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ABSTRACT

Variance is a classical measure of a point estimator’s sam-
pling error. In steady-state simulation experiments, many
estimators of this variance—or its square root, the standard
error—depend upon batching the output data. In practice,
the optimal batch size is unknown because it depends upon
unknown statistical properties of the simulation output data.
When optimal batch size is estimated, the batch size used is
random. Therefore, robustness to estimated batch size is a
desirable property for a standard-error estimation method.
We consider only point estimators that are a sample mean
of steady-state data and consider only mean squared error
(mse) as the criterion for comparing standard-error estima-
tion methods. Like previous authors, we measure robustness
as a second derivative. We argue that a previous measure—
the second derivative of mse with respect to estimated batch
size—is conceptually flawed. We propose a new measure,
the second derivative of the mse with respect to the esti-
mated center of gravity of the non-negative autocorrelations
of the output process. With the previous robustness mea-
sure, optimal mse and robustness yielded different rankings
of estimation methods. A property of the new robustness
measure is that both criteria yield identical rankings.

1 BACKGROUND

We consider simulation experiments that produce steady-
state output data Y1, Y2, ..., Yn and estimate the process
mean E(Y ) with the sample mean

Ȳ =
n∑

i=1

Yi/n,

which has variance

Var(Ȳ ) = Var(Yi )

n
[1 + 2

n∑
h=1

(1 − h

n
)ρh],
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where Var(Yi ) is the common variance of individual ob-
servations and ρh = corr(Yi , Yi+h ) is the autocorrelation at
lag h, for h = 1, 2, ....

As is typical in analyzing steady-state simulation ex-
periments, we assume that variance Var(Yi ) and autocorre-
lations ρh are unknown. Therefore, using only the output
data Y1, Y2, ..., Yn , the variance Var(Ȳ ) must be estimated.
We denote the generic estimator by V̂ (Ȳ ). (The square root
of V̂ (Ȳ ) is then an estimator of the standard error.)

Several approaches to estimating Var(Ȳ ) are based on
grouping the output data into batches of size m. We con-
sider here non-overlapping batch means (NBM) estimator
(Conway et al. 1959), the standardized-time-series area
(STS-area) estimator (Schruben 1983), overlapping batch
means (OBM) estimator (Meketon and Schmeiser 1984),
and partially overlapping batches (50% OBM, 67% OBM,
75% OBM, and 80% OBM) estimators (Welch 1987). We
also consider two linear combinations of NBM and STS-
area: Schruben’s original, with weights that minimize vari-
ance, and our variation, with weights that minimize mse.
These estimators can be computed in O(n) time. Song
and Schmeiser (1993) discuss these and other batching es-
timators, including studying their properties via graphical
analysis of their quadratic forms.

A fundamental issue is how to choose the batch size, m,
as a function of the (known) run length n, the (known) type of
estimator, and the (unknown) variance and autocorrelations
of the steady-state output process.

Classically, a good batch size has been one that pro-
duced good confidence intervals. “Good” in this sense refers
to the coverage probabilities and the distribution of inter-
val length, often condensed to the probability of covering
the mean and the expected half length. Fishman (1978)
doubled NBM batch sizes until the batch means passed a
test of independence, an approach that implicitly focuses
on the probability of covering the mean. Schmeiser (1982)
compared asymptotic coverage probabilities and mean and
variance of the half length as a function of number of non-
overlapping batches. Schruben (1983) and Goldsman and
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Schruben (1984) assumed that different methods would use
the same batch sizes in arguing that STS estimators provided
more degrees of freedom (that is, smaller variance) than
NBM. More recently, Chen and Kelton (2000), Fishman
(1996, Sections 6.10–6.11) and Steiger and Wilson (2000)
develop procedures for determining an appropriate number
of NBM batches and appropriate batch size to obtain good
confidence-interval performance.

2 MSE-OPTIMAL BATCH SIZES

An alternative to pursuing good confidence-interval perfor-
mance is to define a good batch size to be one that produces
a small mse for the estimator of the variance of the sample
mean, V̂ (Ȳ ). “Good” in this sense means having a small
bias and a small variance, as balanced in the well-known
result

mse[V̂ (Ȳ ), Var(Ȳ )] = bias2[V̂ (Ȳ ), Var(Ȳ )] + Var[V̂ (Ȳ )].

