
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

IMPROVING STANDARDIZED TIME SERIES METHODS
BY PERMUTING PATH SEGMENTS

James M. Calvin
Marvin K. Nakayama

Department of Computer Science
New Jersey Institute of Technology
Newark, New Jersey 07102 U.S.A.
ABSTRACT

We describe an extension procedure for constructing new
standardized time series procedures from existing ones. The
approach is based on averaging over sample paths obtained
by permuting path segments. Analytical and empirical
results indicate that permuting improves standardized time
series methods. We also propose a new standardized time
series method based on maximums.

1 INTRODUCTION

A basic problem in simulation is estimating the steady-state
mean µ of a stochastic process. Under mild regularity
conditions, it can be shown that for most processes having
a steady state, time averages satisfy a strong law of large
numbers and a central limit theorem. Thus, developing a
point estimator for µ is straightforward: just run a long
simulation and use the time average of the simulated process.
However, constructing confidence intervals is more difficult
in general because it is a non-trivial task to consistently
estimate the variance constant σ in the relevant central limit
theorem due to process autocorrelations. The regenerative
method (Crane and Iglehart 1975) and spectral method (e.g.,
Anderson 1994) are two approaches to doing this, but each
has certain drawbacks.

Schruben (1983) proposed the class of standardized time
series (STS) methods as a way of constructing asymptotically
valid confidence intervals for µ, with the advantage that
these approaches do not require one to consistently estimate
σ . Instead, σ is “cancelled out” in a manner reminiscent of
the t-statistic. This approach is based on a function g, which,
when applied to the entire sample path of the stochastic
process, yields an estimate of the scale of the process
(Glynn and Iglehart 1990). The validity of STS methods
requires that the stochastic process satisfy a functional central
limit theorem (e.g., Billingsley 1999), which states that
when suitably scaled and centered, the stochastic process
converges to a Brownian motion. STS methods can be
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extended by breaking up the sample path of the resulting
Brownian motion into m batches, m ≥ 2, applying the g
function to each batch, and then combining the m g-values.
We call this method batching. A number of different STS
methods have been proposed in the literature, one example
being the method of batch means.

In this paper, we introduce an approach to developing
new STS methods from existing ones. Our idea is based on
permuting segments of the sample path of the limiting Brow-
nian motion. (This is similar to an approach we developed
for regenerative processes in Calvin and Nakayama 1998,
2000.) Specifically, suppose that the sample path of the
Brownian motion is divided into k equal-length segments,
k ≥ 2. Then permuting the segments and piecing them
together yields another sample path. We apply an STS g
function to each entire permuted sample path, and averaging
over all permutations leads to our estimator. (Note that we
differentiate between the terms segments and batches.) The
half-width of the resulting confidence interval has, in the
limit, less variability than that obtained by applying g to
only the original sample path.

We demonstrate this approach by applying it to a specific
example of a STS method, the (nonstandardized) maximum
estimator, with k = 2 permuted segments. In this case, ana-
lytical calculations show that permuting 2 segments results
in roughly a 25% reduction in the mean confidence-interval
half width as compared to the nonpermuted maximum es-
timator. We also compare analytically the expected half
widths when permuting 2 segments and batching with 2
batches, and show that permuting leads to a slight reduction
in expected half width. Moreover, empirical results seem
to show that permuting leads to confidence intervals with
slightly better coverage than batching.

The (nonstandardized) maximum estimator we con-
sider is apparently a new STS method. Schruben (1983)
previously developed a similar approach, the standardized
maximum, which is based on properties of the maximum
of a Brownian bridge divided by a function of the location
at which the maximum occurs. In contrast, the (nonstan-
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dardized) maximum estimator only considers the value of
the maximum.

The rest of the paper has the following organization.
In Section 2 we review the general method of standardized
time series. We introduce the (nonstandardized) maximum
estimator in Section 3 and discuss in Section 4 the appli-
cation of batching to the maximum estimator. In Section 5
we present the permuted STS approach and apply it our
maximum estimator. Some empirical results are given in
Section 6, and we conclude with some closing comments
in Section 7.

2 BACKGROUND ON STANDARDIZED TIME
SERIES

In this section we summarize some facts about standardized
time series taken from Glynn and Iglehart (1990). Let
Y = {Y (t) : t ≥ 0} be a real-valued stochastic process
representing the output of a simulation experiment. For
each n ≥ 1, define the scaled process

Yn(t) = 1

n

∫ nt

s=0
Y (s) ds, 0 ≤ t ≤ 1,

and note that Yn(1) is the sample mean of the process Y
up to time n. Suppose that there is a real number µ
and a positive number σ such that if we define processes
{Xn(t) : 0 ≤ t ≤ 1} by

Xn(t) = √
n (Yn(t)− µt) ,

then

Xn
D→ σ B (1)

in C([0, 1]) as n → ∞, where C([0, 1]) is the space of
continuous real-valued functions on [0, 1], B is a standard

Brownian motion, and
D→ denotes convergence in distribu-

tion. Known as a functional central limit theorem (FCLT),
(1) has been shown to hold under a variety of assumptions.
Often the conditions require a type of asymptotic inde-
pendence in the form of mixing conditions, which assert
that two events far apart in time are almost independent
(Billingsley 1999).

