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ABSTRACT

This paper presents a new approach to pricing American-
style derivatives. By approximating the value function
with a piecewise linear interpolation function, the option
holder’s continuation value can be expressed as a summation
of European call option values. Thus the pricing of an
American option written on a single underlying asset can be
converted to the pricing of a series of European call options.
We provide two examples of American-style options where
this approximation technique yields both upper and lower
bounds on the true option price.

1 INTRODUCTION

We consider the problem of pricing American-style deriva-
tives written on a single underlying asset. One general ap-
proach in the pricing of such options with “early-exercise”
features is to cast the problem in the framework of a stochas-
tic dynamic programming problem and employ a backwards
induction algorithm. As is well known, due to the “curse of
dimensionality”, solving the dynamic programming equa-
tions directly can become prohibitively complex and often
we need to resort to approximate solutions; see, for example,
the methods of Tsitsiklis and Van Roy (2000), Longstaff
and Schwartz (2001), and Carriere (1996). In this paper,
we present another approach to approximating the dynamic
programming equations.

Our approach is to approximate the holding value func-
tion by integrating a piecewise linear approximation of the
next stage value function. Here we provide the details of
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using secant lines for the value function. In addition, it
is possible in some cases to construct the piecewise linear
function with tangent lines; the details of this procedure, as
well as the proofs for all of the propositions, can be found
in Laprise et al. (2001).

Our contribution is as follows. By approximating the
value function using a piecewise linear function, we show
that it can be expressed arbitrarily well as a finite sum of
European call option payoffs. This enables us to reduce
the pricing of an American-style option to that of pricing
European call option values. In some settings, European
call option values can be determined analytically; otherwise,
they can be determined via some numerical method, e.g.,
simulation. Also, in some cases, it can be shown that the
algorithm results in price estimates that bound the correct
prices. Further, under certain conditions, as the number
of interpolation points goes to infinity, the price estimates
converge to the true price.

Related work applying simulation to the pricing of
American-style options includes Grant, Vora and Weeks
(1996), Tilley (1993), Fu and Hu (1995) Broadie and Glasser-
man (1997ab), and Fu et al. (2001). Broadie and Detemple
(1996) also develop lower and upper bounds on the prices of
standard American call and put options written on a single
underlying dividend-paying asset.

The rest of the paper is organized as follows. In
Section 2, we present the backwards recursion algorithm
with the secant interpolation to the value function. Also,
we establish criteria for which the approximated value
functions result in bounds on the true value functions and
present heuristic arguments for the optimal selection of the



Laprise, Fu, Marcus and Lim
interpolating points. In Section 3, we apply the algorithm
to two pricing problems: an American call option and an
American put option. Finally, Section 4 contains some
numerical results and Section 5 offers some conclusions.

2 AMERICAN-STYLE OPTION BACKWARDS
RECURSION

Consider an American style option written on a single
underlying asset with a time homogeneous, Markovian price
process (time homogeneity can be relaxed) given by

St+� = h (Z; St , θ) ,

where θ is a vector of parameters including the riskfree
interest rate r and Z is some random vector independent of
St and θ . Given the asset price at time t0 = 0, S0, the price
of an American-style option can be written as the solution
to the following optimal stopping problem:

sup
η

E Q [
e−rη Lη(Sη) |S0

]
, (1)

where Q denotes the appropriate risk-neutral (martingale)
measure, Lt (·) represents the payoff at time t (we assume
the payoff is only a function of the present asset price),
and the supremum is over all stopping times η ∈ (t0, T ]
(Henceforth, for ease of notation, we drop the superscript
Q on the expectation, but maintain that all subsequent
expectations are taken with respect to this measure). Here,
we restrict early exercise opportunities to discrete points
{ti , i = 1, . . . , N}, where tN = T represents the option’s
expiration date; thus, the “sup” operator in (1) can be
replaced by a “max” operator. Without loss of generality,
we assume a fixed time span τ between exercise dates (τ
is written as a fraction of a year), and assume the payoff
function is independent of the exercise date - in which case
we can drop the subscript on Lt (·).