Goldsman and Meketon (1986), who first used mse to
compare estimators of Var(Ȳ ), defined a bias constant cb

and a variance constant cv for each type of estimator. Song
(1988) showed that their bias and variance constants led to
the asymptotic equation

mse[V̂ (Ȳ ), Var(Ȳ )] ≈ Var2(Yi )(
c2

b γ 2
1

n2 m2 + m cv γ 2
0

n3 ),

where γ0 = 1 + 2
∑∞

h=1 ρh and γ1 = 2
∑∞

h=1 hρh .
For sample size n, estimator-type constants (cb, cv),

and output-process constants (γ1, γ0), the asymptotic mse
is minimized by

m∗ ≈ [2n (
c2

b

cv

) (
γ1

γ0
)2]1/3 + 1,

the asymptotic mse-optimal batch size.
The mse-optimal batch size, m∗, depends upon the

type of estimator only through the ratio c2
b/cv ; comparisons

among types of estimators should reflect the different ratios.
The mse-optimal batch size, m∗, depends upon the out-

put process only through the ratio τ ≡ γ1/γ0; comparisons
based upon various output processes should reflect a range
of ratios. We refer to the ratio τ as the output process’s
center of gravity because

γ1

γ0
= 2

∑∞
h=1 hρh

1 + 2
∑∞

h=1 ρh
=

∑∞
h=−∞ |h|ρh∑∞

h=−∞ ρh

is the process lag at which the torque of the positive-lag
autocorrelations is zero. Different autocorrelograms can
yield the same value of τ and therefore the same optimal
batch size.
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Table 1: Properties of various batching estimators

Property

Estimator bias variance m∗ mse(m∗)
cb cv c2/3

b c−1/3
v c2/3

b c2/3
v

OBM 1 4/3 0.91 1.21
80% OBM 1 34/25 0.90 1.23
75% OBM 1 11/8 0.90 1.24
67% OBM 1 38/27 0.89 1.26
50% OBM 1 3/2 0.87 1.31

LC-mse 5/3 10/9 1.36 1.51
NBM 1 2 0.79 1.59

LC-var 2 1 1.59 1.59
STS-area 3 2 1.65 3.30

Table 1 is similar to tables in Goldsman and Meketon
(1986), Song (1988), and Song and Schmeiser (1995) in
comparing estimator types based on mse-optimal perfor-
mance. For each estimator type, the table columns contain,
respectively, the bias constant, the variance constant, the
mse-optimal batch size, and the minimal mse. The latter
two are scaled, ignoring the effects of the sample size n,
the center of gravity τ and the output variance Var(Yi ).

As is known, of these estimator types the minimal
asymptotic mse is obtained with OBM, with complete over-
lapping being best. The equal-weight linear combination
of NBM and STS-area, denoted by LC-var because it min-
imizes asymptotic variance, reverses the bias and variance
constants of NBM and yields the identical optimal mse.

One estimator in the table, shown just before NBM, is
new. This estimator, denoted by LC-mse, is a second linear
combination of NBM and STS-area, but now using mse-
optimal weights rather than Schruben’s variance-optimal
weights. In particular, the new estimator weights NBM by
2/3 and STS-area by 1/3; the mse improvement is about
5%.

3 ROBUSTNESS TO ESTIMATION ERROR

The asymptotic mse-optimal batch size, m∗, would be known
approximately if the center of gravity τ were known. Be-
cause it is unknown, estimators that depend upon mse-
optimal batch size need to estimate τ . Song (1996) esti-
mates τ directly via estimates of many autocorrelations ρh .
Pedrosa (1994) estimates τ within his 1-2-1 OBM estimator
of Var(Ȳ ). However obtained, the estimator τ̂ is substi-
tuted into the mse-optimal batch-size formula to obtain an
estimator m̂∗ of m∗.

In comparing types of estimators, Song (1988) and
Song and Schmeiser (1995) recognized that robustness to
batch-size error, m̂∗ − m∗, is an important property. They
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measured robustness by the second derivative

∂2mse[V̂ (Ȳ ), Var(Ȳ )]
∂m̂∗2 |m̂∗=m∗ ≈ 3 Var2(Yi ) (γ 8

0 c4
v)

1/3

(2 γ 2
1 n10 c2

b)
1/3

,

which for constant values of sample size n, center of grav-
ity τ and observation variance Var(Yi ) is proportional to
c−2/3

b c4/3
v .