We are interested in constructing confidence intervals
for the unknown parameterµ, which is the steady-state mean
of Y . One way of accomplishing this is to apply a technique
from the class of standardized time series methodologies.
Each of these methods is based on a function g : C([0, 1]) →
R from a class M. The class M is defined as M = {g =
b ◦ � : b ∈ N }, where � : C([0, 1]) → C([0, 1]) is given
by

�(x)(t) = x(t)− tx(1)
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and N is the class of functions b : C([0, 1]) → R satisfying
the following three conditions:

(i) b(αx) = αb(x) for α ∈ R with α > 0 and x ∈
C([0, 1]),

(ii) P{(b ◦ �)(B) > 0} = 1,
(iii) P{B ∈ D(b ◦ �)} = 0, with D(h) the set of

discontinuities of a function h.

Each possible choice of b ∈ N and the resulting g function
give rise to a standardized time series method. When g ∈ M
and (1) holds,

Yn(1)− µ

g(Yn)

D→ B(1)

g(B)
, (2)

as n → ∞, and g(B) is independent of B(1). Let
�(x) = P(B(1) ≤ x), G(x) = P(g(B) ≤ x), and
H (x) = P(B(1)/g(B) ≤ x). Then

H (x) =
∫ ∞

0
�(xy)G(dy).

By (2),

P

(
Yn(1)− µ

g(Yn)
≤ x

)
→ H (x)

as n → ∞.
To construct confidence intervals, select γ ≡ γg such

that H (γ ) = 1 − δ/2. Then as the run length n → ∞, the
interval [

Yn(1)− γ g(Yn),Yn(1)+ γ g(Yn)
]

is an asymptotic 100(1−δ)% confidence interval forµ. The
half-width of the above confidence interval is Ln ≡ γ g(Yn),
and property (i) of class N implies that Ln = γ g(Xn)/

√
n.

Thus, when (1) holds, properties (i) and (iii) of class N
imply that

√
nLn

D→ γ g(σ B) = γ σg(B) as n → ∞ by the
continuous mapping theorem. Moreover, if {g(Xn) : n ≥ 1}
is uniformly integrable, then

√
nE[Ln] → γ σ E[g(B)] as

n → ∞. Note that σ depends only on the original process
Y and not on the choice of the function g ∈ M, so we will
consider ψ(g) ≡ γ E[g(B)] as a measure of the limiting
expected half-width of a confidence interval obtained using
an STS method based on g ∈ M.

3 STANDARDIZED TIME SERIES BASED ON
MAXIMUM

We now introduce a new standardized time series methodol-
ogy: the (nonstandardized)maximum estimator. Previously,
Schruben (1983) developed the standardized maximum,
which is based on properties of �(B)(t∗)/(t∗(1 − t∗))1/2,
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where t∗ = inf{t ≥ 0 : �(B)(t∗) = M} and M =
max{�(B)(t) : 0 ≤ t ≤ 1}. (Observe that �(B) is a Brow-
nian bridge.) Our (nonstandardized) maximum estimator is
based on properties of �(B)(t∗).

Define the map b : C([0, 1]) → R by

b(x) = max
0≤t≤1

x(t). (3)

It is straightforward to show that b ∈ N , so if we let g :
C([0, 1]) → R be defined by g = b◦�, then g ∈ M, which
gives rise to an STS method. Calvin and Nakayama (2001)
establish the following result.

Proposition 3.1. When b is defined as in (3),

H (x) = 1

2

(
1 + x√

4 + x2

)
.

The critical points of the distribution H in this case
can be computed numerically. In particular, for a 90%
confidence interval, γ ≈ 4.129.

We now compare the nonstandardized and standard-
ized maximum estimators in terms of the mean half-
widths of the resulting confidence intervals. First since
�(B) is a Brownian bridge, when b is defined in (3),
P(b(�(B)) > y) = exp{−2y2} for y ≥ 0; e.g., see p. 290
of Breiman (1992). Thus, for the nonstandardized maximum
estimator, since g(B) = b(�(B)),

E[g(B)] =
∫ ∞

y=0
P(g(B) > y)dy

=
∫ ∞

y=0
e−2y2

dy =
√

2π

4
. (4)

Therefore, for a 90% confidence interval corresponding to
the nonstandardized maximum estimator, our measure of the
limiting expected half-width is ψ(g) = 4.129 · E[g(B)] ≈
2.588.

