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ABSTRACT 

A methodology for optimization of simulation models is 
presented.  The methodology is based on a genetic algo-
rithm in conjunction with an indifference-zone ranking and 
selection procedure under common random numbers.  An 
application of this optimization algorithm to a stochastic 
mathematical model is provided in this paper. 

1 INTRODUCTION 

Many optimization problems in industrial engineering in-
volve searching for the best choice among a large set of al-
ternative solutions.  Frequently these problems are trying 
to find answers to questions such as what is the shortest 
path to visit a set of cities? what is the best routing system 
for bus operation in a city to minimize customer-waiting 
time? what is the best facility layout to minimize material 
flow? what is the best levels for reorder point and reorder 
quantities to minimize inventory cost?  These types of 
problems are often referred to as combinatorial optimiza-
tion problems.   
 A combinatorial optimization problem can be defined 
by a search space S and a set of constraints C = {c1, c2, 
c3…}, where the search space consists of a finite, or possi-
bly countable infinite, set of candidate solutions (s), and an 
objective function f: S → ℜ (Papadimitrion and Steiglitz, 
1992).  The objective of a combinatorial optimization 
problem Pc(S,C,f) is to find an optimal solution among the 
feasible solutions s’ ∈ S that satisfy the constraints C in S.  
 Even though these types of problems are theoretically 
easy to solve, they can be computationally intractable.  Con-
sider a combinatorial optimization problem that has only 
four decision variables and each variable can only equal in-
teger values from 1 to 10, then the solution space consists of 
104 or 10,000 alternatives.  Performing an exhaustive search 
to find the optimum can in general not be done within a 
timely fashion.  Therefore, more intelligent optimization al-
gorithms are needed to solve these types of problems. 
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 It is critical that these intelligent optimization algo-
rithms are able to balance the tradeoff between exploration 
and exploitation.  The algorithms need to explore the solu-
tion space for new, improved solutions while exploiting 
already visited solutions.  Classical algorithms, such as hill 
climbing, emphasize exploration of the search space and 
neglect exploitation, whereas random search algorithms 
emphasize exploitation and neglect exploration.  However, 
optimization algorithms based on learning, such as genetic 
algorithms (GA), have proven to balance the tradeoff be-
tween the two. 
 Genetic algorithm (GA) is a population based search 
algorithm inspired by Darwinian evolutionary theory: sur-
vival of the fittest (Holland, 1975).  The basic idea behind 
GAs is that a population of individuals with certain behav-
iors is exposed to a new environment, where each individ-
ual represents an alternative solution.  Some of the individ-
ual’s behaviors are better suited to meet the demand of the 
new environment.  Through selecting and mating the indi-
viduals appropriately, desired behaviors are passed to their 
offsprings.  These offsprings form the new generation of 
the population.   
 Unfortunately, this reproduction is never faultless, nor 
can individual genotypes remain free of random mutation.  
Introduction of random genetic variation in turn leads to 
formation of unique behavior characteristics.  Frequently 
this random event creates individuals with less desirable 
characteristics, however, in some cases more desirable in-
dividuals are constructed. 
 The major drawback with GA is that it was originally 
developed to be used on deterministic problems.  There-
fore, the use on stochastic problems can be difficult.  This 
is due to the stochastic nature of their responses.  Neglect-
ing this fact can cause the GA to be mislead during the 
search, hence, causing it not to perform better than a ran-
dom search.  This research proposes a new framework that 
combines a GA with an indifference-zone ranking and se-
lection procedure.  This hybrid approach would make sure 
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that a correct decision is made about which direction the 
search should proceed in.   

2 BACKGROUND 

GA has successfully been used for optimization of simula-
tion models, see Faccenda and Tenga (1992), Tompkins 
and Azadivar (1995), Tautou and Pierreval (1995), Azadi-
var and Wang (2000) among others.  Its success is mainly 
due to the fact that it is generally more applicable than 
classical optimization algorithms since only the evaluation 
of the individual’s behavior is needed during its search for 
finding new alternative solutions.  Furthermore, it does not 
require information about the gradient’s convexity or con-
tinuity of the response.  It can also easily be hybridized to 
improve its performance and it is relatively robust under 
low levels of variance.  Finally, GA can handle both quan-
titative (i.e. number of machines to employ) and qualitative 
(i.e. queue disciplines) decision variables.  This feature 
may be the most attractive since optimization of simulation 
models often involves mixes of the two types of variables. 
 When the variance of the responses are high the per-
formance of a GA can be inadequate.  In the worst case it 
might not perform better than a random search.  This oc-
curs when bad decisions are made on which individuals to 
use for constructing the new population.  In order to im-
prove the performance of a GA in high variance environ-
ment statistical comparison procedures need to be used.   
 The two most commonly used statistical comparison 
procedures in simulation modeling are multiple-
comparison and indifference-zone ranking and selection 
procedures.  The primary difference between them is that 
the later results in a decision rather than an estimate of the 
difference.  When optimizing a system the analyst is trying 
to make a decision about which system is the best.  There-
fore, indifference-zone procedures are preferred when used 
in conjunction with GA for optimization of stochastic pro-
cesses.   
 Boesel (1999) proposed to combine both, a multiple-
comparison procedure and a ranking and selection proce-
dure with a GA.  He used a multiple-comparison procedure 
to group together individuals during the search.  The indi-
viduals in a group get the same selective probability. After 
termination of the search, Boesel proposed to use Nelson et 
al. (1998) screening and selection procedure to select the 
best individual from the visited solutions during the search. 
 Allen et al. (1999) proposed an optimization procedure 
based on GA in conjunction with both a ranking and selec-
tion and an indifference-zone ranking and selection proce-
dure.  Both of these statistical comparison procedures re-
quire known and equal variance, which can be an 
unrealistic assumption in simulation modeling.  
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3 METHODOLOGY 