If we let Vi (S) represent the option value at date ti as a
function of the underlying asset price S, then we can express
Vi (S) as the maximum of the option’s holding value and ex-
ercise value: Vi (S) = max(L(S), Hi (S)), where the holding
value, Hi(S), is the present value of the expected one period
ahead option value: Hi(S) = e−rτ E[Vi+1(Si+1) |Si = S ],
i.e.,

Vi (S) = max
(
L(S), e−rτ E

[
Vi+1(Si+1) |Si = S

])
. (2)

In particular, at the option’s expiration date tN , as the holding
value is zero, we have that VN (S) = L(S). Further, as the
option cannot be exercised at t0, the option price (1) can
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be expressed as

V0(S0) = H0(S0) = e−rτ E[V1(S1) |S0 ]

Ideally, backwards recursion could be done on (2) and even-
tually the option price V0(S0) could be obtained. However,
prior to the expiration date, it is generally impossible to
obtain the value function Vi (S) over the entire state space
domain; yet this is necessary to calculate the holding value
at the previous exercise date. In our approach, we compute
the value function at a selected finite number of points in
the asset space and then use these points to construct an in-
terpolation function which approximates the value function
over the entire state space. We then perform the back-
wards recursion on this new function, rather than on the
value function itself. This interpolation function, which
is a piecewise linear function comprised of secant lines,
can be conveniently expressed as a summation of European
call option payoffs. Therefore, the approximated holding
value, as an expectation of this interpolation function, is
simply a summation of European call option prices, which
are generally straightforward to obtain. We now present the
details.

At exercise date tN−1,

HN−1(S) = e−rτ E
[
VN (SN ) |SN−1 = S

]
= e−rτ E

[
L(SN ) |SN−1 = S

]
.

Thus HN−1(S) is the value of a corresponding European
option of length τ , with starting asset price at tN−1 equal to
S and payoff L(SN ) at tN . European options such as this
can generally be easily evaluated through either a closed
form expression or via other methods, such as simulation.
Then VN−1(S) = max(L(S), HN−1(S)).

Let ṼN−1(·) = VN−1(·). Proceeding recursively, at
exercise date ti , i = N − 1, . . . , 1, given the value function
Ṽi (·), we construct the interpolation function V̂i (·): First,
we choose n + 1 points {(x j , y j )}n

j=0 on the curve Ṽi (·)
such that x0 < x1 < · · · < xn , and, for j = 0, . . . , n,
y j = Ṽi (x j ). Generally x0 is the leftmost endpoint of the
domain of Ṽi (·) (usually, x0 = 0). Similarly, if the domain
space is bounded, xn is generally the rightmost endpoint;
otherwise, xn is a chosen large value of the domain space.
Then for S ∈ [x0, xn], the interpolation function is

V̂i (S) = m j (S − x j−1) + y j−1 if x j−1 ≤ S < x j ,

j = 1, . . . , n, (3)

where m j = y j −y j−1
x j −x j−1

is the slope of the secant line from

(x j−1, y j−1) to (x j , y j ). For x > xn , we let mn+1(S−xn)+
yn define the limiting line with left endpoint (xn, yn), where
the slope mn+1, while unconstrained, should be chosen with
regard to the right hand limit of Ṽi (S). If mn+1 < 0, this
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limiting line intersects the S-axis at xn − yn
mn+1

> xn . In this

case, we let xn+1 = xn − yn
mn+1

and we consider the S-axis
as the "new" limiting line for x > xn+1; i.e., mn+2 = 0.
Otherwise, if mn+1 ≥ 0, we let xn+1 = ∞. Thus, for
S > xn , we have

V̂i (S) =
{

mn+1(S − xn) + yn if xn ≤ S < xn+1;
0 if S ≥ xn+1.

(4)

Therefore, by (3) and (4), for S ≥ x0,

V̂i (S) =
n+1∑
j=1

(
m j (S − x j−1) + y j−1

)
1

{
x j−1 ≤ x < x j

}
,

where 1 {·} represents the indicator function. As
1

{
x j−1 ≤ S < x j

} = 1
{

S ≥ x j−1
} − 1

{
S ≥ x j

}
,

V̂i (S)

=
n+1∑
j=1

(
m j (S − x j−1) + y j−1

)
1

{
x j−1 ≤ S < x j

}

=
n+1∑
j=1

(
m j (S − x j−1) + y j−1

)
1

{
S ≥ x j−1

}

−
n+1∑
j=1

(
m j (S − x j−1) + y j−1

]
1

{
S ≥ x j

}

= (m1(S − x0) + y0) 1 {S ≥ x0}

+
n+1∑
j=2

(
m j (S − x j−1) + y j−1

)
1

{
S ≥ x j−1

}

−[(mn+1(S − xn) + yn) 1 {S ≥ xn+1}

+
n∑

j=1

(
m j (S − x j−1) + y j−1

)
1

{
S ≥ x j

}]
= (m1(S − x0) + y0)