For the standardized maximum method, the function
g = b ◦ � is defined with b(x) = x(t∗)/(t∗(1 − t∗))1/2,
where t∗ = inf{t ≥ 0 : x(t) = M} and M = max{x(t) :
0 ≤ t ≤ 1}. In this case Schruben (1983) shows

that B(1)/g(B)
D= t3/

√
3, where td is a Student-t ran-

dom variable with d degrees of freedom and
D= denotes

equality in distribution. Thus, it can be shown that
E[g(B)] = 2

√
2/π and the corresponding critical point

for a 90% confidence interval is 2.353/
√

3, so our measure
of the limiting expected mean confidence interval half-width
is ψ(g) = (2.353/

√
3)2

√
2/π ≈ 2.168. Consequently, the

mean half-width corresponding to the nonstandardized max-
imum estimator is asymptotically about 19% larger than that
for the standardized maximum. However, our empirical re-
sults in Section 6 seem to indicate that the coverage of
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confidence intervals constructed using the nonstandardized
maximum method are closer to the nominal level than those
for the standardized maximum.

4 BATCHING

We now describe a standard way to extend standardized
time series methods to multiple “batches.” The idea is
rather than approximate the entire sample path by a single
Brownian motion, we break up the sample path into m
(non-overlapping) batches and approximate each batch by
a Brownian motion. The function g is then applied to each
batch, and we combine the m g-function values to come
up with the overall estimator. We consider here the case
of m = 2 batches, with the resulting g function denoted
by g2, but the idea holds for any arbitrary m ≥ 1. This
approach is discussed in Schruben (1983) and Glynn and
Iglehart (1990).

Define maps 	i on C([0, 1]) by

(	i (x)) (t) = x

(
i + t

2

)
− x

(
i

2

)
for i = 0, 1, and set

g2 =
(

b2 ◦ � ◦	0 + b2 ◦ � ◦	1

)1/2
(5)

for any b ∈ N , where h2(x) = h(x)h(x) for a function h.
It can be shown that g2 ∈ M (Glynn and Iglehart 1990),
so it corresponds to an STS method.

For the case of the nonstandardized maximum with 2
batches, Calvin and Nakayama (2001) show the following.

Proposition 4.1. If b is defined as in (3) and batching is
applied with m = 2 batches, then

H (x) = 1

2
+ x

2
√

x2 + 8

(
1 + 4

x2 + 8

)
.

For a 90% confidence interval, the corresponding crit-
ical point is γ ≈ 3.015, which we computed numerically.
Moreover,

E[g2(B)] = 3
√
π

8
; (6)

see Calvin and Nakayama (2001) for details.

5 PERMUTED STANDARDIZED TIME SERIES

We now present a new method for developing STS methods
from existing ones. The basic idea entails dividing the
sample path into k non-overlapping equal-length segments.
Permute the k segments to generate another sample path, and
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apply a g-function to the entire permuted path. Averaging
over all permutations results in the permuted estimator.

We now give details for the special case of k = 2
segments. We permute the two halves of the path B , and
call the permuted path B̃. Specifically, let B = {B(t) : 0 ≤
t ≤ 1}, and define B̃ = {B̃(t) : 0 ≤ t ≤ 1} such that

B̃(t)

=
{

B(t + 1
2 )− B( 1

2 ) if 0 ≤ t ≤ 1
2

B(t − 1
2 )+ B(1)− B( 1

2 ) if 1
2 < t ≤ 1

.

Since increments of Brownian motion are stationary and
independent, B and B̃ have the same distribution. For any
g ∈ M, let

g̃(B) = (g(B)+ g(B̃))/2. (7)

Calvin and Nakayama (2001) establish the following theo-
rem:

Theorem 5.1. If g̃(B) is as defined in (7) with g ∈ M,
then

(i) E[g̃(B)] = E[g(B)],
(ii) Var[g̃(B)] ≤ Var[g(B)].

Thus, asymptotically, permuting results in confidence
intervals having less variability.

5.1 Permuted Maximum Estimator

We now apply permutations to the maximum estimator
discussed in Section 3. Calvin and Nakayama (2001) prove
the following:

Proposition 5.1. Suppose b is defined as in (3). Also,
suppose we apply permuting with k = 2 segments and no
batching. Then

H (x) = 1

2
+ 1

π
x

√
8

8 + x2
tan−1

(√
8

8 + x2

)

+ 1

π
tan−1

( x

4

)
− 1

π

4x

16 + x2 .