We argue that the robustness measure is flawed. The
idea of using the second derivative is fine, being both intuitive
and traditional. Evaluating the second derivative at m∗ is
also fine, allowing each type of estimator to use its own
mse-optimal batch size. The flaw arises from the implicit
assumption that the batch-size error is the same for each
type of estimator; in reality, batch-size error m̂∗ − m∗ is
proportional to c2

b/cv .
Rather than focusing on batch size, which differs de-

pending upon the type of estimator, the robustness measure
should focus on the common output process, whose effect
on the batching estimators considered here is measured via
its center of gravity, τ . The effect of τ then easily is
traced to its effect on m̂∗, whose effect easily is traced to
mse[V̂ (Ȳ ), Var(Ȳ )]. Therefore, we suggest that a more-
appropriate robustness measure is

∂2mse[V̂ (Ȳ ), Var(Ȳ ))]
∂τ̂ 2

|̂τ=τ ≈ 4 Var2(Yi ) (2 γ 10
0 c2

b c2
v)

1/3

3 (n8 γ 4
1 )1/3

.

The derivation is straightforward. The estimated mse-
optimal batch size is

m̂∗ ≈ [2 n (
c2

b

cv

) τ̂ 2]1/3 + 1,

where τ̂ is the estimated center of gravity. For tractability,
ignore the additive constant 1, which is important only when
autocorrelations are negligible. Substitute m̂∗ for m into
the equation for mse[V̂ (Ȳ ), Var(Ȳ )] so that the mse is a
function of τ̂ . Take the second derivative of the resulting mse
equation with respect to τ̂ . Evaluate the second derivative
at τ̂ = γ1/γ0 to obtain the new robustness measure.

For fixed run length n and output-process constants γ0,
γ1 and Var(Yi ), the new robustness measure is proportional
to c2/3

b c2/3
v . Also, the new measure is proportional to the

optimal mse, as shown in Table 1.
Table 2, whose structure is similar to Table 1, shows

the new and previous robustness measures for each type of
estimator. For all batch-means estimators, the new robust-
ness measure is smaller than the previous measure. For the
STS-area estimator, the new robustness measure is more
than two and and half times larger than the previous measure.
The new measure is also larger for both linear-combination
estimators.
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Table 2: Robustness of some batching estimators

Robustness
Estimator previous measure new measure

c−2/3
b c4/3

v c2/3
b c2/3

v

OBM 1.47 1.21
80% OBM 1.51 1.23
75% OBM 1.53 1.24
67% OBM 1.58 1.26
50% OBM 1.72 1.31

LC-mse 0.82 1.51
NBM 2.52 1.59

LC-var 0.63 1.59
STS-area 1.21 3.30

The ratio of the new measure to the previous measure
is c4/3

b c−2/3
v . Therefore the decrease for the batch-means

estimators, which have cb = 1, is due only to the variance
constant. The increase in STS-area is due to its large bias
constant, cb = 3.

The new robustness measure favors OBM in that OBM
is now optimal in terms of both mse and mse robustness. As
was previously known, partial overlapping provides a good
alternative to OBM, with fifty-percent overlapping having
only an 8% mse penalty. The mse penalty for using NBM
rather than OBM is 31%.

The results of Table 2 indicate that one should use as
much overlapping as is possible. Complete overlapping is
not always possible, such as with dynamic batch means
(Yeh 1999). When no overlapping is possible, the new
estimator LC-mse is asymptotically mse-optimal.

4 CONCLUSIONS

We consider estimating the variance of the sample mean
of observations from a steady-state simulation experiment,
with emphasis on comparing types of estimators based on
mse. Five conclusions arise.

First, we conclude that robustness to batch-size error
should not be measured as the second derivative with respect
to estimated batch size.

Second, we conclude that robustness to batch-size error
should be measured as the second derivative with respect
to the estimated center of gravity of the output process.

Third, we propose an mse-optimal linear combination
of NBM and STS-area estimators, analogous to Schruben’s
variance-optimal linear combination.

Fourth, we show that, for each type of batching esti-
mator, the new robustness measure is proportional to the
estimator’s mse at the mse-optimal batch size. Therefore,
ranking types of estimators based on optimal mse is equiv-
alent to ranking based on the new robustness measure.
6



Yeh and Schmeiser
Fifth, the single ranking obtained with the new ro-
bustness measures favors OBM, then partially overlapped
batches, then NBM, and then STS-area. The mse-optimal
linear combination, which by definition ranks higher than
the variance-optimal linear combination, is a bit better than
NBM alone.

Finally, we comment that the issues of mse-optimal
estimation and batch-size robustness apply to all steady-state
point estimators whose variances are estimated using batch
statistics (Schmeiser, Avramidis and Hashem 1990, and
Wood 1995). Few results, however, exist beyond estimation
of the output-process mean.

