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ABSTRACT

We discuss using the semi-regenerative method, importance
sampling, and stratification to estimate the expected cumula-
tive reward until hitting a fixed set of states for a discrete-time
Markov chain on a countable state space. We develop a
general theory for this problem and present several central
limit theorems for our estimators. We also present some
empirical results from applying these techniques to simulate
a reliability model.

1 INTRODUCTION

Importance sampling is a variance-reduction technique that,
if applied properly, can lead to significant decreases in the
variance when estimating performance measures related to
rare events. The basic idea is to change the dynamics
of the system so as to cause the rare event of interest to
occur more frequently. Unbiased estimators are recovered
by multiplying the resulting samples by a correction factor
known as the likelihood ratio. In the rare-event context,
importance sampling is often used in the estimation of the
mean of a non-negative random variable Z for which Z = 0
with high probability, and Z > 0 with small probability.
For more details on importance sampling, see Glynn and
Iglehart (1989) and Heidelberger (1995).

In this paper, we consider an irreducible, positive-
recurrent discrete-time Markov chain (DTMC) X on a dis-
crete state space S, and we examine the estimation of η(w),
which is the expected cumulative reward until hitting some
set of states S0 ⊂ S given that the system starts in state
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w. One approach to estimating η(w) is to run replications,
where each replication begins with the system in state w
and ends the first time S0 is hit. When S0 is a rare set,
standard simulation is inefficient since the replications will
typically be extremely long and highly variable. But even
importance sampling may be ineffective for estimating η(w)
when using replications because each replication may still be
long and the variance of estimators under static importance
sampling grows exponentially in the length of a replication
(Glynn 1995).

A way to circumvent this problem is to use the regen-
erative method (Crane and Iglehart 1975; Shedler 1993).
A regenerative process has the property that there is an
infinite sequence of stopping times, known as regeneration
points, at which times the system probabilistically restarts,
and for our DTMC X , the successive hitting times to any
fixed state form a regeneration sequence. We can break up a
sample path of X into i.i.d. cycles based on the regeneration
points, and importance sampling need only be used within
regenerative cycles.

We can further shorten the time in which impor-
tance sampling is applied by using the semi-regenerative
method (Calvin, Glynn, and Nakayama 2001). The semi-
regenerative method gets its name because of its close
relationship to semi-regenerative processes (Çinlar 1975,
Section 10.6). To apply this approach to our DTMC X ,
we fix a set of states A, and we break up a sample path
of X into trajectories determined by successive entrances
into the set A. Importance sampling thus only needs to
be applied to individual trajectories, which are shorter than
regenerative cycles, and thus may lead to smaller variance
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than when using the regenerative method with importance
sampling.

The rest of this paper is organized as follows. Section 2
develops the mathematical framework, and in Section 3 we
review the estimation of η(w) using the regenerative method,
both without and with importance sampling. We describe the
semi-regenerative method in Section 4, both without and
with importance sampling. We also consider combining
importance sampling with stratification. We present some
empirical results in Section 5.

2 MATHEMATICAL FRAMEWORK

Let X = {X j : j = 0, 1, 2, . . .} be a discrete-time Markov
chain on a finite or countably infinite state space S. Let
Q = (Q(x, y) : x, y ∈ S) be the transition probability
matrix of X , and let Px (resp., Ex , Varx , and Covx ) denote
the probability measure (resp., expectation, variance, and
covariance) given that X0 = x , x ∈ S. Let P be the family
of probability measures {Px : x ∈ S}.
Assumption 1. X with transition probability matrix Q is
irreducible and positive recurrent.

Under Assumption 1, X has a unique stationary distri-
bution π = (π(x) : x ∈ S), which is the row-vector solution
to π = πQ with

∑
x∈S π(x) = 1 and π(x) > 0 for all

x ∈ S.
Let f : S → � be a “reward” function such that

f (x) ≥ 0, x ∈ S. Let S0 ⊂ S, and define � = inf{n ≥ 0 :
Xn ∈ S0}. Fix an initial state w ∈ S with w �∈ S0, and our
goal is to estimate

η(w) = Ew


�−1∑

j=0

f (X j )


 ,

which is the expected cumulative reward until S0 is hit,
given that the chain starts in state w.

3 THE REGENERATIVE METHOD

For x ∈ S, define τx = inf{ j ≥ 1 : X j = x}. Using w ∈ S
as a “return state,” one can show (e.g., Goyal et al. 1992)
that

η(w) = Ew [U ]

Ew [V ]
, (1)

where

U =
(τw∧�)−1∑

j=0

f (X j ),

V = I (� < τw),
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a1 ∧ a2 = min(a1, a2) for a1, a2 ∈ �, and I (C) is the
indicator function of an event C , i.e., I (C) = 1 if C occurs,
and is 0 otherwise.

