state reached, the extent of variance
reduction depends on the shape of the covariance matrix
of discounted cashflows, not on its size. The method is
appropriate for problems where simulation produces more
valuable information at early time steps than later ones. We
also showed how to construct an unbiased estimator when
the decision to stop paths early is random and depends on
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the state reached. This opens up the possibility of greater
variance reduction, if one can avoid doing work simulating
the tails of paths when they are unlikely to produce much
valuable information. These advances increase our ability
to use our knowledge about the structure of simulation
problems to apply computational resources efficiently.
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APPENDIX: PROOF OF THEOREM 2

Lemma 4. The sequence of functions V (m) converges uni-
formly to V .

Proof. Each V (m)(t) is a Riemann approximation to the
integral V (t). Since v is continuous on the compact set
[0, 1], it is uniformly continuous there, and it is Riemann-
integrable. Uniform continuity says

∀ε > 0, ∃δ � ∀s, t ∈ [0, 1], |t−s| < δ ⇒ |v(t)−v(s)| < ε

Therefore by choosing s = [tm]/m, it follows that |t −s| <

1/m, and

∀ε > 0, ∃δ � ∀t ∈ [0, 1], m > 1/δ ⇒

|v(m)(t) − v(t)| = |v([tm]/m) − v(t)| < ε

This is uniform convergence of v(m) to v. Next,

∀ε > 0, ∃δ � ∀t ∈ [0, 1], m > 1/δ ⇒

|V (m)(t) − V (t)| ≤
∫ t

0
|v(m)(s) − v(s)| ds < tε ≤ ε

That is, V (m) converges uniformly to V . �

Lemma 5. The sequence of functions V (m)∗ converges uni-
formly to V ∗.

Proof. To prove the convergence of V (m)∗ to V ∗, define
ε(m) = supt∈[0,1] |V (m)(t)−V (t)|. By uniform convergence
of V (m) to V , ε(m) converges to zero. Because V (m)∗(t)
is concave, V (m)∗(t) + ε(m) is concave. Further, using
V (m)∗(t) ≥ V (m)(t),

V (m)∗(t) + ε(m) ≥ V (m)∗(t) − V (m)(t) + V (t) ≥ V (t)

Therefore, by definition of V ∗(t) as the least concave curve
above V (t), V ∗(t) ≤ V (m)∗(t) + ε(m). The exact same
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reasoning, switching the role of V ∗ and V (m)∗, shows that
V (m)∗(t) ≤ V ∗(t) + ε(m). Combining these,

sup
t∈[0,1]

|V ∗(t) − V (m)∗(t)| ≤ ε(m)

and thus V (m)∗ converges uniformly to V ∗. �

Lemma 6. There exist nonincreasing functions v(m)∗ and
v∗ such that V (m)∗(t) = ∫ t

0 v(m)∗(s) ds and V ∗(t) =∫ t
0 v∗(s) ds. Moreover, for t ∈ (0, 1), lim v(m)∗(t) = v∗(t).

Proof. As concave functions, V (m)∗ and V ∗ have both left
and right derivatives at every point in (0, 1). If s < t < u,
focusing on V ∗,

lim
x→s+

V ∗(x) − V ∗(s)
x − s

≥ lim
x→t−

V ∗(t) − V ∗(x)

t − x

≥ lim
x→t+

V ∗(x) − V ∗(t)
x − t

≥ lim
x→u−

V ∗(u) − V ∗(x)

u − x

The left and right derivatives are unequal only on a set
of measure zero. For these assertions, see, for instance,
Sundaram (1996, §7.2.2). It follows that any function
which at each point equals either one-sided derivative is
nonincreasing and integrates to V ∗. The same holds for
V (m)∗, which indeed has at most m points where the one-
sided derivatives are unequal.

Next, for the convergence of v(m)∗ to v∗. By Lemma 5,
we know that for any open interval (a, b) ⊂ (0, 1),

∫ b

a

(
v∗(t) − v(m)∗(t)

)
dt = (A-1)(

V ∗(b) − V (m)∗(b)
)

−
(

V (m)∗(a) − V (m)∗(a)
)

