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ABSTRACT

In this paper we present an algorithm for simulating functions
of the minimum and terminal value for a random walk with
Gaussian increments. These expectations arise in connection
with estimating the value of path-dependent options when
prices are monitored at a discrete set of times. The expected
running time of the algorithm is bounded above by a constant
as the number of steps increases.

1 INTRODUCTION

Let {X(¢t) : 0 <t < T} be a Brownian motion, and fix an
integer m. We are interested in the expectation of a function
f of {X(iT/m), 0 <i <m}. The straightforward way to
estimate Ef(X) is to simulate the embedded random walk,
taking time proportional to m.

In many situations one is interested in functions f that
depend only on the minimal (or maximal) and terminal values
ming<;<m X (iT/m) and X (T). These expectations arise in
connection with pricing certain path-dependent financial
options. For example, the value of a discrete lookback call
is of this form; see Broadie, Glasserman, and Kou (1999).
Suppose that the price of an asset at time ¢, S(¢), evolves
according to the stochastic differential equation

dS(t) =rS@t)dt +odZ(1),

where Z is a standard Brownian motion and r, o > 0
are constants. The solution of the equation is a geometric
Brownian motion

S(1) = S(0) exp ((r — 02/ + aZ(t)) — S(0)eBO),

where B is a Brownian motion with drift » — 02/2 and
variance parameter o2, For a discrete lookback call option,
the value of the asset is monitored at a finite set of times
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iT/m,i=0,1,...,m. The payoff is

S(T) Or<n1<n SGET/m) = S(0)exp(B(T))

—S5(0) exp <Omin B( T/m)) .

Therefore, the value of such an option is the expectation
of a function of the terminal value and the minimum of
a Brownian motion over a discrete set of points. Such
expectations also arise in connection with barrier options,
where the payoff depends on whether a certain boundary
is crossed.

In situations like these, since not all values of the random
walk are needed, one can hope to generate iid copies of
(min0§i§m XGT/m), X(T)) in time less than linear in m.
In this paper we will show that these pairs can be generated
in bounded expected time (as m — oo). The approach is
to simulate the continuous process X, “skipping” regions
which can not contain the minimum of the discrete process.

Preliminary results are presented in the next section.
Section 3 describes the simulation procedure. The results
of numerical experiments are presented in Section 4.

2 SETUP

We assume that X is a standard Brownian motionand T = 1.
The extension to non-unit variance and 7 # 1 is simple,
and we discuss below how to take into account non-zero
drift. Let ® denote the (first) location where X attains
its minimum value. It will be convenient to consider the
nonnegative process Y defined by Y (1) = X (t) — X (®) (see
Figure 1). With this translation, f(X) = f(¥Y — Y (0)).
The minimizer ® “splits” the process X into indepen-
dent pieces, as described below; see Williams (1974) and
Fitzsimmons (1985). Let ©2 denote the set of continuous
nonnegative functions w : [0, 1] — R*, and define the
coordinate mappings Y (1) : Q — R* by Y, (w) = o(t)
for 0 <t < 1. Let F =0o{Y():0 <1t <1} be the



Figure 1: Translated Process

o-field of subsets of 2 generated by Y. For 0 <6 < 1,
let My (resp. Rg) denote the probability on F under which
the processes Y(0 + 1), 0 <t < 1—6 and Y(0 — 1),
0 <t < 0, are independent Brownian meanders (resp. 3-
dimensional Bessel processes). Conditional on ® = 6, the
path segments {X(@©# +1¢) — X(@) : 0 <t <1 -6} and
{X(@® —1)— X(0):0 <t <80}, are independent Brownian
meanders. The Brownian meander (over [0, ¢]) is absolutely
continuous with respect to the 3-dimensional Bessel process,

with Radon-Nikodym derivative ¥ ;Z{z; see Imhof (1984).
Therefore,
T A/0(1 —0)
My(dy) = - ———Rop(dy). (D
2 y(O)y(1)

The minimizer ® of X has the arcsine density £(0) =
(m/O (1= 9))_1. Combining these facts yield

Theorem 2.1.

[ O =y(0)

Ro(dvy) d?o.
2y O)y(1) )

Ef(X) = / @)

6=0JQ

The usefulness of (2) is due to the fact that the Bessel
process (being a time homogeneous Markov process) is
much easier to simulate than the meander.

If X has drift u, then the law of X is equivalent to the
law of standard Brownian motion, with Radon-Nikodym
derivative exp(uX (1) — u?/2), and so we would include
the factor exp(u[y(1) — y(0)] — ,u2/2) in (2).

3 SIMULATION PROCEDURE

The overall procedure, of which the key second step will
be described in more detail below, is as follows:

®

Generate 6 uniformly distributed over [0, 1].
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(i1) Calculate y(0), y(1), and
A = miny (([Om] +i)/m),
i=—[0m],...,m — [6m],
where y ~ Ry.
(iii) Calculate

J(A = y(0), y(1) — y(0))
2yO)y(D) '

Repeat the above steps independently and average to obtain
an estimate of Ef(X).