3.1 Standard Simulation

Using (1) we can apply the regenerative method to estimate
η(w) by generating independent copies of (U, V ) under
measure Pw and forming sample means. Specifically, let
Tw,0 = inf{ j ≥ 0 : X j = w} and Tw,k = inf{ j > Tw,k−1 :
X j = w} for k ≥ 1. Define τw,k = Tw,k − Tw,k−1, for
k ≥ 1. Define �w,k = inf{ j ≥ Tw,k−1 : X j ∈ S0}, for

k ≥ 1. Also, define Uw,k = ∑(Tw,k∧�w,k )−1
j=Tw,k−1

f (X j ) and
Vw,k = I (�w,k < Tw,k) for k ≥ 1. Now fix an integer n
large and run a simulation of X up to time Tw,n , giving a
sample path {X j : j = 0, 1, . . . , Tw,n}. The (Uw,k, Vw,k),
k = 1, 2, . . . , n, are i.i.d. copies of (U, V ) under measure
Pw. Then the regenerative estimator of η(w) is

η̃n(w) = (1/n)
∑n

k=1 Uw,k
(1/n)

∑n
k=1 Vw,k

.

Let N (κ,�) denote a multivariate normal distribution
with mean vector κ and covariance matrix �. Also, let
D→ denote convergence in distribution. We can form an
asymptotically valid confidence interval for η(w) based
on the following central limit theorem, which is a slight
variation of one appearing in Shedler (1993), p. 100.

Proposition 1. If Assumption 1 holds and if Ew
[
U2
]
< ∞,

then

n1/2(η̃n(w)− η(w))
D→ N (0, σ̃ 2)

as n → ∞, where

σ̃ 2 = 1

Ew[V ] (Varw[U ] − 2η(w)Covw(U, V )

+ η(w)2Varw[V ]
)
.

3.2 Importance Sampling

It turns out that in certain situations, the denominator in (1)
may be difficult to estimate (but not the numerator). For
example, this is true when η(w) corresponds to the expected
time to buffer overflow in a stable single-server queue with
a large buffer and w = 0, and also when η(w) is the mean
time to failure of a highly reliable system and w is the state
with all components operational; see Heidelberger (1995).
To understand the difficulty in estimating the denominator
in (1) in these settings, note that (under measure Pw) most
w-cycles end before hitting S0, so V = I (� < τw) = 0 with
high probability, say 1 − ε, where ε > 0 is small. Hence,
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Ew[V ] = ε and since V 2 = V , Varw[V ] = Ew[V ] −
(Ew[V ])2 = ε − ε2 ≈ ε. Thus, the coefficient of variation
(CV) of V is approximately ε1/2/ε = ε−1/2 → ∞ as ε → 0.
To see what this means in practice, note that the expected
relative half-width of a 95% confidence interval for Ew[V ]
based on a sample of size n is roughly 1.96 CV/

√
n ≈

1.96/
√
εn. Hence, as ε → 0, the number of samples

required to obtain a confidence interval of a specified relative
width grows to infinity, so it becomes more and more difficult
to estimate Ew[V ] as the event {� < τw} becomes rarer.
So we need another approach to estimate the denominator.

We now describe the use of importance sampling and
the regenerative method to estimate η(w). Let F̃w denote the
filtration of the process X up to time τw with X0 = w. Define
P̃w to be the probability measure on F̃w for the process X
under the transition probability matrix Q given X0 = w.
Now suppose that we define another probability measure
P̃∗
w (not necessarily Markovian) on F̃w for X conditional

on X0 = w, and let Ẽ∗
w and Ṽar

∗
w be the corresponding

expectation and variance operators. We need to assume the
following.

Assumption 2. P̃w is absolutely continuous with respect
to P̃∗

w.

By the Radon-Nikodym theorem (Theorem 32.2 of
Billingsley 1995), Assumption 2 guarantees the existence
of a non-negative random variable L̃w for which

P̃w(C) = Ẽ∗
w[I (C)L̃w], C ∈ F̃w. (2)

Equation (2) is known as a change of measure, and the
random variable L̃w = d P̃w/d P̃∗

w is called the likelihood
ratio (or Radon-Nikodym derivative) of P̃w with respect to
P̃∗
w (given X0 = w). For example, if the measure P̃∗

w is
induced by a transition probability matrix Q∗ = (Q∗(x, y) :
x, y ∈ S), then Assumption 2 will hold if Q∗(x, y) = 0
implies Q(x, y) = 0 for all x, y ∈ S, and the likelihood ratio
for the regenerative cycle X0, X1, . . . , Xτw given X0 = w

is

L̃w =
τw−1∏
j=0

Q(X j , X j+1)

Q∗(X j , X j+1)
.