→ 0

The strategy is to show that

∃t ∈ (0, 1) �
{

lim inf v(m)∗(t) < v∗(t)

or lim sup v(m)∗(t) > v∗(t)
}

(A-2)

implies the contrary of (A-1), and thus (A-2) is false, i.e.
for every t ∈ (0, 1),

lim inf v(m)∗(t) ≥ v∗(t) ≥ lim sup v(m)∗(t)

and thus lim v(m)∗(t) exists and equals v∗(t).
Suppose then that there is an a ∈ (0, 1) such

that lim inf v(m)∗(a) < v∗(a). Define ε = v∗(a) −
lim inf v(m)∗(a) > 0. By definition of lim inf, there is a
sequence {mk} such that for all k, v(mk)∗(a) < v∗(a)− ε/2.
Because v∗ is continuous and nonincreasing and a < 1,
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there is a b ∈ (a, 1) such that 0 < v∗(a) − v∗(b) < ε/4.
Both v∗ and v(mk )∗ are nonincreasing, so for t ∈ (a, b),

v∗(t) − v(mk )∗(t) ≥ v∗(b) − v(mk )∗(a)

= v∗(b) − v∗(a) + v∗(a) − v(mk)∗(a)

> −ε/4 + ε/2 = ε/4 > 0

Therefore

∫ b

a

(
v∗(t) − v(mk )∗(t)

)
dt > (b − a)ε/4 > 0

for all mk , thus lim inf
∫ b

a (v∗(t)− v(m)∗(t)) dt > 0, contra-
dicting (A-1).

On the other hand, suppose there is a b ∈ (0, 1) such that
lim sup v(m)∗(b) > v∗(b). Now let ε be lim sup v(m)∗(b) −
v∗(b) > 0, and there is a sequence {mk} such that for all k,
v(mk )∗(b) > v∗(b) + ε/2. This time there is an a ∈ (0, b)

such that 0 < v∗(a)−v∗(b) < ε/4, and we get for t ∈ (a, b)

v∗(t) − v(mk )∗(t) ≤ v∗(a) − v(mk)∗(b)

= v∗(a) − v∗(b) + v∗(b) − v(mk)∗(b)

< ε/4 − ε/2 = −ε/4 < 0

for all mk , thus lim sup
∫ b

a (v∗(t) − v(m)∗(t)) dt < 0, con-
tradicting (A-1). �

Lemma 7. The functions v(t), v(m)(t), v∗(t), and v(m)∗(t)
are bounded above and bounded away from zero in m and
t.

Proof. Because v is positive and continuous, it is both
bounded above and bounded away from zero on [0, 1]. By
the construction of v(m), its values are values of v, so it
too is both bounded above and bounded away from zero.
Since v∗ and v(m)∗ are nonincreasing and positive, we can
focus on t = 0 for proving their boundedness above and
on t = 1 for proving their boundedness away from zero.

If there is a (one-sided) neighborhood of t = 0 on
which V ∗ = V , then v∗(0) = v(0). If not, then there exists
a point t > 0 such that V ∗(t) = V (t) = tv∗(0). Either
way, v∗(0) is finite and the function v∗ is bounded above.
Likewise, if there is a neighborhood of t = 0 on which
V (m)∗ = V (m), then v(m)∗(0) = v(m)(0) = v(0). If not,
there exists a point i/m > 0 such that

(i/m)v(m)∗(0) = V (m)∗(i/m) = V (m)(i/m)

=
∫ i/m

0
v(m)(s) ds = 1

m

i−1∑
j=0

v( j/m)

So v(m)∗(0) is a Riemann average of v on the interval
[0, i/m), and this is bounded above in m because v is
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bounded above on the whole interval [0, 1]. Either way,
v(m)∗(0) is bounded above, and so is the function v(m)∗.

The same reasoning applies to boundedness away from
zero. If there is a neighborhood of t = 1 on which V ∗ = V ,
then v∗(1) = v(1), and if not, there exists t < 1 such that
V ∗(1) − V ∗(t) = V (1) − V (t) = (1 − t)v∗(1). If there
is a neighborhood of t = 1 on which V (m)∗ = V (m), then
v(m)∗(1) = v(m)(1) = v(1), and if not, for some i we have
v(m)∗(1) = (

∑m−1
j=i v( j/m))/(m − i). �

Proof of Theorem 2. This proof frequently relies on
Lemma 7. The functions v(m)∗ and v∗ are bounded away
from zero, so we can take square roots, which are them-
selves bounded away from zero. Where v(m)∗ → v∗, triv-
ially

√
v(m)∗ → √

v∗. Since these are also positive and
bounded above, by the Bounded Convergence Theorem,∫ t

0

√
v(m)∗(s) ds → ∫ t

0

√
v∗(s) ds. Consequently, n(m) con-

verges to n on (0, 1). Also v(m)/
√

v(m)∗ → v/
√

v∗ because
the denominators are bounded away from zero, and the
numerators and denominators converge separately. With
numerators positive and bounded above, and denomina-
tors bounded away from zero, these fractions are positive
and bounded above. So again we can apply the Bounded
Convergence Theorem, and F (m) converges to F . �
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