This section presents a framework that uses a GA in con-
junction with an indifference-zone ranking and selection 
procedure for optimization of stochastic processes.  The 
framework consists of three major components.  The com-
ponents are the initialization phase, the search phase, and 
the solution phase.  See Figure 1 for a pseudo code of the 
proposed optimization algorithm.   
 

t=0 
initialize Pt 
evaluate Pt 
loop 
Pt+1 = select Pt  
  recombine Pt+1 
  mutate Pt+1 
  evaluate Pt+1 
  t=t+1 
while not terminate Pt+1 
present solution 
 

Figure 1: Pseudo Code of a Simple Genetic 
Algorithm, where Pt Denotes the Population at 
Generation t 

 
 A brief description of the three phases is presented next.   

3.1 Initialization Phase 

The first step of the proposed methodology is the initializa-
tion phase in which the parameters used in the algorithm 
are specified.  Theses include, the indifference-zone (d*), 
the initial number of replications (n0), and the probability 
of overall correct selection (P).  In addition, the parameters 
of the genetic algorithm including the probability of pre-
mature convergence (ψ), the probability of crossover (pc), 
the probability of mutation (pm), the probability of select-
ing the winner in a tournament (ptour), and the subset size 
of immigration mutation (mi) are specified.   
 After initializing the parameters an estimate of the 
necessary population size can be obtained.  The population 
size depends on the indifference-zone (d*) and the variance 
of the alternative solutions as well as the variance of the 
population.  The variance of the alternatives and the popu-
lation is estimated by performing an initial study.  This 
study is also used for checking the efficiency of the CRN.  
 After estimating the necessary population size, the ini-
tial population is generated.  The initial population consists 
of a mixture of randomly generated alternatives, user de-
fined solution alternatives, and extreme points.  This al-
lows for good population diversity, hence, minimizing the 
risk of premature convergence of the search.   
 The next step in initialization phase is to estimate the 
alternatives fitness.  This is done by using an indifference-
zone ranking and selection procedure.  By using an indif-
ference-zone procedure an accurate estimate of the alterna-
tives fitness is obtained.  Furthermore, using an indiffer-

Initialization 
phase 

Search phase 

Solution phase 
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ence-zone procedure gives a statistical guarantee that the 
fitness of the best alternative in the population is monotone 
increasing.   
 Usually the indifference-zone procedures are two stage 
procedures.  That is, by performing an initial stage of n0 
replications an estimate of the required number of replica-
tions (N) can be obtained.  By performing these N replica-
tions the alternatives can be ranked and a selection can be 
made under some probability of correct selection (P*).    
 Both Clark and Yang (1986) and Nelson and Matejcik 
(1995) proposed indifference-zone ranking and selection 
procedures for selecting the best of the k alternatives.  In 
this research, a new indifference-zone procedure was de-
veloped that selects the m best of k alternatives.  This 
selection is used during the search for improving the per-
formance of the GA.  Furthermore, it is used in the solution 
phase to select the m best alternatives found during the 
search.   

3.2 Search Phase 

The second phase of the proposed optimization algorithm 
is the search phase.  By using the stochastic processes of 
selection, recombination, and mutation the population is 
able to find new and improved solutions.   
 Selection is the process of selecting which alternatives 
are going to be used for generating the new population.  
This process is based on the selective probabilities, as-
signed to each alternative based on its rank within the 
population, often referred to as ordinal based selection.  
This type of selection is often preferred over proportional 
selection that is based on alternatives relative fitness to the 
other (Miller, 1997). 
 The proposed indifference-zone procedure is also used 
in the selection process.  This ensure that the m best alter-
natives are retained from one generation to the next, thus, 
minimizing the risk of losing good alternatives if they are 
not selected for reproduction or destroyed by recombina-
tion or mutation.  Furthermore, this allows for a statistical 
guarantee that the best alternative in succeeding genera-
tions is monotone increasing.   
 The recombination is the process of mixing two alter-
natives to create two offsprings.  This is the search primary 
mechanism to find new and improved solutions.  Mutation 
is a background operation that ensures the search recovers 
from lost behavior information of the alternatives.   
 The search phase continuous until the stopping crite-
rion is meet.  In order to ensure that a broad search has 
been performed termination occurs only after convergence 
of the population.   
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3.3 Solution Phase 

The final phase of the proposed optimization procedure is 
solution presentation.  This phase presents the alternatives 
that can be considered for implementation.  The solutions 
are selected using the same indifference-zone ranking and 
selection procedure used for evaluating the alternatives.  
That is the m best of the k alternatives is selected with 
some probability of correct selection.  This selection al-
lows for a guarantee that the presented solutions are the 
best with some probability of overall correct selection.   