Now (2) implies that we can rewrite (1) as

η(w) = Ew [U ]

Ẽ∗
w

[
V L̃w

] , (3)

which suggests estimating the denominator by using the
measure P̃w to generate samples of V L̃w, and this is
the basic idea of importance sampling. Note that in (3),
we applied a change of measure to only the denomina-
tor and not the numerator. This leads to the follow-
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ing method known as measure-specific importance sam-
pling (Goyal et al. 1992). Fix a simulation budget n,
which is the total number of w-cycles to simulate, and
fix 0 < δ < 1. Using the original measure Pw , gener-
ate n1 ≡ 
δn� regenerative w-cycles to yield n1 observa-
tions of U , which we denote by U1,U2, . . . ,Un1 . (For
a ∈ �, 
a� denotes the greatest integer less than or equal
to a.) Independently, use the importance-sampling mea-
sure P̃∗

w to generate n2 ≡ 
(1 − δ)n� regenerative w-cycles
to yield n2 observations of (V , L̃w), which we denote by
(V ∗

1 , L̃1), (V ∗
2 , L̃2), . . . , (V ∗

n2
, L̃n2 ). Then our point estima-

tor of η(w) is

η̃∗
n,δ(w) = (1/n1)

∑n1
k=1 Uk

(1/n2)
∑n2

k=1 V ∗
k L̃k

,

which satisfies the following central limit theorem from
Goyal et al (1992).

Proposition 2. If Assumptions 1 and 2 hold and if

Ew
[
U2
]
< ∞ and Ẽ∗

w

[
V L̃2

w

]
< ∞, then

n1/2(η̃∗
n,δ(w)− η(w))

D→ N (0, σ̃ 2∗ )

as n → ∞, where

σ̃ 2∗ = 1

Ew[V ]

(
Varw[U ]

δ
+ η(w)2

˜Var
∗
w[V L̃w]
(1 − δ)

)
.

4 THE SEMI-REGENERATIVE METHOD

Calvin, Glynn, and Nakayama (2001) develop another esti-
mator for η(w), which we now describe. Fix a set of states
A ⊂ S, A �= ∅, and we assume that w ∈ A and A ∩ S0 = ∅.
Set

T0 = inf{ j ≥ 0 : X j ∈ A};
Tk = inf{ j > Tk−1 : X j ∈ A}, k ≥ 1;
T = T1;

Wk = XTk , k ≥ 1.

For each k ≥ 1, we call the sample path segment {X j :
Tk−1 ≤ j ≤ Tk} a trajectory of the process X .

Proposition 3. Under Assumption 1, W = {Wk : k ≥ 0}
is an irreducible, positive-recurrent discrete-time Markov
chain with state space A.

The process W is sometimes called the “chain on A.”
Define

R(x, y) = Px (XT = y) (4)
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for x, y ∈ A, and let R = (R(x, y) : x, y ∈ A), which is the
transition probability matrix of W . Under Assumption 1,
Proposition 3 implies the existence of a unique stationary
distribution ν = (ν(x) : x ∈ A) for W ; i.e., ν is the row
vector satisfying νR = ν with

∑
x∈A ν(x) = 1 and ν(x) > 0

for all x ∈ A. Note that ν(x) = π(x)/
∑

y∈A π(y).

Assumption 3. |A| = d < ∞, with A = {x1, x2, . . . , xd}.
For x ∈ A, note that

η(x) ≡ Ex


�−1∑

j=0

f (X j )




= Ex


(T∧�)−1∑

j=0

f (X j )




+
∑
y∈A

Ex [I (XT = y, � > T )] η(y).

For x, y ∈ A, define

B(x) =
(T ∧�)−1∑

j=0

f (X j ), given X0 = x,

φ(x, y) = I (XT = y, � > T ), given X0 = x,

and set

b(x) = E [B(x)] ,

K (x, y) = E [φ(x, y)] .

Let η = (η(x) : x ∈ A), b = (b(x) : x ∈ A), and K =
(K (x, y) : x, y ∈ A), and note that

η = b + Kη.

Proposition 4. If |b| < ∞ and if Assumptions 1 and 3
hold, then

∑∞
m=0 K mb = (I − K )−1 and

η = (I − K )−1b. (5)

When the set A = {w}, (5) is equivalent to the ratio
formula in (1). In general when |A| > 1, note the similarities
between b and Ew[U ], and between (I−K )−1 and 1/Ew[V ].

4.1 Standard Simulation

We now present a semi-regenerative estimator for η based
on (5) when simulating one sample path of X up to time
Tn . For x ∈ A, define Hn(x) = ∑n−1

k=0 I (Wk = x). Also,
define T1(x) = inf{ j ≥ 0 : X j = x}, and for k ≥ 2,
define Tk(x) = inf{ j > Tk−1(x) : X j = x}. Also, define
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T̃k(x) = inf{ j > Tk(x) : X j ∈ A}, which is the first
time after Tk(x) that X enters A again. Note that the
sample-path segment {X j : Tk(x) ≤ j < T̃k(x)} is the
kth trajectory starting in state x ∈ A. For k ≥ 1, define
�k(x) = inf{ j > Tk(x) : X j ∈ S0}. For x, y ∈ A, let

Bk(x) =
(T̃k(x)∧�k(x))−1∑

j=Tk(x)

f (X j ),

φk(x, y) = I
(

XT̃k(x)
= y, �k(x) > T̃k(x)

)
.