− (mn+1(S − xn) + yn) 1 {S ≥ xn+1}

+
n∑

j=1

(
m j+1(S − x j ) + y j

)
1

{
S ≥ x j

}

−
n∑

j=1

(
m j (S − x j ) + y j

)
1

{
S ≥ x j

}

= (m1(S − x0) + y0)

− (mn+1(S − xn) + yn) 1 {S ≥ xn+1}

+
n∑

j=1

(
m j+1 − m j

) (
S − x j

)+
, (5)

where for the fourth equality, 1 {S ≥ x0} = 1, the first sum-
mation results from a reindexing, and the second summation
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from the fact that m j (S−x j−1)+ y j−1 and m j (S−x j )+ y j

define the same line. The final equality results from
(S − x j )1

{
S ≥ x j

} = (S − x j )
+.

Now for xn+1 < ∞, i.e., xn+1 = xn − yn
mn+1

and
mn+2 = 0,

− (mn+1(S − xn) + yn)

= − (mn+1(S − xn+1) + mn+1(xn+1 − xn) + yn)

= − (mn+1(S − xn+1) + (−yn) + yn)

= (mn+2 − mn+1) (S − xn+1) ,

and for xn+1 = ∞, 1 {S ≥ xn+1} = 0. Thus, by (5),

V̂i (S) = m1(S − x0) + y0

+
n+1∑
j=1

(
m j+1 − m j

) (
S − x j

)+
, (6)

where if xn+1 = ∞, the last term in the summation is
zero since (S − xn+1)

+ = 0. Thus, the approximated value
function V̂i (S) consists of a linear function of S and the
payoff from holding a portfolio of European call options of
varying strike prices

{
x j

}n
j=1, all expiring at ti .

We now define the approximate holding value function
H̃i−1(·) as the present value of the expected one period ahead
piecewise linear option value V̂i (·). First, we introduce
new notation: we include superscripts on m j , x j , and y j to
indicate that these values are taken from the approximate
value function Ṽi (·) at ti , and, as the number of interpolation
points can vary per early exercise date, we include a subscript
on n. Thus, from (6),

H̃i−1(S)

= e−rτ E
[
V̂i (Si ) |Si−1 = S

]

= e−rτ
(

m(i)
1

(
E

[
Si |Si−1 = S

] − x (i)
0

)
+ y(i)

0

)

+
ni +1∑
j=1

(
m(i)

j+1 − m(i)
j

)
V E (S, x (i)

j , τ ), (7)

where

V E (S, x, η) = e−rη E
[
(Si − x)+ |Si−1 = S

]

represents the value of a European call option of maturity
η (η = ti − ti−1) with starting value S and strike price x .
Thus, the approximated holding value H̃i−1(·) is simply a
linear function of the expected asset value at ti added to
a summation of European call option values. V E (S, x, η)

can be evaluated either in a closed-form expression, as
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when the process follows geometric Brownian motion, or
via simulation or another numerical method.

Finally, for i ≥ 2, Ṽi−1(·) is defined as the maximum
of the approximated holding value and the exercise value:

Ṽi−1(S) = max(L(S), H̃i−1(S)), (8)

and the recursion continues. We will assume no early
exercise at t0, in which case Ṽ0(S0) = H̃0(S0) is an estimate
for the option’s value; if early exercise is allowed at t0,
Ṽ0(S0) is given by (8) with i = 1.

The following steps summarize the backwards recur-
sion algorithm discussed above. Throughout, if i < N − 1,
H̃i(·) is calculated via (7).

Algorithm

0: Let i = N − 1, H̃N−1(·) = HN−1(·) and
ṼN−1(·) = VN−1(·)

1: Choose interpolating points:
{(

x (i)
j , y(i)

j

)}ni

j=0
,

where, for j = 1, . . . , ni , x (i)
j−1 < x (i)

j , and, for
j = 0, . . . , ni ,

y(i)
j = Ṽi (x (i)

j ) = max(L(x (i)
j ), H̃i(x (i)

j )).