4 EXPERIMENT 

The initial case study was performed on a stochastic model 
initial developed by Keys et al. (1995).  The function is de-
fined as 

 
( ) ( )( )( )( ) 1

2

1
2
2

2
1211

2
2

2
1 05.005.0411704376.0, ε+−−−−−= xxxxxxxf  

 
where x1 and x2 are limited in the interval  
[-1.000,1.000] and ε1 is the random noise  This problem 
was selected because it has a known optimum at 
f1(0.699,0.000)=-0.9999.  Furthermore, it has previously 
been used for comparison of several simulation optimiza-
tion methodologies.   
 The model is constructed so that due to the random 
noise at least one of the local optimums can return a better 
fitness than the global optimum.  Hence, causing an opti-
mization algorithm to converge to a local optima. 
The indifference-zone has the following setup during the 
experiment: n0 = 8, m = 78, k = 8, d* = 0.05, the selection 
is done at an overall confidence level of 0.90.  The setup of 
the GA follows general setting presented in literature.  The 
initial population of alternatives consists of the extreme 
points and randomly generated solutions. 
 A total of 42 iterations of the proposed optimization 
algorithm were performed before the termination criterion 
was met.  During the search, the optimization algorithm 
visited a total of 1,180 alternatives, which is only 0.03% of 
the entire solution space (i.e., 1,180/4,004,001).  The three 
best alternatives found during the search were (x1, x2) = 
(0.703, -0.003), (0.701, -0.005), and (0.699, -0.010) with 
an estimated average response of -1.02316, -1.02315, and –
1.02253, respectively.  These are selected with an overall 
probability of correct selection of 0.90.  See the evolution 
of the population in Figure 2. 
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Figure 2: Evaluation of Population During Iteration 1 Through 5 ((a) Through (e)), Iteration 10 (f), Iteration 
15 (g), Iteration 20 (h), Iteration 30 (i), and Iteration 42 (j) (White Squares Symbolize the Location of a Al-
ternative Solution on the Contour Plot) 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 
 
4.1 Comparison with other procedures 

Hall and Bowden (1997) used this stochastic function for a 
comparison of the performance of Tabu Search (TS), Evo-
lution Strategies (ES), and Simplex Algorithm (SA).  In 
their study, each alternative was allowed to perform 20 it-
erations.  Assuming that the proposed algorithm terminates 
after 20 iterations the following was found.  During this 
partial search 606 alternatives were visited, that is 
606/4,004,001 or 0.015% of the solution space. The three 
best solutions found during this partial search are (x1, x2) = 
(0.690, -0.010), (0.680, -0.010), and (0.722, -0.010), with 
an estimated response of -1.02165, -1.01866, and -1.01679, 
respectively. 
 As a performance measure Hall and Bowden used the 
percentage of successful iterations, where an iteration is 
considered to be successful if the Euclidean distance be-
tween the best alternative in the population and the true op-
timum is less than 1% of the range specified by x1 and x2.  
This performance measure gives a good indication of the 
optimization algorithms ability to converge to the global 
optimum under search restrictions.  Table 1 presents the 
percentage of successful replications of the first 20 itera-
tions of the proposed algorithm as compared with tabu 
search, evolutionary strategies, and Nelder-Mead simplex 
algorithm.  The results indicate that the proposed algorithm 
performs better than tabu search and Nelder-Mead simplex 
algorithm, and at least as good as the evolutionary strate-
gies.  
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Table 1: Percentage of Successful Iterations (Values 
for Tabu Search, Evolution Strategies, and Simplex 
Algorithm Taken from Hall and Bowden 1997) 
 Proposed Tabu 

Search 
Evolution 
Strategies 

Simplex 
Algorithm 

f1 50% 5% 45% 0% 
 
 In Hall and Bowden comparison study, the alternatives 
were replicated 2000 times at each of the 20 iterations.  
The proposed algorithm performed only eight replications 
on each of the alternatives.  During the time it took for 
their study to evaluate one alternative, the proposed algo-
rithm can search 2,000/8 = 250 alternatives.  That is, the 
proposed algorithm can perform (250/78 ≈ 3.2) 3 complete 
iterations.  Hence a significant reduction in the simulation 
effort is achieved by using proposed procedure.  

5 FUTURE RESEARCH 

Future areas of research include applying this procedure to 
simulation models.  Compare the optimization procedures 
as well as the indifference-zone ranking and selection pro-
cedures performance with other techniques.   
 Another area of future research includes the develop-
ment of a similar framework to be used for optimization of 
multi-response stochastic systems.  
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