Then define the estimators of b and K to be bn = (bn(x) :
x ∈ A) and Kn = (Kn(x, y) : x, y ∈ A), respectively, with

bn(x) =
∑n−1

k=0
∑(�k∧Tk+1)−1

j=Tk
f (X j ) I (Wk = x)∑n−1

k=0 I (Wk = x)

= 1

Hn(x)

Hn(x)∑
k=1

Bk(x)

and

Kn(x, y)

=
∑n−1

k=0 I (Wk = x, Wk+1 = y, �k > Tk+1)∑n−1
k=0 I (Wk = x)

= 1

Hn(x)

Hn (x)∑
k=1

φk(x, y),

where �k = inf{ j > Tk : X j ∈ S0}. Then we define our
semi-regenerative estimator of η based on a run-length of
Tn to be

ηn = (I − Kn)
−1bn,

where ηn = (ηn(x) : x ∈ A).
Calvin, Glynn, and Nakayama (2001) show that

n1/2(Kn − K , bn − b)
D→ (N1, N2) (6)

as n → ∞, where N1 is a normal random matrix and N2
is a normal random vector, and the following central limit
theorem.

Theorem 5. If E
[
B(x)2

]
< ∞ for all x ∈ A and if

Assumptions 1 and 3 hold, then

n1/2 (ηn − η)
D→ (I − K )−1 N1η + (I − K )−1 N2
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as n → ∞, where (N1, N2) is defined in (6). In particular,
for each k = 1, 2, . . . , d,

n1/2(ηn(xk)− η(xk))
D→ N (0, σ 2

k )

as n → ∞, where

σ 2
k =

d∑
i=1

J (xk, xi )
2

ν(xi )


vi + 2

d∑
j=1

η(x j )si j

+
d∑

j=1

d∑
l=1

η(x j )η(xl)�i (x j , xl)


 , (7)

J = (J (x, y) : x, y ∈ A) with J = (I − K )−1, vi =
Var(B(xi )), si j = Cov(φ(xi , x j ), B(xi )), and �i (x j , xl) =
Cov(φ(xi , x j ), φ(xi , xl)).

4.2 Importance Sampling

In certain contexts, it may be difficult to estimate I − K
using the standard-simulation approach in Section 4.1, so
we now discuss how one can apply importance sampling
with the semi-regenerative method.

Let Fx,T denote the filtration of the process X up
to time T with X0 = x . For x ∈ A, define Px,T to be
the probability measure on Fx,T for the process X under
the transition probability matrix Q given X0 = x . Now
suppose that for each x ∈ A, we define another probability
measure P∗

x,T (not necessarily Markovian) on Fx,T for X
conditional on X0 = x , and let E∗

x,T be the corresponding
expectation. Also, let P∗ (resp., E∗, Var∗, and Cov∗) be
the probability measure (resp., expectation, variance, and
covariance) induced by the collection of measures (P∗

x,T :
x ∈ A). Finally, let P∗

x be the probability measure under
P∗ given X0 = x , and let E∗

x be its expectation operator.
We assume the following.

Assumption 4. For each x ∈ A, Px,T is absolutely contin-
uous with respect to P∗

x,T .

Assumption 4 guarantees the existence of a non-negative
random variable L(x) for which

Px,T (C) = E∗
x,T [I (C)L(x)], C ∈ Fx,T . (8)

The random variable L(x) = d Px,T /d P∗
x,T is the likelihood

ratio of Px,T with respect to P∗
x,T (given X0 = x). Observe

that we allow for the possibility that the P∗
x,T are different

for different states x ∈ A.
We use the importance-sampling measure P∗ to gen-

erate a sample path {X j : j ≥ 0} of the process X as
follows. Given a starting state x0 ∈ A, set X0 = x0, so
T0 = 0. Then using measure P∗

X0
, generate a sequence of
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states until set A is hit again, thereby yielding the trajec-
tory X1, X2, . . . , XT1 . Now from state XT1 , use measure
P∗

XT1
to generate a sequence of states until A is hit again,

yielding XT1+1, XT1+2, . . . , XT2 . In general, at the kth hit
to set A, the process is in state XTk , and we use measure
P∗

XTk
to generate a sequence of states until A is hit again,

yielding XTk+1, XTk+2, . . . , XTk+1 . We define the process
W = {Wk : k ≥ 0} by letting Wk = XTk .

The process X defined in this way may no longer be
a Markov chain since we did not assume any particular
structure (other than Assumption 4) for the measure P∗.
On the other hand, no matter how the P∗

x,T , x ∈ A, are
defined, the embedded process W is always a Markov chain.