We break the calculation of A into two steps; calculate
the minimum value on the grid to the right of ®, denoted
AR, and then calculate the minimum value to the left of ®
(if it is smaller than Ag) in an analogous way. To calculate
i =

Ar =miny (([6m] +1i)/m), 0,...,m—[60m] :

@) Generate y (([@m] 4 i)/m), starting with i = 0,
until ¢ = y (([@m] +i)/m) > 2b, where b is the
minimum value seen so far (the expected time until
this happens is finite). Let o denote the location
where this occurs. More specifically, let

v

min{i : y (([dm] +i)/m) >
209}2iy (([om1 + j)/m)},

and for typographical simplicity set

b

0r<njigvy ((TOm1 4+ j)/m)},

y (T6m] +v)/m),
([om] +v)/m;

see Figure 2.

Starting from ¢, with probability 1 — b/c > 1/2,
the Bessel process never returns to level b. In this
case, stop with Ar = b. Otherwise, generate the
time until the next visit to level b, 15, (see below
for the distribution of 7). If ¢ 4+ 7, > 1 then stop
and return Agr = b. Otherwise start generating
discrete steps at the next grid point after o + 75
and continue as at step 1.

(i)

Since starting from ¢ > 2b there is probability at least 1/2
of never returning to the minimal level b, the expected
number of steps simulated is bounded.
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Figure 2: Hitting Times
We now describe how to generate 7. For a 3-

dimensional Bessel process starting from ¢ > b > 0,
c—b

7))

Therefore, we can generate 75, conditional on it being finite,
by

P(tb§t|Ib<oo):2<1—CI>(

where Z ~ N(0, 1).

There remains the issue of how to calculate y(1). There
are two cases to consider.

If y(6) = ¢ and 1, = 400, then y(o +1¢) — b is
a 3-dimensional Bessel process starting at ¢ — b, and so

y(1) 2 b+ /(1 —0o)W, where W has the chi-squared
distribution with 3 degrees of freedom.

Ifl<o4t <oo,then{y(c+1t)—b:0<t <1p}is
a 3-dimensional Bessel bridge from ¢ — b at time O to O at
time 7, (see Figure 3), and y(1) is calculated accordingly
(see the next section).

Figure 3: Bessel Bridge

The calculations to the left of 6 are the same, except
that we start with a “minimal value” of Ag instead of 0.

The procedure we have described requires the generation
of random variates associated with the 3-dimensional Bessel
process and its bridges. One way to do this is to make use
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of the fact that the 3-dimensional Bessel process has the
distribution of the modulus of a 3-dimensional Brownian
motion.

Let Y be a 3-dimensional Bessel process and let
(B, B>, B3) be a 3-dimensional Brownian motion. To
generate Y (¢ 4+ s) given Y (¢) = y, generate

1/2
(04 BI6)? + Ba(9)? + Bs()?) .

The same approach is used to generate the bridge random
variates. Note that generating steps of the Bessel process
with this scheme requires more than three times as much
work as generating steps of the Brownian motion.

4 NUMERICAL EXPERIMENTS

Recall the lookback call option mentioned in the Introduc-
tion: We are interested in estimating the expectation

SOE <exp (X(T)) —exp (Or<n_i<n X (i T/m))) .

The straightforward method of simulating the embedded
random walk requires the generation of m Gaussian random
variates for each replication.

We performed computer experiments to get an idea of
how the running time of the algorithm described in this
paper increases with m. Table 1 shows the average number
of Gaussian random variates generated for various values of
m (and the sample standard deviations), based on 100, 000
replications.

Table 1: Average Number of Variates Generated

m 30 | 100 | 1000 | 10,000 | 100,000
# variates | 25 27 29 30 30
std. dev. | 9.5 | 11.5 | 13.3 14.0 14.0

The number of Gaussian variates generated approximates the
actual running time of the computer program. Notice that
30 Gaussian variates corresponds to simulating the random
walk at about 10 time points (since the Bessel process is
simulated by a 3-dimensional Brownian motion).

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under grant DMI-9900117.

REFERENCES
Broadie, M., Glasserman, P., and S. G. Kou. 1999. Con-

necting discrete and continuous path-dependent options.
Finance and Stochastics 3, 55-82.



Calvin

Fitzsimmons, P. J. 1985. Excursions above the minimum
for diffusions. Unpublished manuscript.

Imbhof, J.-P. 1984. Density factorization for Brownian mo-
tion, meander and the three-dimensional Bessel process,
and applications. J. Appl. Prob. 21, 500-510.

Williams, D. 1974. Path decomposition and continuity
of local time for one—dimensional diffusions, I. Proc.
London Math. Soc. Ser. 3 28, 738-68.

AUTHOR BIOGRAPHY

JAMES M. CALVIN is an associate professor in the De-
partment of Computer Science at the New Jersey Institute
of Technology. He received a Ph.D. in Operations Research
from Stanford University. Besides simulation output anal-
ysis, his research interests include global optimization and
probabilistic analysis of algorithms.

328



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