2: For j = 1, . . . , ni , calculate m(i)
j = y(i)

j −y(i)
j−1

x (i)
j −x (i)

j−1

.

3: Choose m(i)
ni +1. If m(i)

ni +1 < 0, let

xni+1 = x (i)
ni − y(i)

ni

m(i)
ni +1

, and m(i)
ni +2 = 0.

4: Let i = i − 1. If i > 0, return to Step 1.
Otherwise, return Ṽ0(S0).

The interpolation of the value function could begin at the
expiration date tN where VN (S) = L(S). This may be
beneficial if the determination of a sequence of European
call option prices is easier than finding the price of a single
European option with payoff L(S); for example, if L(S)

is a complicated function.

2.1 Criteria for Upper and Lower Bounds

Consider the general backwards recursion algorithm in
solving an American style option problem. We use the
same notation as above: at exercise date ti , Hi(S) =
e−rτ E

[
Vi+1(Si+1) |Si = S

]
and Vi (S) = max(L(·), Hi (·))

represent the true holding value and option value functions,
respectively, and H̃i and Ṽi (·) = max(L(·), H̃i(·)) represent
the approximate holding value and option value functions,
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respectively. V̂i is defined as any approximating function
(e.g., the secant interpolation function defined above) to Ṽi ,

so that H̃i(S) = e−rτ E
[
V̂i+1(Si+1) |Si = S

]
.

At tN−1, let H̃N−1 ≥ HN−1, so that, by definition,
ṼN−1 ≥ VN−1 (generally, these functions equal, but for now
we allow the possibility of the inequality). Next, suppose
V̂N−1 is constructed such that V̂N−1 ≥ ṼN−1. Then, as
V̂N−1 ≥ VN−1, we have

H̃N−2(S) = e−rτ E
[
V̂N−1(SN−1) |SN−2 = S

]

≥ e−rτ E
[
VN−1(SN−1) |SN−2 = S

]
= HN−2(S),

which implies, ṼN−2(·) ≥ VN−2(·). Proceeding recursively,
if, at exercise date ti+1, Ṽi+1(·) ≥ Vi+1(·), and V̂i+1 is
constructed such that V̂i+1 ≥ Ṽi+1, then H̃i(·) ≥ Hi(·)
and Ṽi (·) ≥ Vi (·), similarly. Therefore, constructing V̂i as
an upper bound to Ṽi at all early exercise dates results in
upper bounds on the true holding and value functions. This
argument could be repeated with the inequalities reversed
to show that constructing V̂i as a lower bound to Ṽi at
all early exercise dates results in lower bounds on the true
holding and value functions.

In our application, where V̂i (·) interpolates Ṽi (·)
with secant lines, if Ṽi (·) is a convex function, then
V̂i (S) ≥ Ṽi (S) for S ≤ x (i)

n ; and if the limiting secant
line with slope m(i)

n+1 is carefully chosen such that

V̂i (S) ≥ Ṽi (S) for S > x (i)
n , we have that V̂i (·) ≥ Ṽi (·).

Similarly, if Ṽi (·) is a concave function, then V̂i (S) ≤ Ṽi (S)

for S ≤ x (i)
n ; and if the limiting secant line with slope

m(i)
n+1 is chosen such that V̂i (S) ≤ Ṽi (S) for S > x (i)

n , we

have that V̂i (·) ≤ Ṽi (·). The following proposition, which
we will use in our examples, provides conditions un-
der which the approximating value function, Ṽi (·), is convex.

Proposition 2.1 Suppose L(·) is convex. If either L(·)
is nondecreasing and h (Z; ·, θ) is convex or L(·) is
nonincreasing and h (Z; ·, θ) is concave, then HN−1(·) and
VN−1(·) are convex. For i = 1, . . . , N − 2, if H̃i+1(·) and
Ṽi+1(·) are convex, m(i+1)

n+1 ≥ m(i+1)
n , and either h (Z; ·, θ)

is linear, or h (Z; ·, θ) is convex and m(i+1)
1 ≥ 0, then

H̃i(·) and Ṽi (·) are convex.

2.2 Efficient Selection of Interpolating Points

The accuracy of the backwards recursion algorithm with
the secant interpolation function is inherently dependent on
the error in replacing the current value function with the
approximating function. In particular, at early exercise date

ti , it is desirable for
∣∣∣V̂i (·) − Ṽi (·)

∣∣∣ to be small, and if we
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are limited to a fixed number of interpolation points, it is
important that the interpolation points be chosen so as to
minimize this error.