Proposition 6. If Assumptions 1, 3, and 4 hold, then W un-
der measure P∗ is an irreducible, positive-recurrent discrete-
time Markov chain on A.

Define matrix � = (�(x, y) : x, y ∈ A) with elements
�(x, y) = P∗

x,T (XT = y), and note that � is the transition
probability matrix of W under the measure P∗. As shown
in Proposition 6, Assumptions 1, 3, and 4 ensure that �
is irreducible and positive recurrent, so � has a stationary
distribution ρ = (ρ(x) : x ∈ A); i.e., ρ� = ρ with
ρ(x) > 0 for each x ∈ A and

∑
x∈A ρ(x) = 1.

For x ∈ A, let

ψ(x, x)

= I (XT = x, � ≤ T )+ I (XT �= x), given X0 = x,

and for x, y ∈ A, x �= y, let

ψ(x, y) = −I (XT = y, � > T ), given X0 = x .

Define M ≡ I − K , and note that for x, y ∈ A,

M(x, y) = Ex [ψ(x, y)] = E∗
x [ψ(x, y)L(x)] (9)

by (8). The expression on the far right of (9) suggests using
importance sampling to estimate the entries in the matrix
M .

We now describe how to apply measure-specific im-
portance sampling to estimate η with the semi-regenerative
method. Fix a simulation budget n, which is the total
number of trajectories to simulate, and fix 0 < δ < 1.
Using the original measure P , generate a sample path
{X j : j = 0, 1, . . . , Tn∗

1
}, where n∗

1 ≡ 
δn�. From this

sample path, for x ∈ A, compute Bk(x), Tk(x), T̃k(x), and
�k(x) as in Section 4.1. Then define the estimator of b to
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be b′
n = (b′

n(x) : x ∈ A) with

b′
n(x) =

∑n∗
1−1

k=0

∑(�k∧Tk+1)−1
j=Tk

f (X j ) I (Wk = x)∑n∗
1−1

k=0 I (Wk = x)

= 1

H ′
n(x)

H ′
n (x)∑

k=1

Bk(x),

where H ′
n(x) = ∑n∗

1−1
k=0 I (Wk = x).

Independently of {X j : j = 0, 1, . . . , Tn∗
1
}, use the

importance-sampling measure P∗ to generate another path
{X∗

j : j = 0, 1, 2, . . . , T ∗
n∗

2
}, with n∗

2 = 
(1 − δ)n�, where

T ∗
0 = 0 and T ∗

k = inf{ j > T ∗
k−1 : X∗

j ∈ A}. Also, for
x ∈ A, define T ∗

1 (x) = inf{ j ≥ 0 : X∗
j = x}, and let

T ∗
k (x) = inf{ j > T ∗

k−1(x) : X∗
j = x} for k ≥ 2, and let

T̃ ∗
k (x) = inf{ j > T ∗

k (x) : X∗
j ∈ A} for k ≥ 1. For x ∈ A,

let

Lk(x) =
dζ(X∗

T ∗
k (x)

, . . . , X∗
T̃ ∗

k (x)
)

dζ ∗(X∗
T ∗

k (x)
, . . . , X∗

T̃ ∗
k (x)

)
,

where ζ(z0, . . . , zm) (resp., ζ ∗(z0, . . . , zm)) is the measure
of the trajectory (z0, . . . , zm) under the original measure
P (resp., importance-sampling measure P∗) given X0 =
z0. Note that dζ(z0, . . . , zm) = ∏m−1

j=0 Q(z j , z j+1). Now
define �∗

k (x) = inf{ j > T ∗
k (x) : X j ∈ S0}. For x ∈ A, let

ψk(x, x) = I

(
X∗

T̃ ∗
k (x)

= x, �∗
k (x) ≤ T̃ ∗

k (x)

)

+ I

(
X∗

T̃ ∗
k (x)

�= x

)
,

and for x �= y, let

ψk(x, y) = −I

(
X∗

T̃ ∗
k (x)

= y, �∗
k (x) > T̃ ∗

k (x)

)
.

We now define W∗ = (W∗
k : k = 0, 1, 2, . . .)

with W∗
k = X∗

T ∗
k

, and also define Lk =
dζ(X∗

T ∗
k−1
, . . . , X∗

T ∗
k
)/dζ ∗(X∗

T ∗
k−1
, . . . , X∗

T ∗
k
), and �∗

k =
inf{ j > T ∗

k : X∗
j ∈ S0}. For x ∈ A, define H ∗

n (x) =
446
∑n∗
2−1

k=0 I (W∗
k = x), and let

M∗
n (x, x)

=

n∗

2−1∑
k=0

I (W∗
k = x)




−1

×

n∗

2−1∑
k=0

[
I (W∗

k = x, W∗
k+1 = x, �∗

k ≤ T ∗
k+1)

+ I (W∗
k = x, W∗

k+1 �= x)
]

Lk

)

= 1

H ∗
n (x)

H∗
n (x)∑

k=1

ψk(x, x)Lk(x),

and for x �= y, let

M∗
n (x, y)

=
∑n∗

2−1
k=0 −I (W∗

k = x, W∗
k+1 = y, �∗

k > T ∗
k+1)Lk∑n∗

2−1
k=0 I (W∗

k = x)

= 1

H ∗
n (x)

H∗
n (x)∑

k=1

ψk(x, y)Lk(x).