We now compare some properties of the non-batched
(nonstandardized) maximum estimator with and without
permutations. For 90% confidence intervals, the required
critical point of the distribution H is γ ≈ 3.095 for g̃
(i.e., permuting), which we computed numerically. We
previously saw that γ ≈ 4.129 for g (i.e., no permuting).
Since E[g(B)] = E[g̃(B)] as shown in Theorem 5.1(i), the
mean confidence interval half-width is asymptotically about
3/4 as large for the permuted estimator. The variability of
the half-width is also reduced (Theorem 5.1(ii)).
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We now summarize our results for the nonstandardized
maximum estimator. Based on 90% confidence intervals,
our measure of the limiting mean half-width for the non-
permuted, non-batched estimator is

ψ(g) = 4.129 ·
√

2π

4
≈ 2.588

by (4); for the permuted estimator (k = 2 segments) it is

ψ(g̃) = 3.095 ·
√

2π

4
≈ 1.940;

and for the batched estimator (m = 2 batches) it is

ψ(g2) = 3.015 · 3
√
π

8
≈ 2.004

by (6). Thus, in terms of limiting expected half-widths,
permuting is better than not permuting, and permuting with
2 segments slightly outperforms batching with 2 batches.
In the next section we empirically compare coverages of
confidence intervals.

6 NUMERICAL EXPERIMENTS

We ran simulations on three different models to study the
coverages of 90% confidence intervals based on the methods
discussed in this paper. For each of the first two models,
we considered two methods: the nonstandardized maximum
using only permuting and only batching. The permuted
estimators were constructed using k = 2 segments and
the batched estimator with m = 2 batches. For the last
model, we also examined the standardized maximum and the
nonstandardized maximum, both of them with no permuting
and no batching. For each model we estimated coverages
for the constructed confidence intervals by running 100,000
independent replications.

In the first example we simulated the Ehrenfest urn
model with 10 states. Figure 1 plots the observed coverage
as a function of the simulation run length of each replication.
Observe that, except for the shortest run lengths, the coverage
for the permuted estimator is consistently higher (closer to
the nominal level) than that for the batched estimator.

For the second numerical example we simulated a ge-
ometric jump model, which is a Markov chain with state
space S = {0, 1, 2, . . .} and transition probabilities

P0,i = (1 − p)pi , Pi+1,i = 1.

In the example, p = 1−e−1/10. Figure 2 shows the coverage
for the permuted estimator is consistently above that for the
batched estimator.
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Figure 1: Observed Coverage Rates for Ehrenfest Urn Model
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Figure 2: Observed Coverage Rates for Geometric Jump
Model

The third model that we simulated is the embedded
discrete-time chain of the number of customers in an M/M/1
queue on a truncated state space S = {0, 1, 2, . . . , 100}. We
set the arrival rate λ = 0.8 and service rate µ = 1.0, so the
traffic intensity is ρ = 0.8.

Figure 3 shows the average half-widths of the con-
structed 90% confidence intervals using the nonstandard-
ized maximum method in three implementations: with no
permuting and no batching, with only permuting, and with
only batching. Also, the average half-widths are plotted for
the standardized maximum estimator with no permuting and
no batching. As previously shown in our theory for the non-
standardized maximum method in Section 5.1, permuting
outperforms no permuting and no batching, and similarly,
batching is better than no permuting and no batching. The
difference between only permuting and only batching is
small. Also, we see that when no permuting or batching is
used, the standardized maximum method leads to smaller
average half-widths than the nonstandardized method, which
agrees with our theory in Section 3.
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M/M/1 Queue

Figure 4 shows the observed coverages of confidence
intervals for the M/M/1 model. Note that for the nonstan-
dardized maximum method, permuting outperforms batch-
ing, which is consistent with what we saw for the other two
models. Also, when no batching nor permuting is applied,
coverages are higher for the nonstandardized maximum than
for the standardized maximum. Thus, although the stan-
dardized maximum yields shorter confidence intervals on
average, the coverage of these intervals is not as good.
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Figure 4: Observed Coverage Rates for M/M/1 Queue

In all of our experiments, permuting outperforms batch-
ing in terms of coverage. This may be due to the fact that
when permuting, we apply the g-function to each entire per-
muted sample path, whereas batching applies the g-function
to each of the smaller batches individually. Thus, under
batching, the g-function is applied to shorter pieces of the
sample path, which requires that the Brownian approxima-
tion from the FCLT holds for each of the smaller batches.
But for permuting, since g is applied to each entire permuted
path, the FCLT approximation is based on a larger sample.



Calvin and Nakayama
7 CONCLUSIONS

In this paper we showed how to construct new STS methods
from existing ones by permuting. Based on analytical and
empirical studies, it appears that permuting can improve
STS methods. In addition, permuting seems to have better
small-sample properties than batching.

We also presented a new STS method, the nonstandard-
ized maximum estimator. Compared to the standardized
maximum, the nonstandardized maximum method appears
to yield confidence intervals with better coverage but at the
expense of larger mean half-widths.
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