First, the linear interpolation should try to focus on
those intervals in the state space where Ṽi is nonlinear. In
other words, if Ṽi is known to be linear on some interval
[a, b], then for some j ′, we would let x j ′ = a and x j ′+1 = b
(if b = ∞, we would let xn = a and mn+1 equal the slope
of Ṽi (x) for x > a; then for x > a, Ṽi (x) = V̂i (x)).

Further, the interpolation points should be concentrated
on the areas of the state space where Ṽ (·) is most convex
or concave. One simple heuristic where the interpolation
points are chosen iteratively is as follows. Given a current
set of points and the corresponding secant lines, additional
interpolation points are inserted into those areas where the
absolute difference between the slopes of adjacent secant
lines is large, as these areas should correspond to areas
of higher convexity. A more rigorously defined heuristic
based on this idea is described in Laprise et al. (2001).

Next, as our algorithm essentially reduces the pricing
of an American-style option to that of pricing numerous
European call options, the computational costs are directly
related to the computational costs of pricing the European
call options. As each calculation of the approximate hold-
ing value (7) requires the determination of a sequence of
European call option values of varying strike prices, the
number of European call options that require pricing can
be large. If we do not have closed-form solutions for these
values, and they need to be estimated through a numerical
method such as simulation, computation costs can grow
very quickly.

In such cases, the total number of European call option
prices required can be reduced by reusing a set of state
space interpolation points over all early exercise dates;

i.e., if Xi =
(

x (i)
j

)ni

j=0
, then let X N−1 ⊆ X N−2 ⊆ · · · ⊆

X1. For example, suppose we let the set of state space
interpolation points be the same for each early exercise date;
i.e., we define X = {

x j
}n

j=0 where X = X N−1 = · · · = X1

(as the state space interpolation points are identical across
dates, we drop the superscripts and subscripts). Then,
referring to the algorithm in Section 2, at tN−1, we compute
y(N−1)

j = max(L(x j ), HN−1(x j )) for j = 0, . . . , n. We

then construct the two dimensional array X̄ as follows:
X̄ j,k = V E (x j , xk, τ ) for j, k = 0, . . . , n; i.e., X̄ j,k is the
value of a European call option of length τ , with starting
value x j and strike price xk . Then, at early exercise date

ti (i < N − 1), as Xi = X , y(i)
k = max(L(xk), H̃i(xk)) for
33
k = 0, . . . , n, where, by (7),

H̃i(xk)

= e−rτ
(

m(i+1)
1

(
E

[
Si+1 |Si = xk

] − x0
) + y(i+1)

0

)

+
n+1∑
j=1

(
m(i+1)

j+1 − m(i+1)
j

)
V E (xk, x j , τ ).

Thus, H̃i(xk) can be determined directly from the kth row
of X̄ - no further European call values need to be computed.
Therefore, once the n2 European values in X̄ are computed
initially, the backwards recursion can proceed until t0 without
computing any further European values. In practice, the
user may want to add interpolation points at some early
exercise date ti , in which case Xi+1 ⊂ Xi . Then X̄ would
need to be updated to include these new interpolating points.
However, in total, only n2

1 European values would need to
be computed for the recursion to be completed.

Finally, when the European values need to be estimated
via some numerical method, care must be shown in choosing
the asset space interpolation points to avoid introducing huge
errors. In particular, increasing the number of interpolating
points can produce less accurate results if the accuracy
of the numerical method is not also improved. As an
illustration, consider the backwards recursion at an early
exercise date, and let x j−1 and x j be adjacent state space
interpolation points (we drop the superscript notation). Let
y j−1 and y j be the respective true values of the approximated
value function and let ȳ j−1 and ȳ j be the corresponding
values where numerical methods are used to estimate the
European values. Define ε j−1 and ε j as the respective errors
resulting from the estimation of the European values, i.e.,
ȳ j−1 = y j−1 + ε j−1 and ȳ j = y j + ε j . Further, let m̄ j

be the slope of the secant line between
(
x j−1, ȳ j−1

)
and(

x j , ȳ j
)
. Then

m̄ j = ȳ j − ȳ j−1

x j − x j−1

= (y j + ε j ) − (y j−1 + ε j−1)

x j − x j−1

= m j + ε j − ε j−1

x j − x j−1
,

i.e., the error in the slope of the secant line is amplified by
1

x j −x j−1
. Therefore, if using numerical methods, the state

space interpolation points cannot be chosen too close. In
particular, if the number of interpolation points are increased,
which generally will decrease the distance between adjacent
points, the accuracy of the numerical method must also
increase. In the context of simulation, increasing the number
of interpolation points while maintaining the number of
3
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replications used for estimating each European price may
result in a less accurate final option price.