Let M∗
n = (M∗

n (x, y) : x, y ∈ A). Then we define our semi-
regenerative estimator of η based on importance sampling
to be

η∗
n,δ = (M∗

n )
−1b′

n,

where η∗
n,δ = (η∗

n,δ(x) : x ∈ A).
It is straightforward to show that

n1/2(M∗
n − M)

D→ N∗
1 , n1/2(b′

n − b)
D→ N ′

2, (10)

where N∗
1 and N ′

2 are normal random matrices with N∗
1 and

N ′
2 independent. One can then show the following central

limit theorem.

Theorem 7. Suppose that Ex
[
B(x)2

]
< ∞ and

E∗
x,T

[
ψ(x, y)L(x)2

]
< ∞ for all x, y ∈ A. Then if As-

sumptions 1 and 3 hold,

n1/2 (η∗
n,δ − η

) D→ (I − K )−1 N∗
1 η + (I − K )−1 N ′

2

as n → ∞, where N∗
1 and N ′

2 are defined in (10). In
particular, for each k = 1, 2, . . . , d,

n1/2(η∗
n,δ(xk)− η(xk))

D→ N (0, σ 2
k,∗)
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as n → ∞, where

σ 2
k,∗ =

d∑
i=1

J (xk, xi )
2

×

 vi

δν(xi )
+

d∑
j=1

d∑
l=1

η(x j )η(xl)�
∗
i (x j , xl)

(1 − δ)ρ(xi )


 ,

vi = Var(B(xi )) and �∗
i (x j , xl) =

Cov∗(ψ(xi , x j )L(xi ), ψ(xi , xl)L(xi )).

In the previous discussion, using the representation
in (9), we employed importance sampling to estimate
the matrix M . Alternatively, we can write K (x, y) =
E∗

x [φ(x, y)L(x)], which suggests applying importance sam-
pling to estimate the entries in the matrix K instead. Let
K ∗

n be the resulting importance-sampling estimator of K ,
and we then compute the estimator (I − K ∗

n )
−1b′

n of η.
However, in our experiments, implementing this approach
led to significantly worse results than the method based on
(9).

Although each B(x), x ∈ A, may have a small CV, it
may be the case that for certain systems, some states x ∈ A
may be visited only rarely under the original measure P ,
thus resulting in few (if any) samples of B(x). Hence, we
may need to apply importance sampling to ensure that a
sufficient number of samples of B(x) are obtained. The
resulting method is straightforward, and we we omit its
development.

4.3 Importance Sampling and Stratification

Another approach is to use a type of stratification in combi-
nation with importance sampling. To do this, we fix a com-
putation budget n and constants pi and qi , i = 1, 2, . . . , d ,
with pi , qi > 0 and

∑d
i=1(pi + qi ) = 1. We will use each

state xi ∈ A as an initial state for trajectories, where we sam-
ple 
pin� trajectories using the original measure Pxi , and
we sample 
qi n� trajectories using the importance-sampling
measure P∗

xi ,T
. Specifically, for each i = 1, 2, . . . , d , let

Ḃk(xi ), 1 ≤ k ≤ 
pi n�, be i.i.d. copies of B(xi) under
measure Pxi . Let

(ψ̇k(xi , y), L̇k(xi ) : y ∈ A)

for 1 ≤ k ≤ 
qin� be i.i.d. copies of

(ψ(x, y), L(xi ) : y ∈ A)
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under measure P∗
xi ,T

, independent of the Ḃk(xi). Set

ḃn(xi ) = 1


pin�

pi n�∑
k=1

Ḃk(xi ),

Ṁn(xi , y) = 1


qin�

qi n�∑
k=1

ψ̇k(xi , y)L̇k(xi ),

for 1 ≤ i ≤ d and y ∈ A, and set ḃn = (ḃn(x) : x ∈ A) and
Ṁn = (Ṁn(x, y) : x, y ∈ A). Finally, define the estimator
of η to be

η̇n = (Ṁn)
−1ḃn,

where η̇n = (η̇n(x) : x ∈ A).