REFERENCES

Chen, E. J. and W. D. Kelton 2000. A stopping procedure
based on phi-mixing conditions. Proceedings of the
Winter Simulation Conference, ed. J. A. Joines, R.
R. Barton, K. Kang, and P. A. Fishwick. 617–626.
Piscataway, New Jersey: IEEE.

Conway, R. W., B. M. Johnson, and W. L. Maxwell 1959.
Some problems of digital systems simulation. Man-
agement Science 6, 92–110.

Fishman, G. S. 1978. Grouping observations in digital
simulation. Management Science 24, 510–521.

Fishman, G. S. 1996. Monte Carlo: Concepts, Algorithms,
and Applications. New York: Spring-Verlag.

Goldsman, D. M. and M. S. Meketon. 1986. A comparison
of several variance estimators. Technical Report J-
85-12, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA.

Goldsman, D. M. and L. W. Schruben. 1984. Asymptotic
properties of some confidence interval estimators for
simulation output. Management Science 30, 1217–
1225.

Meketon, M. S. and B. W. Schmeiser. 1984. Overlapping
batch means: Something for nothing? Proceedings of
the Winter Simulation Conference, ed. S. Sheppard, U.
Pooch, and C. D. Pegden, 227–230. Piscataway, New
Jersey: IEEE.

Pedrosa, A. 1994. Automatic Batching in Simulation Output
Analysis. Ph.D. Dissertation, Purdue University, West
Lafayette, Indiana.

Schmeiser, B. 1982. Batch size effects in the analysis of
simulation output. Operations Research 30, 556–568.

Schmeiser, B. W., T. Avramidis and S. Hashem. 1990.
Overlapping batch statistics. Proceedings of the Winter
Simulation Conference, ed. O. Balci, R. P. Sadowski,
and R. E. Nance, 395–398. Piscataway, New Jersey:
IEEE.

Schruben, L. W. 1983. Confidence interval estimation us-
ing standardized time series. Operations Research 31,
1090–1108.
347
Song, W. T. 1988. Estimators of the Variance of the Sam-
ple Mean: Quadratic Forms, Optimal Batch Sizes, and
Linear Combinations. Ph.D. Dissertation, Purdue Uni-
versity, West Lafayette, Indiana.

Song, W. T. 1996. On the estimation of optimal batch sizes
in the analysis of simulation output. European Journal
of Operational Research 88, 304–319.

Song, W. T. and B. W. Schmeiser. 1993. Variance of the
sample mean: Properties and graphs of quadratic-form
estimators. Operations Research 41, 501–517.

Song, W. T. and B. W. Schmeiser. 1995. Optimal mean-
squared-error batch sizes. Management Science 41,
110–123.

Steiger, N. M. and J. R. Wilson. 2000. Experimental per-
formance evaluation of batch means procedures for
simulation output analysis. Proceedings of the Winter
Simulation Conference, ed. J. A. Joines, R. R. Barton,
K. Kang, and P. A. Fishwick. 627–636. Piscataway,
New Jersey: IEEE.

Welch, P. D. 1987. On the relationship between batch
means, overlapping batch means, and spectral estima-
tion. Proceedings of the Winter Simulation Conference,
ed. A. Thesen, H. Grant and W. D. Kelton, 320–323.
Piscataway, New Jersey: IEEE.

Wood, D. C. 1995. Variances and Quantiles in Dynamic-
System Performance: Point Estimation and Standard
Errors. Ph.D. Dissertation, Purdue University, West
Lafayette, Indiana.

Yeh, Y. 1999. Steady-State Simulation Output Analysis via
Dynamic Batch Means. M.S. Thesis, Purdue University,
West Lafayette, Indiana.

AUTHOR BIOGRAPHIES

YINGCHIEH YEH is a Ph.D. student in the School of
Industrial Engineering at Purdue University. In 1999, he
received an M.S. degree in Industrial Engineering from
Purdue University. His primary research interests are the
probabilistic and statistical aspects of stochastic simulation,
especially simulation output analysis.

BRUCE W. SCHMEISER is a professor in the School of
Industrial Engineering at Purdue University. His interests lie
in applied operations research, with emphasis in stochastic
models, especially the probabilistic and statistical aspects
of stochastic simulation. He is an active participant in the
Winter Simulation Conference, including being Program
Chair in 1983 and chairing the Board of Directors during
1988–1990.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