3 EXAMPLES

We consider two American style-pricing problems: the
American call option and the American put option. Under
relatively nonrestrictive conditions, the application of the
secant interpolation to these problems results in upper
bounds on the true option price. Further, the techniques
seen here can generally be applied to more complicated
pricing problems.

Example 1: American Call Option

In this case, L(S) = (S − K )+. First, the holding
value at the latest early exercise date is simply the value of
a European call option:

HN−1(S) = e−rτ E
[
(S − K )+ |SN−1 = S

]
= V E (S, K , τ ). (9)

Therefore, the European call option is the only option that
needs pricing in applying the backwards recursion to this
problem. Next, the following property of the American
call option helps us achieve stronger results.

Proposition 3.1 For i = 1, . . . , N − 1, if ∂ Hi (S)
∂S < 1,

then the optimal early exercise policy at ti is a threshold
policy: there exists an s∗

i > K such that L(s∗
i ) = Hi(s∗

i ),
L(S) < Hi(S) for S < s∗

i , and L(S) > Hi(S) for S > s∗
i ,

i.e.,

Vi (S) =
{

Hi(S) if S < s∗
i ;

L(S) = S − K if S ≥ s∗
i .

(10)

Further, if ∂ Hi (S)
∂S ≤ ρ < 1, s∗

i < ∞.

Thus, given that the optimal policy at ti is a threshold policy,
if the threshold is finite, the option should only be exercised if
S ≥ s∗

i ; otherwise, if s∗
i = ∞, i.e., Hi(·) ≥ L(·), the option

should never be exercised at ti . The condition, ∂ Hi (S)
∂S < 1,

is generally satisfied by a smoothness condition on the stock
price process h (Z; ·, θ). Further, the condition for finite
thresholds, ∂ Hi (S)

∂S ≤ ρ < 1, is generally satisfied for any
smooth stock price process with continuous dividends.

The next proposition shows that under some conditions
on the price process h (Z; ·, θ) that ensure that the optimal
policy is a threshold policy, if we apply secant interpolation
to the value functions, the estimated optimal policy based
on the approximated value function Ṽi (·) is also a threshold
policy. Furthermore, the approximated value functions and
thresholds bound the true value functions and thresholds,
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respectively.

Proposition 3.2 Assume h (Z; ·, θ) is sufficiently smooth
such that the optimal policy at each early exercise date is a
threshold policy. Also, let h (Z; ·, θ) be convex. Then, for
i = 0, . . . , N − 2, if m( j )

n j +1 = 1 for j = i + 1, . . . , N − 1,
then

Ṽi (S) =
{

H̃i(S) if S < s̃∗
i ;

L(S) = S − K if S ≥ s̃∗
i

(as early exercise is not allowed at t0, s̃∗
0 = s∗

0 is taken
to be infinity). Further, Ṽi (·) ≥ Vi (·), H̃i(·) ≥ Hi(·), and
s̃∗

i ≥ s∗
i .

Note: ṼN−1(·) = VN−1(·), H̃N−1(·) = HN−1(·), and
s̃∗

N−1 = s∗
N−1, where HN−1(·) is given in (9), and VN−1(·)

and s∗
N−1 are given in (10).