Theorem 8. Suppose that Ex
[
B(x)2

]
< ∞ and

E∗
x,T

[
ψ(x, y)L(x)2

]
< ∞ for all x, y ∈ A. If Assump-

tions 1 and 3 hold, then for each k = 1, 2, . . . , d,

n1/2(η̇n(xk)− η(xk))
D→ N (0, σ̇ 2

k )

as n → ∞, where

σ̇ 2
k =

d∑
i=1

J (xk, xi )
2

×

 vi

pi
+

d∑
j=1

d∑
l=1

η(x j )η(xl)�
∗
i (x j , xl)

qi


 ,

vi = Var(B(xi)) and �∗
i (x j , xl) =

Cov∗(ψ(xi , x j )L(xi ), ψ(xi , xl)L(xi )).

The estimator η̇n is a type of stratified estimator, in
which there are 2d strata. Corresponding to each xi ∈
A are two strata, one for standard simulation and one
for importance sampling. Simulating a trajectory starting
from xi under standard simulation is effectively a sample
from the stratum for xi under standard simulation, and
similarly for the importance-sampling measure. Calvin,
Glynn, and Nakayama (2001) derive the optimal choice
of the stratification weights pi , qi , i = 1, 2, . . . , d , when
estimating a steady-state mean using the semi-regenerative
method, and show how to estimate their values.

5 EMPIRICAL RESULTS

We now present preliminary empirical results from applying
the techniques discussed in this paper. The model we
consider is a reliability system consisting of C types of
components, labelled 1, 2, . . . ,C , with each type having
the same redundancy r . The operating components in
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the system are subject to random failures, and the failure
times are exponentially distributed, with failure rate λi for
components of type i , i = 1, 2, . . . ,C . Initially, there is
one component of each type operational, and the remaining
r − 1 of each type are spares in hot standby; i.e., if the
operational component of type i fails, then a spare, if one is
available, immediately takes its place. Failed components
are fixed by a single repairman using random-order service
with total exponential repair rate µ. In other words, suppose
that ki components of type i , i = 1, 2, . . . ,C , are currently
failed, and let CR = {i : ki ≥ 1}. Then the repairman
simultaneously repairs one component of each type i ∈ CR ,
with the effort µ/|CR| devoted to each.

The state space of the system is S = {( j1, j2, . . . , jC) :
0 ≤ ji ≤ r, i = 1, 2, . . . ,C}, where for state
( j1, j2, . . . , jC), there are ji components of type i failed. We
consider the embedded DTMC. Let u = (u1, u2, . . . , uC) ∈
S and v = (v1, v2, . . . , vC ) ∈ S be two generic states, and
let 0 denote the state (0, 0, . . . , 0) in which all components
are operational. We say that a transition (u, v) is a failure
(resp., repair) transition if ui + 1 = vi (resp., ui − 1 = vi )
for some i and ul = vl for l �= i , and in this case, the fail-
ure (resp., repair) transition corresponds to a failure (resp.,
repair) of a component of type i .

The transition probability matrix Q has the following
non-zero entries: Q(0, v) = λi/(

∑C
l=1 λl ) when (0, v) is a

failure transition corresponding to a failure of a component of
type i ; Q(u, v) = λi/(µ+∑C

l=1 λl)when u �= 0 and (u, v) is
a failure transition corresponding to a failure of a component
of type i ; Q(u, v) = µ/(|CR(u)|(µ+∑C

l=1 λl ))when (u, v)
is a repair transition, where CR(u) = {i : ui ≥ 1}.

We assume that the system is operational if and only if
there is at least one component of each type operational. We
consider the estimation of the expected number of transitions
of the embedded discrete-time Markov chain until system
failure given some initial state, so S0 = {( j1, j2, . . . , jC) :
ji = r for some i} and the reward function f (z) = 1,
z ∈ S.

In our experiments, we either used importance sam-
pling (IS) or standard simulation (no IS). We implemented
importance sampling using balanced failure biasing (Goyal
et al. 1992, Shahabuddin 1994). To describe this method,
we first define the failure biasing parameter θ , 0 < θ < 1.
(Typically one chooses 0.5 ≤ θ ≤ 0.9 in practice, and
in all of our experiments, we let θ = 0.5.) Define the
importance-sampling transition matrix Q∗ with the follow-
ing non-zero entries: Q∗(u, v) = θ/|CF (u)| when u �= 0
and (u, v) is a failure transition, where CF (u) = {i : ui < r};
Q∗(u, v) = (1 − θ)/|CR(u)| when u �= 0 and (u, v) is a
repair transition; and Q∗(0, v) = 1/C for failure transitions
(0, v). Under balanced failure biasing, within a simulated
trajectory, use matrix Q∗ to generate transitions until S0 is
hit, and then use Q to generate the rest of the trajectory.
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In our experiments we considered three methods to
estimate η: the regenerative method (RM), the semi-
regenerative method (SR), and a combined method (CM).
Used only to estimate η(0), CM is implemented as follows.
When there are C components, let si , i = 1, 2, . . . ,C ,
be the state in which there is exactly one component of
type i failed and all other components are operational; i.e.,
si = (0, . . . , 0, 1, 0, . . . 0) ∈ �C , where the 1 is in the i th
place. Then we can express

η(0) = 1 +
C∑

i=1

Q(0, si )η(si ). (11)

When using CM, we estimate each η(si ), i = 1, 2, . . . ,C ,
using SR with A = {s1, s2, . . . , sC }. Then substitute the
estimates of η(si ) in (11) to arrive at the CM estimator for
η(0). The Q(0, si ) are not estimated since they are known.