Example 2: American Put Option

In this case, L(S) = (K − S)+. For simplicity, we
assume the stock price process is free of dividends, in
which case e−rτ E

[
Si+1 |Si = S

] = S by the martingale
condition. The holding value at tN−1 is the value of a
European put option, and as a+ = (−a)+ + a, we have:

HN−1(S)

= e−rτ E
[
(K − SN )+ |SN−1 = S

]
= e−rτ E

[
(SN − K )+ + K − SN |SN−1 = S

]
= K e−rτ − S + V E (S, K , τ ) (11)

For this example, we show the construction of VN−1(·),
V̂N−1(·) and H̃N−2(·). First, L(0) = K > K e−rτ =
HN−1(0) and L(K ) = 0 < HN−1(K ) imply the existence
of an s∗

N−1 < K such L(s∗
N−1) = HN−1(s∗

N−1). Further,

∂ HN−1(S)

∂S
= −1 + ∂

∂S
V E (S, K , τ )

> −1,

as ∂
∂S V E (S, K , τ ) > 0, and ∂

∂S (K − S) = −1 imply the
uniqueness of s∗

N−1; i.e.,

VN−1(S) =
{

L(S) = K − S if S < s̃∗
N−1;

HN−1(S) if S ≥ s̃∗
N−1.

Next, in constructing V̂N−1(·), we note that(
x (N−1)

0 , y(N−1)
0

)
= (0, K ), and, as VN−1(S) is lin-

ear for S < s̃∗
N−1, we let x (N−1)

1 = s̃∗
N−1, so that
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m(N−1)
1 = −1. Thus, by (7),

H̃N−2(S)

= K e−rτ − S (12)

+
nN−1+1∑

j=1

(
m(N−1)

j+1 − m(N−1)
j

)
V E (S, x (N−1)

j , τ ).

Thus the holding value at tN−1, (11), and the approximate
holding value at tN−2, (12), are similar. Further, it can
be shown that the form of the approximate holding value
function at tN−2, (12), is maintained at all early exercise
dates.

The following proposition shows that a threshold
policy is generally required for optimality. However, unlike
the American call, the threshold is always finite.

Proposition 3.3 For i = 1, . . . , N − 1, if ∂ Hi (S)
∂S > −1,

then the optimal early exercise policy at ti is a threshold
policy: there exists an s∗

i < K such that L(s∗
i ) = Hi(s∗

i ),
L(S) > Hi(S) for S < s∗

i , and L(S) < Hi(S) for S > s∗
i ,

i.e.,

Vi (S) =
{

L(S) = K − S if S < s∗
i ;

Hi(S) if S ≥ s∗
i .

Again, the condition ∂ Hi (S)
∂S > −1 is generally satisfied

by a smoothly changing stock price. Next, similar to
the American call example, if the optimal policy is a
threshold policy, then secant interpolation to the value
functions will also result in a threshold policy, and the
approximated value functions and thresholds bound the
true value functions and thresholds, respectively.

Proposition 3.4 Assume h (Z; ·, θ) is sufficiently smooth
such that the optimal policy at each early exercise date is
a threshold policy. Also, let h (Z; ·, θ) be linear. Then, for
i = 0, . . . , N − 2, if m( j )

n j = 0 for j = i + 1, . . . , N − 1,
then

Ṽi (S) =
{

L(S) = K − S if S < s̃∗
i ;

H̃i(S) if S ≥ s̃∗
i

(as early exercise is not allowed at t0, s̃∗
0 = s∗

0 is taken
to be zero). Further, Ṽi (·) ≥ Vi (·), H̃i(·) ≥ Hi(·), and
s̃∗

i ≤ s∗
i .

4 NUMERICAL RESULTS

Numerical results are shown in Table 1. Table 1 shows
American call option prices (Example 1) with strike price
K = 100, where the expiration date is 3.0 yrs and the option
is exercisable every 0.5 yrs. The stock price process adopted
33
is geometric Brownian motion with continuous dividends:

St+� = h (Z; St , θ)

= St e
(r−δ−σ 2/2)�t+σ

√
�t Z ,

where Z is a standard N(0, 1) random variable, r represents
the riskfree interest rate, σ the volatility, and δ the continuous
dividend rate. For Table 1, σ = .2, r = .05, and δ = .04.

It can be shown via Proposition 3.1 that for δ > 0,
the optimal policy at each early exercise date is a finite
threshold policy. Thus, by Proposition 3.2, our algorithm
will result in upper bounds on the threshold values and
option value.

In addition to option price estimates for three start-
ing asset prices (S0 = 90, 100, 110), Table 1 displays the
corresponding threshold values (threshold values are inde-
pendent of the starting prices) where the t5 = 2.5 years
threshold is omitted since it is obtained independently of
the interpolation algorithms. Also, included are CPU times
(in seconds): all computation was implemented in C and
carried out on a Sun Ultra 10 running Solaris OS.

The first three rows of Table 1 display results obtained
from a tangent interpolation of the value function; details
of this are contained in Laprise et al. (2001). It can be
shown that tangent interpolation leads to lower bounds on
the option values and threshold values, and, as for the
secant interpolation, the approximate holding values are
summations of European call option prices. The European
prices used here are obtained in closed form via the Black-
Scholes formula; thus, no numerical method is used. Each
row corresponds to a different number of interpolation points.

The second three rows display results from the secant
interpolation approach; as previously discussed, the values
shown are upper bounds on the true values. As for the
first three rows, the European call prices are obtained via
the Black-Scholes formula, and each row corresponds to a
different number of interpolation points.

The last three rows also display results from the secant
interpolation approach, except here, the European call option
values are obtained via simulation. The displayed option
prices and CPU times are an average of 10 runs of the
algorithm. For efficiency, we did not attempt to determine
the thresholds, and we followed the approach detailed in
Section 2.2 of reusing the state space interpolation points.
In particular, we selected n5 points at t5 = 2.5 years and
iteratively add points until t1 = .5 year where we end up
with n1 points; thus, we simulate a total of n2

1 European
call prices. Also listed is m, the number of replications
used to estimate each European price.

Our experiments show that the “analytical” upper and
lower bounds tighten quickly with respect to the number of
interpolating points. For example, with just 50 interpolating
points, the upper and lower bounds are able to bracket the
true price to within 3 cents. Furthermore, with 200 points,

5
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Table 1: American Call Option on Single Asset under Geometric Brownian Motion: K = 100, r = 0.05, σ = .2, δ = .04;
ti = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 yrs

Algorithm Algorithm Option Price Thresholds
Type Parameters S0 = 90 S0 = 100 S0 = 110 t1 = .5 t2 = 1.0 t3 = 1.5 t4 = 2.0 CPU

Lower n = 20 8.582 13.507 19.487 158.19 153.87 148.54 141.61 0.07
Bounds n = 50 8.624 13.547 19.526 158.38 154.02 148.65 141.69 0.24
(Anal) n = 200 8.631 13.554 19.533 158.42 154.05 148.67 141.70 3.28
Upper n = 200 8.633 13.556 19.535 158.43 154.06 148.68 141.70 2.21

Bounds n = 50 8.648 13.571 19.551 158.56 154.13 148.74 141.77 0.16
(Anal) n = 20 8.751 13.674 19.656 159.17 154.98 149.37 141.88 0.05
Upper n5 = 15, n1 ≈ 24 8.774 13.700 19.668 3.25

Bounds (m = 10, 000)
(Sim) n5 = 40, n1 ≈ 52 8.616 13.498 19.448 12.5

(m = 10, 000)
n5 = 40, n1 ≈ 52 8.702 13.584 19.571 22.5

(m = 20, 000)
we are able to ascertain the true price to within less than
1 cent. The results are similarly strong for the threshold
values.

Difficulties arise when we use simulation for the Euro-
pean values. In particular, as discussed in Section 2.2, we
see the errors that can occur when increasing the interpola-
tion points while maintaining the European price accuracy.
While keeping the number of simulations fixed at 10,000,
increasing the number of interpolating points at t5 from 15
to 40 actually leads to worse results: for many of the cases,
the “upper” bounds fall significantly below the true lower
bounds. However, doubling the number of simulations to
20,000, hence improving the European price accuracy, leads
to results that are significantly better then when the number
of interpolating points at t5 is 15. Preliminary analysis
seems to show that the results can improve with more in-
terpolation points as long as the accuracy of the numerical
method also is enhanced.

5 CONCLUSIONS

We have presented a new approach to pricing American-
style derivatives through approximating the value function
with an interpolation function based on secant lines. With
this approximation, we are able to convert the pricing of
an American-style derivatives to that of pricing numerous
European call options. We show how the algorithm can be
applied to American put and call options, and we present
numerical results on the application to the American call.
For cases where analytical results for the European call are
available, the numerical results show rapid convergence of
the bounds to the correct price as the number of interpolation
points is increased. However, when simulation is needed
to estimate the European call prices, preliminary results
336
show that the estimator accuracy must be improved when
increasing the number of interpolation points.

Laprise et al. (2001) presents linear interpolation with
tangent lines and contains applications to more complicated
American-style options. Future work includes the possibility
of applying our techniques to multi-dimensional American-
style derivatives, such as Asian options.
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