For each method we estimated the coefficient of vari-
ation (CV) of the resulting estimator by running 1000 in-
dependent replications, with each replication consisting of
a total of 2 × 106 transitions of the DTMC. Also, we esti-
mated the “numerator” independently of the “denominator,”
even when using no importance sampling with the regen-
erative method. (Here, to simplify the discussion, we use
the term “denominator” (resp., “numerator”) to generically
denote either the denominator (resp., numerator) in (1) or
M (resp., b) in the semi-regenerative representation (5) of
η.) When using IS, we only estimated the “denominator”
with IS, and the “numerator” was estimated using no IS.
For a fixed computation budget, we allotted 75% of the
budget to estimating the “denominator” and the rest to the
“numerator.”

In our first set of experiments, we took the number of
types of components to be C = 2, each with redundancy
r = 3. The failure rates are λ1 = 0.001 and λ2 = 0.002,
and the repair rate is µ = 1. Table 1 contains the results
for this parameter set. The first column in Table 1 gives the
method used, where SR-d denotes the semi-regenerative
method with d states in the set A. The second column
gives the states in the set A, where for the regenerative
method, |A| = 1 and the one state in A is the return state.
The third column gives the estimated CV when estimating
the value of η(u), where u is the first state listed in A
(except when using the combined method, in which case
u = 0); e.g., in the last row, we are estimating η given that
X0 = s1 = (1, 0). When stratification is used, denoted Strat,
we used stratification weights p1 = 0.1, p2 = p3 = 0.45
when A = {(0, 0), (0, 1), (1, 0)}, and p1 = p2 = 0.5 when
A = {(0, 1), (1, 0)}.

In our second set of experiments, we took the number
of types of components to be C = 3, each with redundancy
r = 3. The failure rates are λ1 = 0.001, λ2 = 0.002, and
λ3 = 0.003, and the repair rate is µ = 1. Table 2 contains
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Table 1: Results for Reliability System with C = 2 Com-
ponents

Method A CV
RM, no IS 0 0.688

RM IS 0 0.00889
SR-3 IS 0, s1, s2 0.0184

SR-3 IS, Strat 0, s1, s2 0.0194
CM-2 IS s1, s2 0.00810

RM, no IS s1 0.670
RM IS s1 0.0881

SR-2 IS s1, s2 0.00810
SR-2 IS, Strat s1, s2 0.00797

the results for this parameter set. When using stratification,
we specified the weights as p1 = 0.1, p2 = p3 = p4 = 0.3
when A = {0, s1, s2, s3}, and p1 = p2 = p3 = 1/3 when
A = {s1, s2, s3}.

Table 2: Results for Reliability System with C = 3 Com-
ponents

Method A CV
RM, no IS 0 0.711

RM IS 0 0.0151
SR-4 IS 0, s1, s2, s3 0.0149

SR-4 IS, Strat 0, s1, s2, s3 0.0142
CM-3 IS s1, s2, s3 0.0126

RM, no IS s1 0.673
RM IS s1 0.195

SR-3 IS s1, s2, s3 0.0126
SR-3 IS, Strat s1, s2, s3 0.0122

We now provide some analysis of the results in Tables 1
and 2. To simplify the discussion, we call Case 1 the setting
in which we are estimating η(0) with C = 2 (the top half
of Table 1), Case 2 is for η(s1) with C = 2 (the bottom half
of Table 1, Case 3 is for η(0) with C = 3 (the top half of
Table 2), and Case 4 is for η(s1) with C = 3 (the bottom
half of Table 2. First, note that for all four cases, RM with
no importance sampling leads to estimators of about the
same quality (as measured by the CV). In all cases these
estimators can be improved by applying IS with either RM or
SR. If RM with IS is applied, then the estimator in Case 1 is
the best, followed by (in ascending order of CV) Cases 3, 2,
and 4. Now comparing the amount of improvement gained
over RM (with IS) by applying SR (with IS), we see the
same ordering of the cases. Actually, SR does worse than
RM in Case 1, but in Case 4, SR does significantly better.
Thus, it appears that when applying IS, if RM does well,
then SR may not help (and may in fact be worse). But when
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RM does not do well, SR can lead to improvements, and
the benefit increases as the variability of the RM estimator
increases. Also, for the cases in which SR is beneficial,
stratification may lead to a slight improvement. (Note that
we did not attempt to find optimal stratification weights.)
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